首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Comparative analyses of spatial genetic structure (SGS) among species, populations, or cohorts give insight into the genetic consequences of seed dispersal in plants. We analysed SGS of a weedy tree in populations with known and unknown recruitment histories to first establish patterns in populations with single vs. multiple founders, and then to infer possible recruitment scenarios in populations with unknown histories. We analysed SGS in six populations of the colonizing tree Albizia julibrissin Durazz. (Fabaceae) in Athens, Georgia. Study sites included two large populations with multiple, known founders, two small populations with a single, known founder, and two large populations with unknown recruitment histories. Eleven allozyme loci were used to genotype 1385 individuals. Insights about the effects of colonization history from the SGS analyses were obtained from correlograms and Sp statistics. Distinct differences in patterns of SGS were identified between populations with multiple founders vs. a single founder. We observed significant, positive SGS, which decayed with increasing distance in the populations with multiple colonists, but little to no SGS in populations founded by one colonist. Because relatedness among individuals is estimated relative to a local reference population, which usually consists of those individuals sampled in the study population, SGS in populations with high background relatedness, such as those with a single founder, may be obscured. We performed additional analyses using a regional reference population and, in populations with a single founder, detected significant, positive SGS at all distances, indicating that these populations consist of highly related descendants and receive little seed immigration. Subsequent analyses of SGS in size cohorts in the four large study populations showed significant SGS in both juveniles and adults, probably because of a relative lack of intraspecific demographic thinning. SGS in populations of this colonizing tree is pronounced and persistent and is determined by the number and relatedness of founding individuals and adjacent seed sources. Patterns of SGS in populations with known histories may be used to indirectly infer possible colonization scenarios for populations where it is unknown.  相似文献   

2.
Additive genetic variance maintained by mutation in a selectively neutral quantitative character is analyzed for an ideal population distributed on n islands, each with local effective size N, that exchange migrants at a small rate, m. In a stable population structure, the expected genetic variance maintained within islands is identical to that in a panmictic population of the same total size, regardless of the migration rate (m > 0). This result contrasts with Wright's classical conclusion, based on inbreeding coefficients, that at least one immigrant per island every other generation (Nm > ½) is necessary for the genetic variance within local populations to approach that under panmixia. The expected genetic variance maintained among islands is inversely proportional to m and increases with the number of islands, but is independent of N. Local extinction and colonization diminish the genetic variance maintained within islands by reducing the effective size of island populations through the founder effect, although the expected genetic variance within islands is nearly as large as that in a panmictic population of the same total effective size. If the founders of new colonies originate from more than one island, rates of local extinction and colonization larger than about twice the migration rate will substantially reduce the genetic variance maintained among islands. These results indicate the importance of mutation and migration in maintaining quantitative genetic variance within small local populations.  相似文献   

3.
Abstract.— Theory predicts that in small isolated populations random genetic drift can lead to phenotypic divergence; however this prediction has rarely been tested quantitatively in natural populations. Here we utilize natural repeated island colonization events by members of the avian species complex, Zosterops lateralis , to assess whether or not genetic drift alone is an adequate explanation for the observed patterns of microevolutionary divergence in morphology. Morphological and molecular genetic characteristics of island and mainland populations are compared to test three predictions of drift theory: (1) that the pattern of morphological change is idiosyncratic to each island; (2) that there is concordance between morphological and neutral genetic shifts across island populations; and (3) for populations whose time of colonization is known, that the rate of morphological change is sufficiently slow to be accounted for solely by genetic drift. Our results are not consistent with these predictions. First, the direction of size shifts was consistently towards larger size, suggesting the action of a nonrandom process. Second, patterns of morphological divergence among recently colonized populations showed little concordance with divergence in neutral genetic characters. Third, rate tests of morphological change showed that effective population sizes were not small enough for random processes alone to account for the magnitude of microevolutionary change. Altogether, these three lines of evidence suggest that drift alone is not an adequate explanation of morphological differentiation in recently colonized island Zosterops and therefore we suggest that the observed microevolutionary changes are largely a result of directional natural selection.  相似文献   

4.
Inferring the spatial expansion dynamics of invading species from molecular data is notoriously difficult due to the complexity of the processes involved. For these demographic scenarios, genetic data obtained from highly variable markers may be profitably combined with specific sampling schemes and information from other sources using a Bayesian approach. The geographic range of the introduced toad Bufo marinus is still expanding in eastern and northern Australia, in each case from isolates established around 1960. A large amount of demographic and historical information is available on both expansion areas. In each area, samples were collected along a transect representing populations of different ages and genotyped at 10 microsatellite loci. Five demographic models of expansion, differing in the dispersal pattern for migrants and founders and in the number of founders, were considered. Because the demographic history is complex, we used an approximate Bayesian method, based on a rejection-regression algorithm, to formally test the relative likelihoods of the five models of expansion and to infer demographic parameters. A stepwise migration-foundation model with founder events was statistically better supported than other four models in both expansion areas. Posterior distributions supported different dynamics of expansion in the studied areas. Populations in the eastern expansion area have a lower stable effective population size and have been founded by a smaller number of individuals than those in the northern expansion area. Once demographically stabilized, populations exchange a substantial number of effective migrants per generation in both expansion areas, and such exchanges are larger in northern than in eastern Australia. The effective number of migrants appears to be considerably lower than that of founders in both expansion areas. We found our inferences to be relatively robust to various assumptions on marker, demographic, and historical features. The method presented here is the only robust, model-based method available so far, which allows inferring complex population dynamics over a short time scale. It also provides the basis for investigating the interplay between population dynamics, drift, and selection in invasive species.  相似文献   

5.
Species whose geographical distribution encompasses both mainland and island populations provide an ideal system for examining isolation and genetic divergence. In this study, paternally transmitted chloroplast DNA (cpDNA) and maternally transmitted mitochondrial DNA (mtDNA) were used to estimate population structure and phylogeography of Pinus luchuensis, a species found in eastern China (ssp. hwangshanensis), Taiwan (ssp. taiwanensis), and the Ryukyu Archipelago (ssp. luchuensis). Gene genealogies of both mtDNA and cpDNA reveal two major lineages. Molecular dating indicates that these lineages diverged before the colonization of P. luchuensis subspecies in Taiwan and the Ryukyu Archipelago. Both mtDNA and cpDNA show a lack of correspondence between molecular phylogeny and subspecies designation. Phylogeographical analysis suggests that paraphyly of the subspecies is the result of recent divergence rather than secondary contacts. In spite of the short divergence history of P. luchuensis on islands, the island populations show the same degree of genetic divergence as mainland populations. Low levels of genetic diversity in the mainland ssp. hwangshanensis suggest demographic bottlenecks. In contrast, the high heterogeneity of genetic composition for island populations is likely to be associated with a history of multiple colonization from the mainland. The spatial apportionment of organelle DNA polymorphisms is consistent with a pattern of stepwise colonization on island populations.  相似文献   

6.
Differences in song repertoires and characteristics of island and mainland populations of the same avian species are usually explained by dispersal, cultural evolution and/or habitat differences. The influence of morphology is often overlooked, even though island populations are frequently morphologically distinct from mainland populations, and morphology could affect vocalizations. I compared morphological features, songs, contact calls and alarm calls of six isolated island populations of silvereye Zosterops lateralis with those of two mainland populations to examine whether differences between mainland and island vocalizations were consistent across vocalization types, and whether these differences could be linked to morphological differences. Vocalizations were lower in frequency on islands. Island individuals were larger (both in mass and body structure), and body mass was an important predictor of frequency in contact and alarm calls. I argue that this strong association results from the island rule (islands promote larger body sizes) and cascading effects of morphology on vocalization frequency in this species.  相似文献   

7.
Genetic and phylogenetic consequences of island biogeography   总被引:5,自引:0,他引:5  
Abstract.— Island biogeography theory predicts that the number of species on an island should increase with island size and decrease with island distance to the mainland. These predictions are generally well supported in comparative and experimental studies. These ecological, equilibrium predictions arise as a result of colonization and extinction processes. Because colonization and extinction are also important processes in evolution, we develop methods to test evolutionary predictions of island biogeography. We derive a population genetic model of island biogeography that incorporates island colonization, migration of individuals from the mainland, and extinction of island populations. The model provides a means of estimating the rates of migration and extinction from population genetic data. This model predicts that within an island population the distribution of genetic divergences with respect to the mainland source population should be bimodal, with much of the divergence dating to the colonization event. Across islands, this model predicts that populations on large islands should be on average more genetically divergent from mainland source populations than those on small islands. Likewise, populations on distant islands should be more divergent than those on close islands. Published observations of a larger proportion of endemic species on large and distant islands support these predictions.  相似文献   

8.
Genetic diversity was examined at 17 putative allozyme loci in 18 populations of the insular endemic plant Aster miyagii (Asteraceae). This species is geographically restricted to only three islands of the Ryukyu Islands and is on the federal list of threatened plants. Genetic differentiation within an island is small, suggesting that gene flow among populations on the same island is sufficiently large to prevent divergence. By contrast, genetic differentiation among islands is large, especially between Amamioshima Island and the other two islands, suggesting that gene flow between the islands is highly restricted. Two unique alleles are nearly fixed in populations on Amamioshima Island, which is the southernmost island of the three. Comparatively, genetic diversity is the smallest on Amamioshima Island. This genetic paucity on Amamioshima Island is probably a result of a population bottleneck at colonization or the small effective population size on this island. Genetic diversity at the species level of A. miyagii is larger than those of the species with a similar life history and of the congeneric widespread species, suggesting that the species has an old origin as an insular endemic species.  相似文献   

9.
In birds, song divergence often precedes and facilitates divergence of other traits. We assessed the relative roles of cultural drift, innovation, and acoustic adaptation in divergence of island bird dialects, using silvereyes (Zosterops lateralis). In recently colonized populations, syllable diversity was not significantly lower than source populations, shared syllables between populations decreased with increasing number of founder events, and dialect variation displayed contributions from both habitat features and drift. The breadth of multivariate space occupied by recently colonized Z. l. lateralis populations was comparable to evolutionarily old forms that have diverged over thousands to hundreds of thousands of years. In evolutionarily old subspecies, syllable diversity was comparable to the mainland and the amount of variation in syllable composition explained by habitat features increased by two‐ to threefold compared to recently colonized populations. Together these results suggest that cultural drift influences syllable repertoires in recently colonized populations, but innovation likely counters syllable loss from colonization. In evolutionarily older populations, the influence of acoustic adaptation increases, possibly favoring a high diversity of syllables. These results suggest that the relative importance of cultural drift and acoustic adaptation changes with time since colonization in island bird populations, highlighting the value of considering multiple mechanisms and timescale of divergence when investigating island song divergence.  相似文献   

10.
The Capricorn silvereye (Zosterops lateralis chlorocephalus) is ideally suited to investigating the genetic basis of body size evolution. We have isolated and characterized a set of microsatellite markers for this species. Seven out of 11 loci were polymorphic. The number of alleles detected ranged from two to five and observed heterozygosities between 0.12 and 0.67. One locus, ZL49, was found to be sex‐linked. This moderate level of diversity is consistent with that expected in an isolated, island population.  相似文献   

11.
Moose, Alces alces, occur naturally throughout most of Canada but successful introductions of known numbers of animals have been made to the islands of Newfoundland and Cape Breton. Five microsatellite loci were used to investigate the population genetic structure and any change in genetic variability due to founder events of moose in Canada. Comparisons of allele frequencies for moose from 11 regions of the country suggested that there are at least seven genetically distinct populations (P < 0.05) in North America, namely Alberta, eastern Ontario, New Brunswick, Cape Breton, Labrador, western Newfoundland, and the Avalon Peninsula of Newfoundland. The average population heterozygosity was approximately 33% (range from 22 to 41%). UPGMA analysis of Nei's genetic distances produced phenograms similar to what would be expected when geographical location and population history are considered. The loss of heterozygosity due to a single founder event (n = 3; two introductions and a natural colonization) ranged from 14 to 30%, and the cumulative loss of heterozygosity due to two successive founder events (an introduction followed by a natural colonization) was 46%. In these examples loss of genetic variability has not been associated with any known phenotypic deviances, suggesting that populations may be established from a small number of founders. However, the viability of these founded populations over evolutionary timescales cannot be determined and is highly dependent upon chance.  相似文献   

12.
Genetic diversity was estimated by allozyme analysis at 26 loci in black rat populations (Rattus rattus) from 15 western Mediterranean islands (Hyéres, Corsica, Sardinia and related islets). Although overall variability levels were low (H = 0.025), the mean heterozygosity values for the islands were similar to those for three reference mainland populations. Within the islands, however, genetic diversity varied in relation to island size and geographic isolation. In particular, most small insular populations were significantly more variable than those on both large and isolated islands. The generic relationships between island populations were established by FST analyses indicating possible geographic origins and patterns of colonization. The maintenance of unexpectedly high levels of variability in the small island populations is discussed in relation to changes in the demographic and social structure observed in these populations. These island populations of black rat illustrate how genetic diversity may be efficiently maintained in a series of interconnected spatially fragmented populations.  相似文献   

13.
The genetic structure of six western Mediterranean island populations of Mus musculus domesticus were investigated by means of an electrophoretic analysis at 34 loci and compared to that of five neighbouring mainland populations. No reduction in variability (H = 0.09 for both island and mainland samples) was observed in the island populations except for a very small island (6 ha), in which one-third of the variability was lost. Patterns of colonization inferred from a Wagner cluster analysis and the distribution of rare variants suggest that, although these island populations are clearly related to European mainland mice, their genetic structure is the result of multiple founding events from sources dispersed throughout the Mediterranean Basin. Furthermore, the presence of the same rare alleles in Sardinia, Corsica and Piana, suggest that the three islands share a common history of colonization.
Estimates of genetic distance and gene flow indicate that the level of genie differentiation is greater between island and mainland populations that between the latter due to geographic isolation. Multiple founder events and post-colonization evolution are the factors that best explain the observed levels of genie variability and differentiation in these Mediterranean islands.  相似文献   

14.
Inferring the demographic history of species is one of the greatest challenges in populations genetics. This history is often represented as a history of size changes, ignoring population structure. Alternatively, when structure is assumed, it is defined a priori as a population tree and not inferred. Here we propose a framework based on the IICR (Inverse Instantaneous Coalescence Rate). The IICR can be estimated for a single diploid individual using the PSMC method of Li and Durbin (2011). For an isolated panmictic population, the IICR matches the population size history, and this is how the PSMC outputs are generally interpreted. However, it is increasingly acknowledged that the IICR is a function of the demographic model and sampling scheme with limited connection to population size changes. Our method fits observed IICR curves of diploid individuals with IICR curves obtained under piecewise stationary symmetrical island models. In our models we assume a fixed number of time periods during which gene flow is constant, but gene flow is allowed to change between time periods. We infer the number of islands, their sizes, the periods at which connectivity changes and the corresponding rates of connectivity. Validation with simulated data showed that the method can accurately recover most of the scenario parameters. Our application to a set of five human PSMCs yielded demographic histories that are in agreement with previous studies using similar methods and with recent research suggesting ancient human structure. They are in contrast with the view of human evolution consisting of one ancestral population branching into three large continental and panmictic populations with varying degrees of connectivity and no population structure within each continent.Subject terms: Population genetics, Biological models, Population genetics  相似文献   

15.
Differences between island‐ and mainland‐dwelling forms provide several classic ecological puzzles. Why, for instance, are island‐dwelling passerine birds consistently larger than their mainland counterparts? We examine the ‘Dominance hypothesis’, based on intraspecific competition, which states that large size in island passerines evolves through selection for success in agonistic encounters. We use the Heron Island population of Capricorn silvereyes (Zosterops lateralis chlorocephalus), a large‐bodied island‐dwelling race of white‐eye (Zosteropidae), to test three assumptions of this hypothesis; that (i) large size is positively associated with high fitness, (ii) large size is associated with dominance, and (iii) the relationship between size and dominance is particularly pronounced under extreme intraspecific competition. Our results supported the first two of these assumptions, but provided mixed evidence on the third. On balance, we suggest that the Dominance Hypothesis is a plausible mechanism for the evolution of large size of island passerines, but urge further empirical tests on the role of intraspecific competition on oceanic islands versus that on mainlands.  相似文献   

16.
As a consequence of founder effects, small population size and demographic constraints, island populations are often characterized by low genetic diversity and high inbreeding. The effects of inbreeding are more pronounced in haplo-diploid insects like bees than in similar diploid species, because their method of sex determination requires heterozygosity at a sex locus. Inbreeding leads to homozygosity at the sex locus and the production of non-viable diploid males. This means that island populations of bees are particularly prone to extinction. Here we determine the levels of diversity and isolation between islands and mainland populations of the bumble bee Bombus morio in southeast Brazil. We analyzed 659 individuals from 24 populations, sequencing two mitochondrial genes (COI and Cytb) and genotyping all individuals at 14 microsatellite loci. Surprisingly, genetic diversity was high and genetic isolation was low in all populations except Teodoro Sampaio (mainland) and Ilha da Vitória (island). Genetic diversity is not significantly correlated with island area, but is lower in populations that are more distant from the mainland. Except perhaps for Ilha da Vitória, we suggest that the island populations are unlikely to go extinct due to genetic factors. Finally, based on its genetic distance from all other populations, we identify a putative new subspecies in the Teodoro Sampaio region.  相似文献   

17.
Volcanic islands with well-characterized geological histories can provide ideal templates for generating and testing phylogeographic predictions. Many studies have sought to utilize these to investigate patterns of colonization and speciation within groups of closely related species across a number of islands. Here we focus attention within a single volcanic island with a well-characterized geological history to develop and test phylogeographic predictions. We develop phylogeographic predictions within the island of La Palma of the Canary Islands and test these using 69 haplotypes from 570 base pairs of mitochondrial DNA cytochrome oxidase II sequence data for 138 individuals of Brachyderes rugatus rugatus, a local endemic subspecies of curculionid beetle occurring throughout the island in the forests of Pinus canariensis. Although geological data do provide some explanatory power for the phylogeographic patterns found, our network-based analyses reveal a more complicated phylogeographic history than initial predictions generated from data on the geological history of the island. Reciprocal illumination of geological and phylogeographic history is also demonstrated with previous geological speculation gaining phylogeographic corroboration from our analyses.  相似文献   

18.
This study evaluated DNA fingerprinting as a tool for estimating population genetic diversity and differentiation by comparing minisatellite variation in island and mainland populations of silvereyes (Aves: Zosterops lateralis). Three populations with different recent histories were compared: (1) Heron Island and neighboring islands, colonized 3000 to 4000 yr ago; (2) Lady Elliot Island, colonized within the past two decades; and (3) an adjacent mainland population, which presumably has existed for thousands of years. The degree of genetic variability within the three populations reflected both their size and the time since their colonization. Minisatellite diversity was highest in the mainland population, intermediate in the Capricorn Island group (which was shown to represent a single admixture), and lowest in the Lady Elliot Island population, possibly because of a recent population bottleneck during colonization. Mean band sharing between any two populations was less than the mean within either of those populations, and four fingerprint bands common to island birds were rare or absent in the fingerprints of mainland birds. In the absence of significant gene flow between the mainland and the islands, the populations have apparently become distinct at minisatellite loci, as evidenced by differences in both allelic diversity and in the frequencies of specific fragments. Within the Heron Island population, cohort analyses demonstrated the temporal stability of the fingerprint profile over 6 yr. This study demonstrates that length polymorphisms at minisatellite loci may be stable enough over time to retain information about recent historical and demographic effects on the relative genetic variability and differentiation of small, closely related populations.  相似文献   

19.
High propagule pressure is arguably the only consistent predictor of colonization success. More individuals enhance colonization success because they aid in overcoming demographic consequences of small population size (e.g. stochasticity and Allee effects). The number of founders can also have direct genetic effects: with fewer individuals, more inbreeding and thus inbreeding depression will occur, whereas more individuals typically harbour greater genetic variation. Thus, the demographic and genetic components of propagule pressure are interrelated, making it difficult to understand which mechanisms are most important in determining colonization success. We experimentally disentangled the demographic and genetic components of propagule pressure by manipulating the number of founders (fewer or more), and genetic background (inbred or outbred) of individuals released in a series of three complementary experiments. We used Bemisia whiteflies and released them onto either their natal host (benign) or a novel host (challenging). Our experiments revealed that having more founding individuals and those individuals being outbred both increased the number of adults produced, but that only genetic background consistently shaped net reproductive rate of experimental populations. Environment was also important and interacted with propagule size to determine the number of adults produced. Quality of the environment interacted also with genetic background to determine establishment success, with a more pronounced effect of inbreeding depression in harsh environments. This interaction did not hold for the net reproductive rate. These data show that the positive effect of propagule pressure on founding success can be driven as much by underlying genetic processes as by demographics. Genetic effects can be immediate and have sizable effects on fitness.  相似文献   

20.
Island populations are on average smaller, genetically less diverse, and at a higher risk to go extinct than mainland populations. Low genetic diversity may elevate extinction probability, but the genetic component of the risk can be affected by the mode of diversity loss, which, in turn, is connected to the demographic history of the population. Here, we examined the history of genetic erosion in three Fennoscandian ringed seal subspecies, of which one inhabits the Baltic Sea ‘mainland’ and two the ‘aquatic islands’ composed of Lake Saimaa in Finland and Lake Ladoga in Russia. Both lakes were colonized by marine seals after their formation c. 9500 years ago, but Lake Ladoga is larger and more contiguous than Lake Saimaa. All three populations suffered dramatic declines during the 20th century, but the bottleneck was particularly severe in Lake Saimaa. Data from 17 microsatellite loci and mitochondrial control‐region sequences show that Saimaa ringed seals have lost most of the genetic diversity present in their Baltic ancestors, while the Ladoga population has experienced only minor reductions. Using Approximate Bayesian computing analyses, we show that the genetic uniformity of the Saimaa subspecies derives from an extended founder event and subsequent slow erosion, rather than from the recent bottleneck. This suggests that the population has persisted for nearly 10,000 years despite having low genetic variation. The relatively high diversity of the Ladoga population appears to result from a high number of initial colonizers and a high post‐colonization population size, but possibly also by a shorter isolation period and/or occasional gene flow from the Baltic Sea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号