首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Administration of small interfering RNAs (siRNAs) leads to degradation of specific mRNAs utilizing the cellular RNA interference (RNAi) machinery. It has been demonstrated that co-administration of siRNAs may lead to attenuation of activity of one of the siRNAs. Utilizing antisense and siRNA-mediated RNA-induced silencing complex (RISC) gene reduction we show that siRNA competition is correlated with differences in the cellular expression levels of Ago2, while levels of other RISC proteins have no effect on competition. We also show that under certain conditions siRNA competition rather than reduction of cellular RISC levels may be responsible for apparent reduction in siRNA activity. Furthermore, exploiting siRNA competition, we show that the RISC pathway loads and results in detectable cleavage of the target RNA in ~2h after transfection. The RISC pathway is also capable of being reloaded even in the absence of new protein synthesis. RISC reloading and subsequent induction of detectable cleavage of a new target RNA, requires about 9–12h following the initial transfection.  相似文献   

2.
Sequence-non-specific effects of siRNAs that alter the expression of non-targeted genes have been reported, including competition of siRNAs with endogenous RISC components. However, the detailed mechanisms and subsequent effects of such competition are not well documented. Here we analyze the competition of miRNAs in mammalian cells with low concentrations of siRNAs, and found that: 1) transfection of different siRNAs in the low nanomolar range used to deplete target RNAs can reduce the levels of miRNAs in different cell types, 2) siRNA transfection results in rapid reduction of Ago2-associated miRNAs concurrent with accumulation of Ago2-bound siRNAs and a significant change in the expression levels of many miRNAs, 3) competition largely depends on Ago2 and not Dicer, 4) microarray analysis showed that the majority of highly expressed miRNAs are reduced, in a siRNA concentration dependent manner, and low abundant miRNAs may be unchanged or repressed and a few miRNAs appear to have increased levels, and 5) consistent with previous studies, the expression levels of mRNAs that are targeted by highly repressed miRNAs are preferentially increased. As a consequence of such competition, we observed that α-tubulin, a substrate of two up-regulated proteases, granzyme B and granzyme M, was rapidly degraded at the protein level upon siRNA transfection. Our results support a model in which transfection of siRNAs can change the levels of many miRNAs by competition for Ago2, leading to altered expression of many miRNA target genes, which can in turn affect downstream gene expression even at the protein level.  相似文献   

3.
4.
5.
设计并筛选靶向nm23-H1基因的siRNAs序列,探讨nm23-H1基因与人慢性髓性白血病之间的关系。依据siRNA设计原则,设计3条siRNA序列。将不同靶点的siRNA用lipofectamine2000转染人慢性髓性白血病细胞株K562。转染后24h RTPCR检测nm23-H1mRNA水平变化;转染后48h免疫细胞化学法检测nm23-H1蛋白表达。MTT法检测转染后24h、48h和72h有效siRNA对K562细胞生长的影响。3条siRNA中,siNM526能有效地抑制K562细胞nm23-H1基因表达,转染siNM526的K56细胞生长受到抑制。说明下调nm23-H1基因的表达有抑制K562细胞增殖的作用,即降低了K562细胞的恶性程度。nm23-H基因有可能成为白血病治疗潜在的分子靶点。  相似文献   

6.
The efficient, stable delivery of siRNA into cells, and the appropriate controls for non-specific off-target effects of siRNA are major limitations to functional studies using siRNA technology. To overcome these drawbacks, we have developed a single lentiviral vector that can concurrently deplete endogenous gene expression while expressing an epitope-tagged siRNA-resistant target gene in the same cell. To demonstrate the functional utility of this system, we performed RNAi-depleted α-actinin-1 (α-ACTN1) expression in human T cells. α-ACTN1 RNAi resulted in inhibited chemotaxis to SDF-1α, but it can be completely rescued by concurrent expression of RNAi-resistant α-ACTN1 (rr-α-ACTN1) in the same cell. The presence of a GFP tag on rr-α-ACTN1 allowed for detection of appropriate subcellular localization of rr-α-ACTN1. This system provides not only an internal control for RNAi off-target effects, but also the potential tool for rapid structure-function analyses and gene therapy.  相似文献   

7.
8.
9.
The C-terminal Eps15 homology domain (EHD) 1/receptor-mediated endocytosis-1 protein regulates recycling of proteins and lipids from the recycling compartment to the plasma membrane. Recent studies have provided insight into the mode by which EHD1-associated tubular membranes are generated and the mechanisms by which EHD1 functions. Despite these advances, the physiological function of these striking EHD1-associated tubular membranes remains unknown. Nuclear magnetic resonance spectroscopy demonstrated that the Eps15 homology (EH) domain of EHD1 binds to phosphoinositides, including phosphatidylinositol-4-phosphate. Herein, we identify phosphatidylinositol-4-phosphate as an essential component of EHD1-associated tubules in vivo. Indeed, an EHD1 EH domain mutant (K483E) that associates exclusively with punctate membranes displayed decreased binding to phosphatidylinositol-4-phosphate and other phosphoinositides. Moreover, we provide evidence that although the tubular membranes to which EHD1 associates may be stabilized and/or enhanced by EHD1 expression, these membranes are, at least in part, pre-existing structures. Finally, to underscore the function of EHD1-containing tubules in vivo, we used a small interfering RNA (siRNA)/rescue assay. On transfection, wild-type, tubule-associated, siRNA-resistant EHD1 rescued transferrin and β1 integrin recycling defects observed in EHD1-depleted cells, whereas expression of the EHD1 K483E mutant did not. We propose that phosphatidylinositol-4-phosphate is an essential component of EHD1-associated tubules that also contain phosphatidylinositol-(4,5)-bisphosphate and that these structures are required for efficient recycling to the plasma membrane.  相似文献   

10.
RNA interference (RNAi) provides a powerful new means to inhibit viral infection specifically. However, the selection of siRNA-resistant viruses is a major concern in the use of RNAi as antiviral therapeutics. In this study, we conducted a lentiviral vector with a H1-short hairpin RNA (shRNA) expression cassette to deliver small interfering RNAs (siRNAs) into mammalian cells. Using this vector that also expresses enhanced green fluorescence protein (EGFP) as surrogate marker, stable shRNA-expressing cell lines were successfully established and the inhibition efficiencies of rationally designed siRNAs targeting to conserved regions of influenza A virus genome were assessed. The results showed that a siRNA targeting influenza M2 gene (siM2) potently inhibited viral replication. The siM2 was not only effective for H1N1 virus but also for highly pathogenic avian influenza virus H5N1. In addition to its M2 inhibition, the siM2 also inhibited NP mRNA accumulation and protein expression. A long term inhibition effect of the siM2 was demonstrated and the emergence of siRNA-resistant mutants in influenza quasispecies was not observed. Taken together, our study suggested that M2 gene might be an optimal RNAi target for antiviral therapy. These findings provide useful information for the development of RNAi-based prophylaxis and therapy for human influenza virus infection.  相似文献   

11.
Insulin-like growth factor-binding protein-5 (IGFBP-5) is abundantly expressed in bone cells. To determine the physiological role(s) of endogenous IGFBP-5 in regulating bone cell growth, differentiation, and survival, we used short double-stranded RNA (siRNA) to trigger RNA interference of IGFBP-5 in human osteosarcoma cells. The IGFBP-5 siRNA, targeting against a sequence unique to the IGFBP-5 middle domain, efficiently reduced IGFBP-5 mRNA and protein levels. The IGFBP-5 siRNA did not change the levels of IGFBP-4, a structurally related protein, or glyceraldehyde-3-phosphate dehydrogenase, a housekeeping gene. Knock-down of IGFBP-5 resulted in a significant increase in the number of transferase-mediated dUTP nick end labeling-positive cells and a decrease in a bone differentiation parameter (alkaline phosphatase activity) but had little effect on basal or insulin-like growth factor I-induced proliferation. Overexpression of a siRNA-resistant IGFBP-5 mutant in the IGFBP-5 knock-down cells restored the levels of survival to the control level; overexpression of IGFBP-4 or wild type IGFBP-5 had no such effect. Paradoxically, the addition of exogenous IGFBP-5 not only failed to rescue IGFBP-5 knock-down-induced apoptosis, it caused a further increase in apoptosis. Furthermore, the addition of exogenous IGFBP-5 alone increased apoptosis. This pro-apoptotic action of exogenous IGFBP-5 was abolished when IGF-I was added in excess, suggesting that exogenous IGFBP-5 increases apoptosis by binding to and inhibiting the activities of insulin-like growth factors. These results indicate that endogenous and exogenous IGFBP-5 exhibits opposing biological actions on cell survival and underscore the necessity and utility of studying IGFBP functions through loss-of-function approaches.  相似文献   

12.
Infection with Shiga toxin (Stx)-producing, gram-negative bacteria can induce serious conditions such as dysentery and hemolytic uremic syndrome. In target cells, Stx is internalized by endocytosis, and travels through the Golgi apparatus and the endoplasmic reticulum to reach the cytosol, where it inhibits protein synthesis. Toll-like receptor 4 (TLR4) mediates the recognition of gram-negative bacteria. Here, we have investigated whether the cellular uptake and transport of Stx could involve TLR4. We found that upon small interfering RNA (siRNA)-mediated TLR4 depletion in epithelial colon carcinoma cells, Stx transport to the Golgi was strongly reduced, and this was primarily caused by diminished Stx cellular binding rather than by reduction in toxin uptake or endosome-to-Golgi transport. The reduced cellular binding of Stx upon siRNA-transfection was solely due to TLR4 depletion, because reconstitution of TLR4 expression by the introduction of an siRNA-resistant TLR4 gene completely abolished the TLR4-targeting siRNA-mediated effect. Importantly, the effect of TLR4 depletion was not restricted to cancer cells or epithelial cells, because primary human umbilical vein endothelial cells also displayed reduced Stx binding upon TLR4 depletion. These results indicate that although TLR4 is imperative in innate immunity against gram-negative bacteria, it may be exploited by bacterial toxins, for example Stx, to gain access and entry into cells.  相似文献   

13.
LAMTOR2 (p14), a part of the larger LAMTOR/Ragulator complex, plays a crucial role in EGF-dependent activation of p42/44 mitogen-activated protein kinases (MAPK, ERK1/2). In this study, we investigated the role of LAMTOR2 in nerve growth factor (NGF)-mediated neuronal differentiation. Stimulation of PC12 (rat adrenal pheochromocytoma) cells with NGF is known to activate the MAPK. Pharmacological inhibition of MEK1 as well as siRNA–mediated knockdown of both p42 and p44 MAPK resulted in inhibition of neurite outgrowth. Contrary to expectations, siRNA–mediated knockdown of LAMTOR2 effectively augmented neurite formation and neurite length of PC12 cells. Ectopic expression of a siRNA-resistant LAMTOR2 ortholog reversed this phenotype back to wildtype levels, ruling out nonspecific off-target effects of this LAMTOR2 siRNA approach. Mechanistically, LAMTOR2 siRNA treatment significantly enhanced NGF-dependent MAPK activity, and this effect again was reversed upon expression of the siRNA-resistant LAMTOR2 ortholog. Studies of intracellular trafficking of the NGF receptor TrkA revealed a rapid colocalization with early endosomes, which was modulated by LAMTOR2 siRNA. Inhibition of LAMTOR2 and concomitant destabilization of the remaining members of the LAMTOR complex apparently leads to a faster release of the TrkA/MAPK signaling module and nuclear increase of activated MAPK. These results suggest a modulatory role of the MEK1 adapter protein LAMTOR2 in NGF-mediated MAPK activation required for induction of neurite outgrowth in PC12 cells.  相似文献   

14.
RNA interference represents an exciting new technology that could have therapeutic applications for the treatment of viral infections. Hepatitis C virus (HCV) is a major cause of chronic liver disease and affects over 270 million individuals worldwide. The HCV genome is a single-stranded RNA that functions as both an mRNA and a replication template, making it an attractive target for therapeutic approaches using short interfering RNA (siRNA). We have shown previously that double-stranded siRNA molecules designed to target the HCV genome block gene expression and RNA synthesis from hepatitis C replicons propagated in human liver cells. However, we now show that this block is not complete. After several treatments with a highly effective siRNA, we have shown growth of replicon RNAs that are resistant to subsequent treatment with the same siRNA. However, these replicon RNAs were not resistant to siRNA targeting another part of the genome. Sequence analysis of the siRNA-resistant replicons showed the generation of point mutations within the siRNA target sequence. In addition, the use of a combination of two siRNAs together severely limited escape mutant evolution. This suggests that RNA interference activity could be used as a treatment to reduce the devastating effects of HCV replication on the liver and the use of multiple siRNAs could prevent the emergence of resistant viruses.  相似文献   

15.
Silencing of the tumor suppressor protein BRCA2 and its detection by conventional biochemical analyses represent a great technical challenge owing to the large size of the human BRCA2 protein (approximately 390 kDa). We report modifications of standard siRNA transfection and immunoblotting protocols to silence human BRCA2 and detect endogenous BRCA2 protein, respectively, in human epithelial cell lines. Key steps include a high siRNA to transfection reagent ratio and two subsequent rounds of siRNA transfection within the same experiment. Using these and other modifications to the standard protocol we consistently achieve more than 70% silencing of the human BRCA2 gene as judged by immunoblotting analysis with anti-BRCA2 antibodies. In addition, denaturation of the cell lysates at 55 °C instead of the conventional 70-100 °C and other technical optimizations of the immunoblotting procedure allow detection of intact BRCA2 protein even when very low amounts of starting material are available or when BRCA2 protein expression levels are very low. Efficient silencing of BRCA2 in human cells offers a valuable strategy to disrupt BRCA2 function in cells with intact BRCA2, including tumor cells, to examine new molecular pathways and cellular functions that may be affected by pathogenic BRCA2 mutations in tumors. Adaptation of this protocol for efficient silencing and analysis of other ''large'' proteins like BRCA2 should be readily achievable.  相似文献   

16.
RNAi-mediated gene silencing is a recent, powerful tool to investigate gene function. Controlling for experimental factors such as transfection efficiencies, siRNA concentration, gene suppression levels, gene suppression kinetics, or non-specific effects is key to robust results. In this methods paper, we compare the efficiencies of different transfection reagents in primary human chondrocytes (PHCs). We investigated TAK1 gene suppression efficiencies and kinetics on the mRNA and protein level depending on the siRNA concentration used. Furthermore, we evaluated PKR, IL-6, and TNF-alpha induction, as well as IkappaB degradation and NFkappaB activation as control parameters of non-specific siRNA effects. PKR and IL-6 proved to be appropriate markers of cellular inflammatory responses resulting from siRNA transfection. In addition, we compared different siRNAs (silencing, non-silencing, classic 21-mer, and 25-mer stealth siRNA) with respect to their capacity to induce cellular inflammatory responses. We found the occurrence of cellular responses in PHCs to be a function of the specific siRNA sequence in use. Hence, it is essential to analyze and to compare gene silencing siRNAs and control siRNAs with respect to their off-target effects prior to any functional gene validation.  相似文献   

17.
Previously, we have shown that downregulation of POLD4 in lung cancer cells delays progression through the G1-S cell cycle transition and leads to increased genomic instability. To date however, detailed molecular mechanisms have not been elucidated to explain how this occurs. In the present study, we found that reduction in POLD4 by siRNA knockdown promoted downregulation of both p-Akt Ser473 and Skp2 as well as upregulation of p27. Furthermore, these protein expression levels were rescued when siRNA-resistant POLD4 was ectopically expressed in the knockdown cells. These data suggest that the POLD4 downregulation is associated with impaired Akt-Skp2-p27 pathway in lung cancer.  相似文献   

18.
19.
20.
We have developed an in vivo transfection method for naked plasmid DNA (pDNA) and siRNA in mice by using a tissue suction device. The target tissue was suctioned by a device made of polydimethylsiloxane (PDMS) following the intravenous injection of naked pDNA or siRNA. Transfection of pDNA encoding luciferase was achieved by the suction of the kidney, liver, spleen, and heart, but not the duodenum, skeletal muscle, or stomach. Luciferase expression was specifically observed at the suctioned region of the tissue, and the highest luciferase expression was detected at the surface of the tissue (0.12±0.03 ng/mg protein in mice liver). Luciferase expression levels in the whole liver increased linearly with an increase in the number of times the liver was suctioned. Transfection of siRNA targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) gene significantly suppressed the expression of GAPDH mRNA in the liver. Histological analysis shows that severe damage was not observed in the suctioned livers. Since the suction device can be mounted onto the head of the endoscope, this method is a minimally invasive. These results indicate that the in vivo transfection method developed in this study will be a viable approach for biological research and therapies using nucleic acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号