首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Fifty-seven fecal samples were collected from giant pandas (Ailuropoda melanoleuca) in the China Conservation and Research Centre for the Giant Panda (CCRCGP) in Sichuan and examined for Cryptosporidium oocysts by Sheather's sugar flotation technique. An 18-year-old male giant panda was Cryptosporidium positive, with oocysts of an average size of 4.60 × 3.99 μm (n = 50). The isolate was genetically analyzed using the partial 18S rRNA, 70 kDa heat shock protein (HSP70), Cryptosporidium oocyst wall protein (COWP) and actin genes. Multi-locus genetic characterization indicated that the present isolate was different from known Cryptosporidium species and genotypes. The closest relative was the Cryptosporidium bear genotype, with 11, 10, and 6 nucleotide differences in the 18S rRNA, HSP70, and actin genes, respectively. Significant differences were also observed in the COWP gene compared to Cryptosporidium mongoose genotype. The homology to the bear genotype at the 18S rRNA locus was 98.6%, which is comparable to that between Cryptosporidium parvum and Cryptosporidium hominis (99.2%), or between Cryptosporidium muris and Cryptosporidium andersoni (99.4%). Therefore, the Cryptosporidium in giant pandas in this study is considered as a new genotype: the Cryptosporidium giant panda genotype.  相似文献   

3.
To further validate the observation of the existence of host-adapted strains of Cryptosporidium parvum, we genetically characterized an isolate of Cryptosporidium parasite from a black bear. Sequence analysis of the ribosomal RNA small subunit and the 70-kDa heat shock protein (HSP70) showed that this parasite represents a new genotype of C. parvum and is related to the C. parvum dog genotype. This finding is helpful for clarifying Cryptosporidium taxonomy.  相似文献   

4.
Cryptosporidium sp. was found in 3 out of 49 caribou (Rangifer tarandus) from northern Alaska. Segments of both the 18S ribosomal RNA and the heat shock protein genes were amplified from the caribou isolate and compared with that obtained from an isolate from a wild white-tailed deer (Odocoileus virginianus) in Virginia as well as other species and isolates available from GenBank. Analyses showed the white-tailed deer isolate to be identical with the C. parvum cattle genotype; however, the caribou isolate represents a new genotype closely related to C. serpentis, C. muris, and C. andersoni. Giardia sp. was not detected in any of the caribou samples nor was Cryptosporidium sp. or Giardia sp. detected in any of the 42 moose (Alces alces) samples examined.  相似文献   

5.
This study was undertaken in order to characterize a Cryptosporidium muris-like parasite isolated from cattle in Hungary and to compare this strain with other Cryptosporidium species. To date, the large-type oocysts isolated from cattle were considered as C. muris described from several mammals. The size, form, and structure of the oocysts of the Hungarian strain were identical with those described by others from cattle. An apparent difference between the morphometric data of C. muris-like parasites isolated from cattle or other mammals was noted, which is similar in magnitude to the differences between Cryptosporidium meleagridis and Cryptosporidium felis or between Cryptosporidium serpentis and Cryptosporidium baileyi. The cross-transmission experiments confirmed the findings of others, as C. muris-like oocysts isolated from cattle fail to infect other mammals. The sequence of the variable region of small subunit (SSU) rRNA gene of the strain was 100% identical with that of the U.S. Cryptosporidium andersoni and C. andersoni-like isolates from cattle. The difference between the SSU rRNA sequence of bovine strains and C. muris is similar in magnitude to the differences between C. meleagridis and Cryptosporidium parvum anthroponotic genotype or between Cryptosporidium wrairi and C. parvum zoonotic genotype. Our findings confirm that the Cryptosporidium species responsible for abomasal cryptosporidiosis and economic losses in the cattle industry should be considered a distinct species, C. andersoni Lindsay, Upton, Owens, Morgan, Mead, and Blagburn, 2000.  相似文献   

6.
7.
Biological data support the hypothesis that there are multiple species in the genus Cryptosporidium, but a recent analysis of the available genetic data suggested that there is insufficient evidence for species differentiation. In order to resolve the controversy in the taxonomy of this parasite genus, we characterized the small-subunit rRNA genes of Cryptosporidium parvum, Cryptosporidium baileyi, Cryptosporidium muris, and Cryptosporidium serpentis and performed a phylogenetic analysis of the genus Cryptosporidium. Our study revealed that the genus Cryptosporidium contains the phylogenetically distinct species C. parvum, C. muris, C. baileyi, and C. serpentis, which is consistent with the biological characteristics and host specificity data. The Cryptosporidium species formed two clades, with C. parvum and C. baileyi belonging to one clade and C. muris and C. serpentis belonging to the other clade. Within C. parvum, human genotype isolates and guinea pig isolates (known as Cryptosporidium wrairi) each differed from bovine genotype isolates by the nucleotide sequence in four regions. A C. muris isolate from cattle was also different from parasites isolated from a rock hyrax and a Bactrian camel. Minor differences were also detected between C. serpentis isolates from snakes and lizards. Based on the genetic information, a species- and strain-specific PCR-restriction fragment length polymorphism diagnostic tool was developed.  相似文献   

8.
The presence of Cryptosporidium and Giardia in 221 fecal samples from different species of Antarctic pinnipeds was investigated by immunofluorescence microscopy and PCR. Cryptosporidium, a skunk-like genotype, was detected only in a southern elephant seal. Giardia was not detected. This is the first report of a Cryptosporidium sp. in Antarctic marine mammals.  相似文献   

9.
This study was undertaken in order to characterize Cryptosporidium meleagridis isolated from a turkey in Hungary and to compare the morphologies, host specificities, organ locations, and small-subunit RNA (SSU rRNA) gene sequences of this organism and other Cryptosporidium species. The phenotypic differences between C. meleagridis and Cryptosporidium parvum Hungarian calf isolate (zoonotic genotype) oocysts were small, although they were statistically significant. Oocysts of C. meleagridis were successfully passaged in turkeys and were transmitted from turkeys to immunosuppressed mice and from mice to chickens. The location of C. meleagridis was the small intestine, like the location of C. parvum. A comparison of sequence data for the variable region of the SSU rRNA gene of C. meleagridis isolated from turkeys with other Cryptosporidium sequence data in the GenBank database revealed that the Hungarian C. meleagridis sequence is identical to a C. meleagridis sequence recently described for a North Carolina isolate. Thus, C. meleagridis is a distinct species that occurs worldwide and has a broad host range, like the C. parvum zoonotic strain (also called the calf or bovine strain) and Cryptosporidium felis. Because birds are susceptible to C. meleagridis and to some zoonotic strains of C. parvum, these animals may play an active role in contamination of surface waters not only with Cryptosporidium baileyi but also with C. parvum-like parasites.  相似文献   

10.
We describe the discovery of polymorphisms in the Cryptosporidium oocyst wall protein (COWP) gene conferring a novel restriction fragment length polymorphism (RFLP) pattern in 26/60 (43%) isolates from a flock of sheep sampled following a waterborne outbreak of human cryptosporidiosis. The sheep isolates showed identical PCR-RFLP patterns to each other by COWP genotyping but different from those of most currently recognised genotypes, including the major Cryptosporidium parvum genotypes 1 and 2. Sequence analysis of the 550bp amplicon from the COWP gene was compared with a DNA coding region employed in previous studies and showed the novel isolate to differ from other Cryptosporidium species and C. parvum isolates by 7-21%. The sheep-derived isolates were compared at this and further three Cryptosporidium gene loci with isolates from other farmed animals. The loci employed were one in the thrombospondin related adhesive protein (TRAP-C2) gene and two in the 70kDa heat shock protein (HSP70) gene (CPHSP1 and 2). Other animal samples tested in our laboratory were from clinically ill animals and all contained C. parvum genotype 2. The sheep in which the novel isolate was identified were healthy and showed no symptoms of cryptosporidiosis, and the novel sheep isolate could represent a non-pathogenic strain. Our studies suggest that a previously undetected Cryptosporidium sub-type may exist in sheep populations, reflecting the increasingly recognised diversity within the parasite genus.  相似文献   

11.
Cryptosporidium canis n. sp. from domestic dogs.   总被引:9,自引:0,他引:9  
Oocysts of Cryptosporidium, from the feces of a naturally infected dog and from an HIV-infected human, were identified as the previously reported canine genotype of Cryptosporidium parvum, hereafter referred to as Cryptosporidium canis n. sp. Also among the oocysts from the dog, a trace amount of C. parvum bovine genotype was detected. Cryptosporidium canis oocysts from both the dog and human were infectious for calves. Oocysts excreted by calf 1 (dog source) were approximately 90% C. canis and 10% C. parvum, whereas those excreted by calf 3 (human source) were 100% C. canis. Oocysts from calf 1 infected calf 2 resulting in excretion by calf 2 of oocysts approximately 90% C. parvum and 10% C. canis. Oocysts of C. canis were not infectious for BALB/c neonatal mice or immunosuppressed C57 juvenile mice, although all control mice became infected with the C. parvum Beltsville isolate. Oocysts of C. canis from calf 1 and the human were structurally indistinguishable from oocysts of the C. parvum Beltsville isolate (bovine). However, C. canis oocysts differed markedly at the molecular level from all known species of Cryptosporidium based on sequence data for the 18S rDNA and the HSP 70 gene. The differences in genetics and host specificity clearly differentiate C. canis as a new species.  相似文献   

12.
Cryptosporidium is an important protozoan that cause diarrheal illness in humans and animals. Different species of Cryptosporidium have been reported and it is believed that species characteristics are an important factor to be considered in strategic planning for control. We therefore analyzed oocysts from human and animal isolates of Cryptosporidium by PCR-RFLP to determine strain variation in Isfahan. In total, 642 human fecal samples from children under five years of age, immunocompromised patients, and high risk persons and 480 randomly selected rectal specimens of cows and calves in Isfahan were examined. Microscopic examination showed that 4.7% (30/642) of human samples and 6.2% (30/480) of animal samples were infected with Cryptosporidium. After identification of the samples infected with the parasite, oocysts were purified and their DNA was extracted. We used PCR-RFLP analysis of a 1750-bp region of 18S rRNA gene to identify Cryptosporidium species. The human samples were infected with Cryptosporidium parvum II, C. muris, C. wrairi, and a new genotype of Cryptosporidium (GenBank accession numbers: DQ520951). The cattle samples were identified as C. parvum II, C. muris, C. wrairi, C. serpentis, C. baileyi, and a new genotype of Cryptosporidium (GenBank accession numbers: DQ520952). Also we found a new genotype infecting both human and cattle samples (GenBank accession numbers: DQ520950). In addition to demonstrating the widespread occurrence of most species of Cryptosporidium, C. parvum, we also observed extensive polymorphism within species. Furthermore, the occurrence of the same species of parasite in both animal and human samples shows the importance of the animal-human cycle.  相似文献   

13.
There are many reports of cryptosporidial infection in ostriches, but none with molecular characterization of the isolates. A study was undertaken for the characterization of a Brazilian Cryptosporidium sp. ostrich isolate by using molecular phylogenetic analysis of fragments of the 18S ribosomal DNA, heat-shock protein (hsp) 70 coding gene, and actin coding gene. Biological studies were accomplished by the experimental inoculation of chickens via oral or intratracheal routes with fresh ostrich Cryptosporidium sp. oocysts. Molecular analysis of nucleotide sequences of the 3 genes by using neighbor-joining and parsimony methods grouped the ostrich isolate as a sister taxon of Cryptosporidium baileyi and showed that the ostrich isolate is genetically distinct from all other known Cryptosporidium species or genotypes. None of the inoculated chickens developed infection as determined by mucosal smears, histology, and fecal screening for oocysts. Although biological and molecular studies indicate that the ostrich Cryptosporidium is a new species, further studies regarding morphological, biological, and molecular characteristics of other ostrich isolates are required to confirm the species status of the ostrich Cryptosporidium.  相似文献   

14.
Within the coccidia, morphological features of the oocyst stage at the light microscope level have been used more than any other single characteristic to designate genus and species. The aim of this study was to conduct morphometric analysis on a range of Cryptosporidium spp. isolates and to compare morphological data between several genotypes of C. parvum and a second species C. canis, as well as a variation within a specific genotype (the human genotype), with genetic data at 2 unlinked loci (18S ribonucleic deoxyribonucleic acid and HSP 70) to evaluate the usefulness of morphometric data in delineating species within Cryptosporidium. Results indicate that morphology could not differentiate between oocysts from C. parvum genotypes and oocysts from C. canis, whereas genetic analysis clearly differentiated between the two. The small size of the Cryptosporidium spp. oocyst, combined with the very limited characters for analysis, suggests that more reliance should be placed on genetic differences, combined with biological variation, when delineating species within Cryptosporidium.  相似文献   

15.
The small Indian mongoose Herpestes auropunctatus, which was recently determined to be a separate species from the Javan mongoose H. javanicus, is one of the most notorious invasive predators known. A population of Herpestes sp. was recently reported at Kagoshima prefecture on Kyushu Island, one of the main Japanese islands. Surprisingly, the trapping actions and information from residents after this report suggest that this Herpestes sp. population has been established in this area for at least 30 years. In this study, based on mitochondrial DNA sequences, we identified seven recently obtained Herpestes sp. individuals from this area as H. auropunctatus, confirming that an additional mongoose population has been established on Kyushu Island. Confirmation of the spatial distribution of the mongoose and surveillance systems in surrounding areas are urgently needed to prevent further expansion of this mongoose’s distribution. It also highlights the large gap between the accepted scientific knowledge relating to biosecurity against biological invasion and local knowledge on the ground, even when the introduced species is notorious and relatively conspicuous. Recent progressions of invasibility studies would greatly contribute to the prioritization of allocating adequate resources to areas with high invasion risks.  相似文献   

16.
Evaluation of Cryptosporidium parvum genotyping techniques.   总被引:7,自引:0,他引:7  
We evaluated the specificity and sensitivity of 11 previously described species differentiation and genotyping PCR protocols for detection of Cryptosporidium parasites. Genomic DNA from three species of Cryptosporidium parasites (genotype 1 and genotype 2 of C. parvum, C. muris, and C. serpentis), two Eimeria species (E. neischulzi and E. papillata), and Giardia duodenalis were used to evaluate the specificity of primers. Furthermore, the sensitivity of the genotyping primers was tested by using genomic DNA isolated from known numbers of oocysts obtained from a genotype 2 C. parvum isolate. PCR amplification was repeated at least three times with all of the primer pairs. Of the 11 protocols studied, 10 amplified C. parvum genotypes 1 and 2, and the expected fragment sizes were obtained. Our results indicate that two species-differentiating protocols are not Cryptosporidium specific, as the primers used in these protocols also amplified the DNA of Eimeria species. The sensitivity studies revealed that two nested PCR-restriction fragment length polymorphism (RFLP) protocols based on the small-subunit rRNA and dihydrofolate reductase genes are more sensitive than single-round PCR or PCR-RFLP protocols.  相似文献   

17.
Genotypes of Cryptosporidium from Sydney water catchment areas   总被引:1,自引:0,他引:1  
AIMS: Currently cryptosporidiosis represents the major public health concern of water utilities in developed nations and increasingly, new species and genotypes of Cryptosporidium are being identified in which the infectivity for humans is not clear. The complicated epidemiology of Cryptosporidium and the fact that the majority of species and genotypes of Cryptosporidium cannot be distinguished morphologically makes the assessment of public health risk difficult if oocysts are detected in the raw water supplies. The aim of this study was to use molecular tools to identify sources of Cryptosporidium from the Warragamba catchment area of Sydney, Australia. METHODS AND RESULTS: Both faecal and water samples from the catchment area were collected and screened using immunomagnetic separation (IMS) and immunofluorescence microscopy. Samples that contained Cryptosporidium oocysts were genotyped using sequence and phylogenetic analysis of the 18S rDNA, and the heat-shock (HSP-70) gene. Analysis identified five Cryptosporidium species/genotypes including C. parvum (cattle genotype), C. suis, pig genotype II, the cervid genotype and a novel goat genotype. CONCLUSIONS: Monitoring and characterization of the sources of oocyst contamination in watersheds will aid in the development and implementation of the most appropriate watershed management policies to protect the public from the risks of waterborne Cryptosporidium. SIGNIFICANCE AND IMPACT OF THE STUDY: This study has shown that quantification by IMS analysis can be combined with the specificity of genotyping to provide an extremely valuable tool for assessing the human health risks from land use activities in drinking water catchments.  相似文献   

18.
Giardia intestinalis has been found in a variety of mammals, including humans, and consists of host-specific and zoonotic genotypes. There has been only 1 study of G. intestinalis infection in weasels, but the genotype of its isolate remains unclear. In this study, we report the isolation of Giardia in a ferret exhibited at a pet shop. The isolate was analyzed genetically to validate the possibility of zoonotic transmission. Giardia diagnostic fragments of the small subunit ribosomal RNA, beta-giardin, and glutamate dehydrogenase genes were amplified from the ferret isolate and sequenced to reveal the phylogenetic relationships between it and other Giardia species or genotypes of G. intestinalis reported previously. The results showed that the ferret isolate represented the genetic group A-I in assemblage A, which could be a causative agent of human giardiasis.  相似文献   

19.
We investigated the application of an oligonucleotide microarray to (i) specifically detect Cryptosporidium spp., (ii) differentiate between closely related C. parvum isolates and Cryptosporidium species, and (iii) differentiate between principle genotypes known to infect humans. A microarray of 68 capture probes targeting seven single-nucleotide polymorphisms (SNPs) within a 190-bp region of the hsp70 gene of Cryptosporidium parvum was constructed. Labeled hsp70 targets were generated by PCR with biotin- or Cy3-labeled primers. Hybridization conditions were optimized for hybridization time, temperature, and salt concentration. Two genotype I C. parvum isolates (TU502 and UG502), two C. parvum genotype II isolates (Iowa and GCH1), and DNAs from 22 non-Cryptosporidium sp. organisms were used to test method specificity. Only DNAs from C. parvum isolates produced labeled amplicons that could be hybridized to and detected on the array. Hybridization patterns between genotypes were visually distinct, but identification of SNPs required statistical analysis of the signal intensity data. The results indicated that correct mismatch discrimination could be achieved for all seven SNPs for the UG502 isolate, five of seven SNPs for the TU502 isolate, and six of seven SNPs for both the Iowa and GCH1 isolates. Even without perfect mismatch discrimination, the microarray method unambiguously distinguished between genotype I and genotype II isolates and demonstrated the potential to differentiate between other isolates and species on a single microarray. This method may provide a powerful new tool for water utilities and public health officials for assessing point and nonpoint source contamination of water supplies.  相似文献   

20.
The Cryptosporidium "human" genotype was identified in a paraffin-embedded tissue section from a dugong (Dugong dugon) by 2 independent laboratories. DNA sequencing and polymerase chain reaction/restriction fragment length polymorphism analysis of the 18S ribosomal RNA gene and the acetyl CoA synthethase gene clearly identified the genotype as that of the Cryptosporidium variant that infects humans. This is the first report of the human Cryptosporidium genotype in a nonprimate host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号