首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Sercu  Bram K.  Moeneclaey  Iris  Goeminne  Birgit  Bonte  Dries  Baeten  Lander 《Plant Ecology》2021,222(6):749-760

Temperate forest understorey plants are subjected to a strong seasonality in their optimal growing conditions. In winter and early spring, low temperatures are suboptimal for plant growth while light becomes limited later in spring season. We can thus expect that differences in plant phenology in relation to spatiotemporal environmental variation will lead to differences in reproductive output, and hence selection. We specifically studied whether early flowering, a paradoxical pattern that is observed in many plant species, is an adaptive strategy, and whether selection for early flowering was confounded with selection for flower duration or was attributable to environmental variables. We used Geum urbanum as a study species to investigate the effect of relevant environmental factors on the species’ flowering phenology and the consequences for plant reproductive output. We monitored the phenology of four to six plants in each of ten locations in a temperate deciduous forest (Belgium). We first quantified variation in flowering time within individuals and related this temporal variation to individual flower reproductive output. Then, we studied inter-individual variation here-in and linked this to reproduction at the plant level, hence studying the selection differential. We found that flowering within individual plants of Geum urbanum was spread over a long period from June to October. Reproductive output of individual flowers, measured as total seed mass per flower, declined during the season. We found no indication for selection for early flowering but rather for longer flower duration. Larger plants had an earlier flowering onset and a higher seed mass, which suggests that these factors covary and are condition dependent. None of the studied environmental variables could explain plant size, although soil pH and to a lesser extent light availability had a positive direct effect on seed mass per plant. Finally, we suggest that the high intra-individual variation in flowering time, which might be a risk spreading strategy of the plant in the presence of seed predation, limits the potential for selection on flowering phenology.

  相似文献   

2.
The effects of climate change on plant reproductive performance affects the sequence of different plant reproductive stages from flowering to seed production and viability, as well as the network of relationships between them. These effects are expected to respond to different components of climate change, such as temperature and water availability, and may be sensitive to differences in species phenology.We used long-term experimental drought and warming treatments to study the effect of climate change on flower production, fruit and seed-set, seed size and seed germination rate (proportion of germinating seeds) in three Mediterranean shrubs coexisting in a coastal shrubland.Larger plants produced significantly more flowers in all three species, and higher fruit-set in Dorycnium pentaphyllum. Flower production was reduced in drought and warming treatments in the spring-flowering species D. pentaphyllum and Helianthemum syriacum, but not in the autumn–winter species Erica multiflora, which increased flowering in the warming treatment. However, the drought treatment eventually resulted in a decreased seed-set in E. multiflora. Structural equation modelling revealed strong correlations between the sequential reproductive stages. Specifically, flower density in inflorescences determined seed-set in H. syriacum, and seed size and germination rate in E. multiflora. Nevertheless, the relevance of relationships between reproductive traits changed between climatic treatments: in D. pentaphyllum a direct relationship between plant size and seed size only arised in the drought treatment, while in H. syriacum climate treatments resulted in a stronger relationship between the number of flowers and seed-set.This experimental study shows the ability of changing climatic variables to determine the reproductive sequential process of woody species. We show that several parameters of the reproductive performance of some Mediterranean species are affected by drought and warming treatments simulating climate change, highlighting the importance of changes in both water availability and temperature, and the sequential relationship between reproductive stages. Phenological patterns also contribute to species’ differential responses to climatic change, due to the relationship of these patterns with resource availability, environmental conditions and plant–pollinator interactions.  相似文献   

3.
入侵植物小花山桃草种群构件生物量结构及种子萌发特征   总被引:1,自引:1,他引:0  
通过野外设置样方调查和室内萌发试验,研究小花山桃草种群各构件生物量的结构特征和它们之间的关系模型、繁殖分配以及种子萌发特点。结果表明:(1)小花山桃草根、茎、叶、花(果)序生物量与植株高度之间以及各构件生物量之间均呈正相关关系,可用幂函数模型或线性函数模型较好地表达;(2)各构件生物量在个体生物量中所占的比率表现为茎>花序>叶>根;(3)小花山桃草的繁殖投入和繁殖分配都随植株个体的增大而增加;(4)小花山桃草个体大小和繁殖投入之间为线性关系,而个体大小和繁殖分配之间为幂函数关系;(5)小花山桃草存在一个较小的繁殖阈值(0.6043g);(6)小花山桃草种子在有光照(12h)和黑暗条件下发芽率均可达到85%以上;未经贮藏的种子不萌发,低温沙藏(1~2℃)和室温干藏(14~32℃)一个半月种子萌发率分别可达92.5%和79%;低温沙藏时种子即可发芽,且发芽率可达61%。在研究地区,小花山桃草几乎整个生长季都可萌发,甚至初冬还有幼苗产生。小花山桃草构件生物量结构和繁殖分配特征、种子萌发特点等都有助于其入侵能力的提高,是其成功入侵我国的重要原因。  相似文献   

4.
Fluctuating conditions throughout the year and changes in floral display may promote shifts in pollinator activity and predator pressure, influencing female reproductive output, especially for extended flowering species under seasonal climates. In this regard, flowering and fruit production were tracked in 2 different years in 2 populations of Ononis tridentata in Central Spain. Total fruit production was estimated, and fruits were harvested to obtain primary fruit investment, pollination success, predation incidence, seed production, seed weight and germination rates. Ononis tridentata combined spring mass flowering with a steady long flowering period across the summer and fall. The fewer flowers that are produced in fall were successfully pollinated, and produced fruits that were subject to minimal predation pressure relative to spring fruits. Moreover, fall fruits contained a higher number of heavier seeds and showed higher germination rates than those of spring seeds. Fall reproductive output represent 10% of annual viable seeds and thus may act as an important complement to the main spring reproductive investment. Extended flowering could be interpreted as a “bet-hedging strategy” for enduring Mediterranean unpredictable and changing environmental conditions.  相似文献   

5.
Reproductive phenology of gorse (Ulex europaeus L., Genisteae, Fabaceae) is unusual in that the onset and duration of flowering vary greatly among individuals within populations: some plants initiate flowering in autumn or winter and continue flowering through spring, others initiate flowering in early spring. To understand the origin of this diversity and its ecological consequences, we investigated flowering phenology of randomly sampled individuals from five different natural populations in Brittany (France). Reproductive success was evaluated for individuals with contrasting flowering patterns, from 16 natural populations. Flower production, pod production, seed production and seed predation were estimated. Plants initiating flowering in spring produced larger numbers of flowers and pods over a shorter period than plants flowering from winter to spring, which produced few flowers and pods at a time but over a longer period. Pod production of long-flowering plants did not differ significantly between winter and spring, but their pods were more intensively attacked by seed predators in spring than in winter. We discuss our results in relation to biotic and abiotic parameters. We postulate that long-flowering can be interpreted as a bet-hedging strategy, spreading the risk of pod failure (rotting or freezing) in winter and of seed predation in spring.  相似文献   

6.
Pastinaca sativa (wild parsnip) produces seeds on the primary, secondary, and tertiary umbels of the flowering stalk. Within plants, variation in seed weight is about twofold. Secondary and tertiary seed weight is 73% and 50% of primary seed weight, respectively. Maximum variation in seed weight between plants is sixfold when tertiary seeds from a small plant are compared to primary seeds from a large plant. Within an umbel order, variation in seed weight between plants is correlated with plant size. Under autumn germinating conditions in the laboratory, final germination of seeds from different umbel orders does not differ but smaller seeds germinate more rapidly than larger seeds. Under spring germination conditions in the laboratory, significantly more primary and secondary seeds germinate than tertiary seeds and the rate of germination is independent of seed weight. Field germination of seeds from different umbel orders produces similar results except that in the spring both secondary and tertiary seed germination is lower than that of primary seeds. These results suggest that with respect to seed germination characteristics small seeds may have a competitive advantage over large seeds in the autumn because they germinate more quickly, but in the spring small seeds are at a disadvantage because they have lower overall germination. Because most germination in the field occurs in the spring, population recruitment from small seeds is likely to be substanially less than that from large seeds.  相似文献   

7.
  • Pollinator guilds may change throughout extended flowering periods, affecting plant reproductive output, especially in seasonal climates. We hypothesised a seasonal shift in pollinator guild and an autumn reduction in pollinator abundance, especially in small and sparse populations.
  • We recorded pollinator identity, abundance and behaviour in relation to flower density from plant to population throughout the extended flowering of Ononis tridentata. We evaluated female reproductive output by recording pollination success and pre‐dispersal seed predation in eight populations of contrasting size and density. Offspring quality was also characterised through seed weight and germination.
  • A diverse guild of insects visited O. tridentata in spring, while only Apis mellifera was observed in autumn. Visitation frequency did not vary seasonally, but the number of flowers per foraging bout was lower, and seeds were heavier and had a higher germination rate in autumn. Plant and neighbourhood flowering display were not related to pollinator visitation frequency or behaviour. However, the rate of fertilised ovules, seed set and autumn flowering display size were positively related to population density.
  • The maintenance of pollination in autumn enhances the reproductive performance of O. tridentata due to higher quality of autumn seed, and to a large reduction in seed predator pressure. We also suggest that observed changes in pollinator behaviour could be one of the processes behind seasonal variation in seed performance, since geitonogamous crosses were less likely to occur in autumn.
  相似文献   

8.
Kjell Bolmgren  Ove Eriksson 《Oikos》2015,124(5):639-648
The close morphological and temporal links between phases of plant growth and reproduction call for integrated studies incorporating several reproductive phases from flowering to recruitment, and associated plant‐animal interactions. Phenological strategies, as well as plastic phenological response to climate change, incorporate complex interactions between developmental constraints, pollination and seed dispersal. Relationships between reproductive phenology and components of fitness were studied for two years in the north‐temperate, self‐incompatible, insect‐pollinated, and bird‐dispersed shrub Frangula alnus (Rhamnaceae). Fruit set, dispersal, germination and juvenile survival, as well as seed mass and juvenile size were measured in relation to flowering, fruiting and germination time. The results suggest that effects of flowering and fruiting time prevailed in subsequent phases, to some extent as far as to the juvenile phase, but effects of timing were complex and had partly opposing effects on different fitness components. Early flowers had higher fruit‐set and experiments indicated that synchronous peak flowering increased fruit‐set, but later flowers had higher seed mass. Peak fruiting was not associated with peak dispersal. Late fruits derived from late flowers promoted dispersal. Juvenile recruitment was enhanced by increasing seed size. We conclude that the phenology of flowering and fruiting in F. alnus comprises several features, each with different and sometimes counteracting effects on fitness components. From a general perspective, this result implies that we should not expect to find finely tuned matches in timing specifically between flowering and pollinators, and fruiting and seed dispersing birds.  相似文献   

9.
A 2-year study of three natural populations of the distylousJasminum fruticans showed that mean fruit and seed production were significantly greater in shortstyled plants (thrums) than in long-styled plants (pins). In this study, we investigated the role of four sequential factors which may differentially influence fruit and seed set in the two floral morphs: (1) differences in flowering phenology, (2) a limitation of pollen transfer towards pins, (3) a differential capacity of the two morphs to act through famale and male function and (4) differential fruit abortion in the two morphs. Fruit set was significantly influenced by differences in flowering phenology although there were no differences in flowering time between the two morphs. supplementary pollinations in a natural population significantly increased fruit set and reduced the difference in fruit set between the two morphs in relation to controls, indicating a limitation on pollen transfer which was most severe towards pin stigmas. In reciprocal crosses, seed set was significantly dependent on the paternal and maternal identity of the pin parent. There was no significant variation among thrums for their performance as male or female parent. Furthermore, individual pin plants with relatively high percentage seed set as female parents gave poor seed set as male parents and vice-versa. Whereas fruit removal had no effect on seed number in thrum plants, a greater proportion of viable seeds were produced on pin plants which were left to naturally mature their fruits than on pins which had fruits artificially removed, suggesting the occurrence of selective fruit abortion in pins but not in thrums. The initially greater maternal fitness of thrums due to their greater success as pollen recipients may thus be opposed by increased viable seed set in the pins due to factors acting after the pollination stage. The relative reproductive success of floral morphs in the distylousJ. fruticans is thus differentially influenced by ecological factors occurring at different stages of the reproductive process.  相似文献   

10.
 对准噶尔荒漠中胡卢巴属(Trigonella)4种短命植物网脉胡卢巴(T. cancellata )、单花胡卢巴(T. monantha)、直果胡卢巴(T. orthoceras)和弯果胡卢巴(T. arc uata)的物候特征及生物量分配进行了比较研究,结果表明:1)这4种植物的萌发对策多样,具有春 、夏、秋萌现象,但以春、秋季萌发为主。其萌发时间在种间差异不明显,而与温度、降水等环境因子密切相关;2)生长发育快,生活周期短,一次结实,在干热夏季来临前完成生活周期,因此属于典型的避旱型植物;3) 秋、春萌株在早春返青或种子萌发后,经过短暂的营养生长后很快进入生殖生长,通过物候期(尤其是营养生长与生殖生长阶段)的迅速转换来获得高的繁殖力,最后达到较高的繁殖产量;4)繁殖分配比率均较高,分别达62.3%、51.9 %、54.3%和58.3%,且其繁殖输出与植株大小呈正相关;5)萌发时间不同的植株(春、秋萌 株)在大小及繁殖输出上差异显著,但繁殖分配比率差异不显著,说明由萌发时间差异引起的繁殖输出差异归根结底是由植株大小差异引起的。最后探讨了胡卢巴属这4种短命植物的生活史对策以及因萌发时间不同产生的植株在个体大小、生存力和繁殖输出等方面的差异对准噶尔荒漠干旱环境的适应意义。  相似文献   

11.
This study examined the correlation of moisture, reproductive phenology, density of mature plants, and herbivory of apical meristems with the morphology and reproductive output of Sesbania emerus, an annual legume growing along a moisture gradient in a swamp in Guanacaste Province, Costa Rica. It also determined how biomass allocation varied and how it was related to reproductive output of plants growing along the moisture gradient within the swamp. Morphological changes included production of more stems and branches in response to herbivory, more and higher prop roots and more aerenchyma as water depth increased, and greater stem diameter in lower densities. Plant height varied greatly within a site, but not among habitats. Plants began to produce flowers and fruits later in wet sites than in dry sites. Reproductive output was generally more sensitive to environmental variables than was plant size. Fruit number and plant height were positively correlated for almost every treatment. Greater fruit and seed production were correlated with drier sites, earlier phenology, and lower density, but not with herbivory. Total biomass accumulation did not vary among moisture sites, but root production appeared to occur at the expense of reproductive output in the wetter sites. Plants in the wetter sites had both a greater percent and a greater absolute amount of biomass in roots, and a lower percent and a lower absolute amount of biomass in fruits and seeds than plants in drier sites. The root: shoot ratio was nearly five times higher in the wet than the dry site. Seed number per plant ranged from a mean of 6,800 at the wet site to a mean of 16,878 at the dry site. If this striking phenotypic variation in reproductive output and biomass accumulation has a genetic basis, the possibility of ecotypic differentiation exists in S. emerus.  相似文献   

12.
Abstract To elucidate the effects of herbivory by chrysomelid beetles on Rumex japonicus, rosette leaves were clipped and the subsequent fruit production and root growth were observed. The increase of leaf biomass of some clipped plants was greater than that of control plants, although this varied among individual plants. The root growth of clipped plants was less than that of control plants. Fruit production increased with plant size, and there was no difference in fruit production between clipped and control plants. Reproductive allocation (fruit biomass, relative to fruit biomass plus root growth) increased with plant size; it was greater in clipped plants than in control ones. Based on these results, reproductive allocation strategy against herbivory was discussed.  相似文献   

13.
The reproductive output of many plants depends on the interaction between plant spatial pattern and pollinator behaviour. Pollinators tend to concentrate their efforts on patches of flowers offering higher rewards. The spatial relationship of an individual plant to those around it (its spatial context) is also important for its reproductive output. This study examines the effect of patch size and spatial context on the reproductive output of Puya hamata, a hummingbird-pollinated, semelparous, giant rosette plant in the Andes. Hummingbird behavioural response to Puya patch size and the effect of plant density on flowering plant size were assessed. The reproductive output (flower, fruit and seed production, seed viability, germination rates) of plants in relation to patch size and spatial context was determined. Isolated Puya inflorescences were visited by a higher diversity of mostly trap-lining hummingbirds, while plants in aggregations were almost exclusively visited by one territorial species. Spatial context did not affect Puya size at flowering, or the numbers of flowers, fruits and seeds produced. However, with respect to seed viability and germination rates, reproductive output was highest in isolated plants, and plants on the edges of patches, but lowest in plants at the centre of large patches. The effect of spatial context on reproductive output in P. hamata depends on several key conditions being met: the patches are normally made up of closely related plants and the pollinators, by switching to territoriality, restrict gene flow into patches and lower the effective reproductive output of the plants within those patches. Other plant–pollinator relationships meeting these conditions are likely to produce similar outcomes. Such situations are worthy of attention, not just for their ecological interest, but also for their implications for the management of species and genetic diversity.  相似文献   

14.
Fragmentation exposes plants to extreme environmental conditions with implications for species phenology and reproduction. We investigated whether isolation and edge effects influence size, flowering time, fruit set, and seedling establishment of Anadenanthera peregrina var. falcata. We compared trees in the interior (n?=?85), and on the edge (n?=?74) of a cerrado savanna fragment as well as in a pasture (n?=?26) with respect to size, flowering phenology, flower and fruit production, fruit and seed set, predispersal seed predation, and seedling establishment. Trees in the pasture were larger and produced a higher number of flowers and fruits than trees on the edge and interior, yet seed set did not differ across environments. The plant size structure explained the flower and fruit production, and the self-compatibility breeding system caused a similar seed set regardless of the environment. First flowering was later and fruit set higher in the interior. We argue that time of first flower influenced the fruit set of Anadenathera. Edge and isolated trees started to flower earlier as a response to microclimatic conditions—mainly temperature—reducing the fruit set. Predispersal seed predation was lower among pasture trees. Conversely, we found seedlings only on the edge and in the interior of cerrado, suggesting that the pasture was of poor quality habitat for Anadenanthera recruitment. Isolation affected the plant size structure and reproduction of Anadenanthera trees. Studies comparing plant phenology under contrasting environmental conditions may offer clues on how global change may affect plant reproduction in the tropics.  相似文献   

15.
ABSTRACT

The reproductive cycle of Pistacia lentiscus L. from southern Italy is described with special emphasis on phenology and reproductive success. The species flowers in spring, its fruits ripen in autumn and has a latent ovary period during the summer. Vegetative growth starts immediately after anthesis (end of March) and finishes by the second week of June. Bud sections showed that flower induction occurred a few weeks after shoot development. However, no change in the overall appearance of the buds was noticeable before the following spring. Flowering is very synchronous within a plant, and a clear overlap in the flowering times of the two sexes occurred in the population studied. Although P. lentiscus seems to be highly reproductive because of the numerous fruits generally found on the plants in autumn, its reproductive success (as percent of flowers which develop fruits with seed) is low. Very large numbers of flowers never develop fruit and drop at different stages during fruit development. Moreover, numerous fruits have no seed because of parthenocarpy, embryo abortion or insect damage. In P. lentiscus, low reproductive success is not uniform within the population because the number of empty fruits per plant is highly variable between the plants. Our observations suggest that rain at flowering can make pollination a limiting factor for fruit set because of the reduction in the quantity of available pollen. Since these results are in agreement with those reported for populations in Israel and Spain, such phenomena could be genetically determined, and therefore common to this species throughout the Mediterranean region.  相似文献   

16.
Question: Are seed size and plant size linked to species responses to inter‐annual variations in rainfall and rainfall distribution during the growing season in annual grasslands? Location: A 16‐year data set on species abundance in permanent plots 15 km north of Madrid in a Quercus ilex subsp. ballota dehesa. Methods: At species level, a GLM was used to analyse the effects of various rainfall indices (total autumn rainfall, early autumn rainfall and spring drought) on species abundance residuals with respect to time and topography. We also assessed the importance of seed size and plant size in the species responses at community level using species as data points. Seed mass and maximum stem length were used as surrogates for seed size and plant size, respectively. Results: Seed mass and plant size may explain some of the fluctuations in the floristic composition of annual species associated with autumn rainfall patterns. Species that are more abundant in dry autumns have greater seed mass than those species that are more abundant in wet autumns. Early autumn rainfall seems to favour larger plants. Conclusions: Our empirical results support the hypothesis that autumn rainfall patterns affect the relative establishment capacity of small and large seedlings in annual species.  相似文献   

17.

Background and Aims

Diptychocarpus strictus is an annual ephemeral in the cold desert of northwest China that produces heteromorphic fruits and seeds. The primary aims of this study were to characterize the morphology and anatomy of fruits and seeds of this species and compare the role of fruit and seed hetermorphism in dispersal and germination.

Methods

Shape, size, mass and dispersal of siliques and seeds and the thickness of the mucilage layer on seeds were measured, and the anatomy of siliques and seeds, the role of seed mucilage in water absorption/dehydration, germination and adherence of seeds to soil particles, the role of pericarp of lower siliques in seed dormancy and seed after-ripening and germination phenology were studied using standard procedures.

Key Results

Plants produce dehiscent upper siliques with a thin pericarp containing seeds with large wings and a thick mucilage layer and indehiscent lower siliques with a thick pericarp containing nearly wingless seeds with a thin mucilage layer. The dispersal ability of seeds from the upper siliques was much greater than that of intact lower siliques. Mucilage increased the amount of water absorbed by seeds and decreased the rate of dehydration. Seeds with a thick mucilage layer adhered to soil particles much better than those with a thin mucilage layer or those from which mucilage had been removed. Fresh seeds were physiologically dormant and after-ripened during summer. Non-dormant seeds germinated to high percentages in light and in darkness. Germination of seeds from upper siliques is delayed until spring primarily by drought in summer and autumn, whereas the thick, indehiscent pericarp prevents germination for >1 year of seeds retained in lower siliques.

Conclusions

The life cycle of D. strictus is morphologically and physiologically adapted to the cold desert environment in time and space via a combination of characters associated with fruit and seed heteromorphism.  相似文献   

18.
Seed germination constitutes an important event in the life cycle of plants. Two related seed traits affect fitness: seed size and the timing of seed germination. In three sets of experiments, we (1) partition the sources of seed-size variance in Lobelia inflata into components attributable to fruit size, relative fruit position, and parental identity; (2) examine the influence of pregermination conditions and seed size on time to germination; and (3) assess the fitness consequences of seed size and germination timing under seminatural, harsh conditions. Seed-size variance is attributable to both parental identity and fruit position within an individual. Distal fruits produce larger but fewer seeds. No significant correlation exists between fruit size and seed size, but a trade-off is found between the number and size of seeds contained in a fruit after correcting for fruit size. The timing of germination is influenced by seed size, light conditions before winter, and winter duration. Germination timing influences survival, and despite small seed size in this species (2 × 10 g/seed), seed size has a persistent and significant association with both final plant size and the probability of survival to autumn.  相似文献   

19.
In temperate-zone mountains, summer frosts usually occur during unpredictable cold spells with snow-falls. Earlier studies have shown that vegetative aboveground organs of most high-mountain plants tolerate extracellular ice in the active state. However, little is known about the impact of frost on reproductive development and reproductive success. In common plant species from the European Alps (Cerastium uniflorum, Loiseleuria procumbens, Ranunculus glacialis, Rhododendron ferrugineum, Saxifraga bryoides, S. moschata, S. caesia), differing in growth form, altitudinal distribution and phenology, frost resistance of reproductive and vegetative shoots was assessed in different reproductive stages. Intact plants were exposed to simulated night frosts between ?2 and ?14 °C in temperature-controlled freezers. Nucleation temperatures, freezing damage and subsequent reproductive success (fruit and seed set, seed germination) were determined. During all reproductive stages, reproductive shoots were significantly less frost resistant than vegetative shoots (mean difference for LT50 ?4.2 ± 2.7 K). In most species, reproductive shoots were ice tolerant before bolting and during fruiting (mean LT50 ?7 and ?5.7 °C), but were ice sensitive during bolting and anthesis (mean LT50 around ?4 °C). Only R. glacialis remained ice tolerant during all reproductive stages. Frost injury in reproductive shoots usually led to full fruit loss. Reproductive success of frost-treated but undamaged shoots did not differ significantly from control values. Assessing the frost damage risk on the basis of summer frost frequency and frost resistance shows that, in the alpine zone, low-statured species are rarely endangered as long as they are protected by snow. The situation is different in the subnival and nival zone, where frost-sensitive reproductive shoots may become frost damaged even when covered by snow. Unprotected individuals are at high risk of suffering from frost damage, particularly at higher elevations. It appears that ice tolerance in reproductive structures is an advantage but not an absolute precondition for colonizing high altitudes with frequent frost events.  相似文献   

20.
In several gynodioecious species, intermediate sex between female and hermaphrodite has been reported, but few studies have investigated fitness parameters of this intermediate phenotype. Here, we examined the interactions between plant sex and arbuscular mycorrhizal (AM) fungal species affecting the reproductive output of Geranium sylvaticum, a sexually polymorphic plant species with frequent intermediate sexes between females and hermaphrodites, using a common garden experiment. Flowering phenology, AM colonisation levels and several plant vegetative and reproductive parameters, including seed and pollen production, were measured. Differences among sexes were detected in flowering, fruit set, pollen production and floral size. The two AM species used in the present work had different effects on plant fitness parameters. One AM species increased female fitness through increasing seed number and seed mass, while the other species reduced seed mass in all sexes investigated. AM fungi did not affect intermediate and hermaphrodite pollen content in anthers. The three sexes in G. sylvaticum did not differ in their reproductive output in terms of total seed production, but hermaphrodites had potentially larger fathering ability than intermediates due to higher anther number. The ultimate female function – seed production – did not differ among the sexes, but one of the AM fungi used potentially decreased host plant fitness. In addition, in the intermediate sex, mycorrhizal symbiosis functioned similarly in females as in hermaphrodites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号