首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Limiting beta amyloid (Abeta) production could become an important therapeutic target in Alzheimer's disease (AD). Abeta is derived by the sequential cleavage of amyloid precursor protein (APP) by beta- and gamma-secretases. A double missense mutation in APP found in a Swedish pedigree (APPsw) elevates Abeta40 and Abeta42 production. Abeta production and, therefore, beta-secretase cleavage of APPsw reportedly occur in the endoplasmic reticulum (ER), Golgi and endocytic compartments. However, the relative contribution of beta-secretase cleavage occurring in each compartment has not been determined. Experiments described here use a novel ELISA to measure the beta-cleaved product, APPswbeta. Using this ELISA, we provide new information regarding the relative amount of beta-secretase cleavage of APPsw that occurs in secretory and endocytic pathways. Using a dilysine retrieval motif to retain APPsw in the ER, we discovered that less than 15% of the beta-secretase cleavage was still detected. Experiments utilizing endocytosis-impaired mutants of APPsw revealed that little or no beta-secretase cleavage of APPsw appears to take place through endocytosis. Surprisingly, deletion of the entire cytoplasmic tail increased both APPswbeta and Abeta secretion, suggesting that protein interactions with this region normally impede beta-secretase cleavage. These results suggest that APPsw is cleaved by beta-secretase late in the secretory pathway.  相似文献   

2.
Memapsin 2 (BACE, beta-secretase) is a membrane-associated aspartic protease that initiates the hydrolysis of beta-amyloid precursor protein (APP) leading to the production of amyloid-beta (A beta) and the progression of Alzheimer disease. Both memapsin 2 and APP are transported from the cell surface to endosomes where APP is cleaved by memapsin 2. We described previously that the cytosolic domain of memapsin 2 contains an acid cluster-dileucine motif (ACDL) that binds the VHS (Vps-27, Hrs, and STAM) domain of Golgi-localized gamma-ear-containing ARF-binding (GGA) proteins (He, X., Zhu, G., Koelsch, G., Rodgers, K. K., Zhang, X. C., and Tang, J. (2003) Biochemistry 42, 12174-12180). Here we report that GGA proteins colocalize in the trans-Golgi network and endosomes with memapsin 2 and a memapsin 2 chimera containing a cytosolic domain of a mannose-6-phosphate receptor. Depleting cellular GGA proteins with RNA interference or mutation of serine 498 to stop the phosphorylation of ACDL resulted in the accumulation of memapsin 2 in early endosomes. A similar change of memapsin 2 localization also was observed when a retromer subunit, VPS26, was depleted. These observations suggest that GGA proteins function with the phosphorylated ACDL in the memapsin 2-recycling pathway from endosomes to trans-Golgi on the way back to the cell surface.  相似文献   

3.
He X  Chang WP  Koelsch G  Tang J 《FEBS letters》2002,524(1-3):183-187
Memapsin 2, or beta-secretase, is a membrane-anchored aspartic protease that initiates the cleavage of beta-amyloid precursor protein (APP) leading to the production of beta-amyloid peptide in the brain and the onset of Alzheimer's disease. Memapsin 2 and APP are both endocytosed into endosomes for cleavage. Here we show that the cytosolic domain of memapsin 2, but not that of memapsin 1, binds the VHS domains of GGA1 and GGA2. Gel-immobilized VHS domains of GGA1 and GGA2 also bound to full-length memapsin 2 from cell mammalian lysates. Mutagenesis studies established that Asp(496), Leu(499) and Leu(500) were essential for the binding. The spacing of these three residues in memapsin 2 is identical to those in the cytosolic domains of mannose-6-phosphate receptors, sortilin and low density lipoprotein receptor-related protein 3. These observations suggest that the endocytosis and intracellular transport of memapsin 2, mediated by its cytosolic domain, may involve the binding of GGA1 and GGA2.  相似文献   

4.
He X  Zhu G  Koelsch G  Rodgers KK  Zhang XC  Tang J 《Biochemistry》2003,42(42):12174-12180
Memapsin 2 (beta-secretase) is a membrane-associated aspartic protease that initiates the hydrolysis of beta-amyloid precursor protein (APP) leading to the production of amyloid-beta and the onset of Alzheimer's disease (AD). Both memapsin 2 and APP are transported from the cell surface to endosomes where APP hydrolysis takes place. Thus, the intracellular transport mechanism of memapsin 2 is important for understanding the pathogenesis of AD. We have previously shown that the cytosolic domain of memapsin 2 contains an acid-cluster-dileucine (ACDL) motif that binds the VHS domain of GGA proteins (He et al. (2002) FEBS Lett. 524, 183-187). This mechanism is the presumed recognition step for the vesicular packaging of memapsin 2 for its transport to endosomes. The phosphorylation of a serine residue within the ACDL motif has been reported to regulate the recycling of memapsin 2 from early endosomes back to the cell surface. Here, we report a study on the memapsin 2/VHS domain interaction. Using isothermal titration calorimetry, the dissociation constant, K(d), values are 4.0 x 10(-4), 4.1 x 10(-4), and 3.1 x 10(-4) M for VHS domains from GGA1, GGA2, and GGA3, respectively. With the serine residue replaced by phosphoserine, the K(d) decreased about 10-, 4-, and 14-fold for the same three VHS domains. A crystal structure of the complex between memapsin 2 phosphoserine peptide and GGA1 VHS was solved at 2.6 A resolution. The side chain of the phosphoserine group does not interact with the VHS domain but forms an ionic interaction with the side chain of the C-terminal lysine of the ligand peptide. Energy calculation of the binding of native and phosphorylated peptides to VHS domains suggests that this intrapeptide ionic bond in solution may reduce the change in binding entropy and thus increase binding affinity.  相似文献   

5.
beta-Site APP-cleaving enzyme (BACE) initiates the processing of the amyloid precursor protein (APP) leading to the generation of beta-amyloid, the main component of Alzheimer's disease senile plaques. BACE (Asp2, memapsin 2) is a type I transmembrane aspartyl protease and is responsible for the beta-secretase cleavage of APP producing different endoproteolytic fragments referred to as the carboxy-terminal C99, C89 and the soluble ectodomain sAPPbeta. Here we describe two transgenic mouse lines expressing human BACE in the brain. Overexpression of BACE augments the amyloidogenic processing of APP as demonstrated by decreased levels of full-length APP and increased levels of C99 and C89 in vivo. In mice expressing huBACE in addition to human APP wild-type or carrying the Swedish mutation, the induction of APP processing characterized by elevated C99, C89 and sAPPbeta, results in increased brain levels of beta-amyloid peptides Abeta40 and Abeta42 at steady-state.  相似文献   

6.
Release of Abeta peptides from beta-amyloid precursor protein (APP) requires sequential cleavage by two endopeptidases, beta- and gamma-secretases. beta-Secretase was recently identified as a novel membrane-bound aspartyl protease, named BACE1, Asp2, or memapsin 2. Employing confocal microscopy and subcellular fractionation, we have found that BACE1 is largely situated in the distal Golgi membrane with a minor presence in the endoplasmic reticulum, endosomes, and plasma membrane in human neuroblastoma SHEP cells and in mouse Neuro-2a cell lines expressing either endogenous mouse BACE1 or additional exogenous human BACE1. The major cellular beta-secretase activity is located in the late Golgi apparatus, consistent with its cellular localization. Furthermore, we demonstrate that the single transmembrane domain of BACE1 alone determines the retention of BACE1 to the Golgi compartments, through examination of recombinant proteins of various BACE1 fragments fused to a reporter green fluorescence protein. In addition, we show that the transmembrane domain of BACE1 is required for the access of BACE1 enzymatic activity to the cellular APP substrate and hence for the optimal generation of the C-terminal fragment of APP (CTF99). The results suggest a molecular and cell biological mechanism for the regulation of beta-secretase activity in vivo.  相似文献   

7.
Elucidation of Abeta-lowering agents that inhibit processing of the wild-type (WT) beta-secretase amyloid precursor protein (APP) site, present in most Alzheimer disease (AD) patients, is a logical approach for improving memory deficit in AD. The cysteine protease inhibitors CA074Me and E64d were selected by inhibition of beta-secretase activity in regulated secretory vesicles that produce beta-amyloid (Abeta). The regulated secretory vesicle activity, represented by cathepsin B, selectively cleaves the WT beta-secretase site but not the rare Swedish mutant beta-secretase site. In vivo treatment of London APP mice, expressing the WT beta-secretase site, with these inhibitors resulted in substantial improvement in memory deficit assessed by the Morris water maze test. After inhibitor treatment, the improved memory function was accompanied by reduced amyloid plaque load, decreased Abeta40 and Abeta42, and reduced C-terminal beta-secretase fragment derived from APP by beta-secretase. However, the inhibitors had no effects on any of these parameters in mice expressing the Swedish mutant beta-secretase site of APP. The notable efficacy of these inhibitors to improve memory and reduce Abeta in an AD animal model expressing the WT beta-secretase APP site present in the majority of AD patients provides support for CA074Me and E64d inhibitors as potential AD therapeutic agents.  相似文献   

8.
Ectodomain shedding of the amyloid precursor protein (APP) by the two proteases alpha- and beta-secretase is a key regulatory event in the generation of the Alzheimer disease amyloid beta peptide (Abeta). beta-Secretase catalyzes the first step in Abeta generation, whereas alpha-secretase cleaves within the Abeta domain, prevents Abeta generation, and generates a secreted form of APP with neuroprotective properties. At present, little is known about the cellular mechanisms that control APP alpha-secretase cleavage and Abeta generation. To explore the contributory pathways, we carried out an expression cloning screen. We identified a novel member of the sorting nexin (SNX) family of endosomal trafficking proteins, called SNX33, as a new activator of APP alpha-secretase cleavage. SNX33 is a homolog of SNX9 and was found to be a ubiquitously expressed phosphoprotein. Exogenous expression of SNX33 in cultured cells increased APP alpha-secretase cleavage 4-fold but surprisingly had little effect on beta-secretase cleavage. This effect was similar to the expression of the dominant negative dynamin-1 mutant K44A. SNX33 bound the endocytic GTPase dynamin and reduced the rate of APP endocytosis in a dynamin-dependent manner. This led to an increase of APP at the plasma membrane, where alpha-secretase cleavage mostly occurs. In summary, our study identifies SNX33 as a new endocytic protein, which modulates APP endocytosis and APP alpha-secretase cleavage, and demonstrates that the rate of APP endocytosis is a major control factor for APP alpha-secretase cleavage.  相似文献   

9.
It has long been assumed that the C-terminal motif, NPXY, is the internalization signal for beta-amyloid precursor protein (APP) and that the NPXY tyrosine (Tyr743 by APP751 numbering, Tyr682 in APP695) is required for APP endocytosis. To evaluate this tenet and to identify the specific amino acids subserving APP endocytosis, we mutated all tyrosines in the APP cytoplasmic domain and amino acids within the sequence GYENPTY (amino acids 737-743). Stable cell lines expressing these mutations were assessed for APP endocytosis, secretion, and turnover. Normal APP endocytosis was observed for cells expressing Y709A, G737A, and Y743A mutations. However, Y738A, N740A, and P741A or the double mutation of Y738A/P741A significantly impaired APP internalization to a level similar to that observed for cells lacking nearly the entire APP cytoplasmic domain (DeltaC), arguing that the dominant signal for APP endocytosis is the tetrapeptide YENP. Although not an APP internalization signal, Tyr743 regulates rapid APP turnover because half-life increased by 50% with the Y743A mutation alone. Secretion of the APP-derived proteolytic fragment, Abeta, was tightly correlated with APP internalization, such that Abeta secretion was unchanged for cells having normal APP endocytosis but significantly decreased for endocytosis-deficient cell lines. Remarkably, secretion of the Abeta42 isoform was also reduced in parallel with endocytosis from internalization-deficient cell lines, suggesting an important role for APP endocytosis in the secretion of this highly pathogenic Abeta species.  相似文献   

10.
Memapsin 2 (beta-secretase) is the membrane-anchored aspartic protease that initiates the cleavage of beta-amyloid precursor protein (APP), leading to the production of amyloid-beta (Abeta), a major factor in the pathogenesis of Alzheimer's disease. The active site of memapsin 2 has been shown, with kinetic data and crystal structures, to bind to eight substrate residues (P(4)-P(4)'). We describe here that the addition of three substrate residues from P(7) to P(5) strongly influences the hydrolytic activity by memapsin 2 and these subsites prefer hydrophobic residues, especially tryptophan. A crystal structure of memapsin 2 complexed with a statine-based inhibitor spanning P(10)-P(4)' revealed the binding positions of P(5)-P(7) residues. Kinetic studies revealed that the addition of these substrate residues contributes to the decrease in K(m) and increase in k(cat) values, suggesting that these residues contribute to both substrate recognition and transition-state binding. The crystal structure of a new inhibitor, OM03-4 (K(i) = 0.03 nM), bound to memapsin 2 revealed the interaction of a tryptophan with the S(6) subsite of the protease.  相似文献   

11.
Alzheimer’s disease (AD), which is characterized bythe progressive destruction of brain functions in olderpeople, was first recognized in the early 20th century.Since then, modern medicine has further increased thenumber of people living to old age. AD h…  相似文献   

12.
Studies of metabolism of the Alzheimer amyloid precursor protein (APP) have focused much recent attention on the biology of juxta- and intra-membranous proteases. Release or 'shedding' of the large APP ectodomain can occur via one of two competing pathways, the alpha- and beta-secretase pathways, that are distinguished both by subcellular site of proteolysis and by site of cleavage within APP. The alpha-secretase pathway cleaves within the amyloidogenic Abeta domain of APP, precluding the formation of toxic amyloid aggregates. The relative utilization of the alpha- and beta-secretase pathways is controlled by the activation of certain protein phosphorylation signal transduction pathways including protein kinase C (PKC) and extracellular signal regulated protein kinase [ERK/mitogen-activated protein kinase (MAP kinase)], although the relevant substrates for phosphorylation remain obscure. Because of their apparent ability to decrease the risk for Alzheimer disease, the effects of statins (HMG CoA reductase inhibitors) on APP metabolism were studied. Statin treatment induced an APP processing phenocopy of PKC or ERK activation, raising the possibility that statin effects on APP processing might involve protein phosphorylation. In cultured neuroblastoma cells transfected with human Swedish mutant APP, atorvastatin stimulated the release of alpha-secretase-released, soluble APP (sAPPalpha). However, statin-induced stimulation of sAPPalpha release was not antagonized by inhibitors of either PKC or ERK, or by the co-expression of a dominant negative isoform of ERK (dnERK), indicating that PKC and ERK do not play key roles in mediating the effect of atorvastatin on sAPPalpha secretion. These results suggest that statins may regulate alpha-secretase activity either by altering the biophysical properties of plasma membranes or by modulating the function of as-yet unidentified protein kinases that respond to either cholesterol or to some intermediate in the cholesterol metabolic pathway. A 'phospho-proteomic' analysis of N2a cells with and without statin treatment was performed, revealing changes in the phosphorylation state of several protein kinases plausibly related to APP processing. A systematic evaluation of the possible role of these protein kinases in statin-regulated APP ectodomain shedding is underway.  相似文献   

13.
We found previously by fluorescence resonance energy transfer experiments that amyloid precursor protein (APP) homodimerizes in living cells. APP homodimerization is likely to be mediated by two sites of the ectodomain and a third site within the transmembrane sequence of APP. We have now investigated the role of the N-terminal growth factor-like domain in APP dimerization by NMR, biochemical, and cell biological approaches. Under nonreducing conditions, the N-terminal domain of APP formed SDS-labile and SDS-stable complexes. The presence of SDS was sufficient to convert native APP dimers entirely into monomers. Addition of an excess of a synthetic peptide (APP residues 91-116) containing the disulfide bridge-stabilized loop inhibited cross-linking of pre-existing SDS-labile APP ectodomain dimers. Surface plasmon resonance analysis revealed that this peptide specifically bound to the N-terminal domain of APP and that binding was entirely dependent on the oxidation of the thiol groups. By solution-state NMR we detected small chemical shift changes indicating that the loop peptide interacted with a large protein surface rather than binding to a defined pocket. Finally, we studied the effect of the loop peptide added to the medium of living cells. Whereas the levels of alpha-secretory APP increased, soluble beta-cleaved APP levels decreased. Because Abeta40 and Abeta42 decreased to similar levels as soluble beta-cleaved APP, we conclude either that beta-secretase binding to APP was impaired or that the peptide allosterically affected APP processing. We suggest that APP acquires a loop-mediated homodimeric state that is further stabilized by interactions of hydrophobic residues of neighboring domains.  相似文献   

14.
We have previously reported structure-based design of memapsin 2 (beta-secretase) inhibitors with high potency. Here we show that two such inhibitors covalently linked to a "carrier peptide" penetrated the plasma membrane in cultured cells and inhibited the production of beta-amyloid (Abeta). Intraperitoneal injection of the conjugated inhibitors in transgenic Alzheimer's mice (Tg2576) resulted in a significant decrease of Abeta level in the plasma and brain. These observations verified that memapsin 2 is a therapeutic target for Abeta reduction and also establish that transgenic mice are suitable in vivo models for the study of memapsin 2 inhibition.  相似文献   

15.
Increasing evidence suggests an important role of mitochondrial dysfunction in the pathogenesis of Alzheimer's disease. Thus, we investigated the effects of acute and chronic exposure to increasing concentrations of amyloid beta (Abeta) on mitochondrial function and nitric oxide (NO) production in vitro and in vivo. Our data demonstrate that PC12 cells and human embryonic kidney cells bearing the Swedish double mutation in the amyloid precursor protein gene (APPsw), exhibiting substantial Abeta levels, have increased NO levels and reduced ATP levels. The inhibition of intracellular Abeta production by a functional gamma-secretase inhibitor normalizes NO and ATP levels, indicating a direct involvement of Abeta in these processes. Extracellular treatment of PC12 cells with comparable Abeta concentrations only leads to weak changes, demonstrating the important role of intracellular Abeta. In 3-month-old APP transgenic (tg) mice, which exhibit no plaques but already detectable Abeta levels in the brain, reduced ATP levels can also be observed showing the in vivo relevance of our findings. Moreover, we could demonstrate that APP is present in the mitochondria of APPsw PC12 cells. This presence might be directly involved in the impairment of cytochrome c oxidase activity and depletion of ATP levels in APPsw PC12 cells. In addition, APPsw human embryonic kidney cells, which produce 20-fold increased Abeta levels compared with APPsw PC12 cells, and APP tg mice already show a significantly decreased mitochondrial membrane potential under basal conditions. We suggest a hypothetical sequence of pathogenic steps linking mutant APP expression and amyloid production with enhanced NO production and mitochondrial dysfunction finally leading to cell death.  相似文献   

16.
The subcellular location of the secretases processing the beta-amyloid precursor protein (APP) is not established yet. We analyzed the generation of the beta-amyloid peptide (Abeta) in human embryonic kidney 293 cell lines stably expressing wild-type and noninternalizing mutants of human APP. APP lacking the entire cytoplasmic domain or with both tyrosine residues of the motif GYENPTY mutated to alanine showed at least fivefold reduced endocytosis. In these cell lines, the production of Abeta1-40 was substantially reduced, but accompanied by the appearance of two prominent alternative Abeta peptides differing at the amino-termini. Based on antibody reactivity and mobility in high-resolution gels in comparison with defined Abeta fragments, these peptides were identified as Abeta3-40 and Abeta5-40. Notably, these alternative Abeta peptides were not generated when the APP mutants were retained in the early secretory pathway by treatment with brefeldin A. These results indicate that the alternative processing is the result of APP accumulation at the plasma membrane and provide evidence of distinct beta-secretase activities. Cleavage amino-terminal to position 1 of Abeta occurs predominantly in endosomes, whereas the processing at positions 3 or 5 takes place at the plasma membrane.  相似文献   

17.
The mammalian amyloid precursor protein (APP) protein family consists of the APP and the amyloid precursor-like proteins 1 and 2 (APLP1 and APLP2). The neurotoxic amyloid beta-peptide (Abeta) originates from APP, which is the only member of this protein family implicated in Alzheimer disease. However, the three homologous proteins have been proposed to be processed in similar ways and to have essential and overlapping functions. Therefore, it is also important to take into account the effects on the processing and function of the APP-like proteins in the development of therapeutic drugs aimed at decreasing the production of Abeta. Insulin and insulin-like growth factor-1 (IGF-1) have been shown to regulate APP processing and the levels of Abeta in the brain. In the present study, we show that IGF-1 increases alpha-secretase processing of endogenous APP and also increases ectodomain shedding of APLP1 and APLP2 in human SH-SY5Y neuroblastoma cells. We also investigated the role of different IGF-1-induced signaling pathways, using specific inhibitors for phosphatidylinositol 3-kinase and mitogen-activated protein kinase (MAPK). Our results indicate that phosphatidylinositol 3-kinase is involved in ectodomain shedding of APP and APLP1, but not APLP2, and that MAPK is involved only in the ectodomain shedding of APLP1.  相似文献   

18.
The growth hormone receptor (GHR) intracellular domain contains all of the information required for signal transduction as well as for endocytosis. Previously, we showed that the proteasome mediates the clathrin-mediated endocytosis of the GHR. Here, we present evidence that the proteasomal inhibitor MG132 prolongs the GH-induced activity of both GHR and JAK2, presumably through stabilization of GHR and JAK2 tyrosine phosphorylation. If proteasomal inhibitor was combined with ligand in an endocytosis-deficient GHR mutant, the same phenomenon occurred indicating that proteasomal action on tyrosine dephosphorylation is independent of endocytosis. Experiments with a GHR-truncated tail mutant (GHR-(1-369)) led to a prolonged JAK2 phosphorylation caused by the loss of a phosphatase-binding site. This raised the question of what happens to the signal transduction of the GHR after its internalization. Co-immunoprecipitation of GH.GHR complexes before and after endocytosis showed that JAK2 as well as other activated proteins are bound to the GHR not only at the cell surface but also intracellularly, suggesting that the GHR signal transduction continues in endosomes. Additionally, these results provide evidence that GHR is present in endosomes both in its full-length and truncated form, indicating that the receptor is down-regulated by the proteasome.  相似文献   

19.
Zou L  Wang Z  Shen L  Bao GB  Wang T  Kang JH  Pei G 《Cell research》2007,17(5):389-401
Amyloid-β (Aβ) peptide, the primary constituent of senile plaques in Alzheimer's disease (AD), is generated by β-secretase- and y-secretase-mediated sequential proteolysis of the amyloid precursor protein (APP). The aspartic protease, β -site APP cleavage enzyme (BACE), has been identified as the main β-secretase in brain but the regulation of its activity is largely unclear. Here, we demonstrate that both BACE activity and subsequent Aβ production are enhanced after stimulation of receptor tyrosine kinases (RTKs), such as the receptors for epidermal growth factor (EGF) and nerve growth factor (NGF), in cultured cells as well as in mouse hippocampus. Furthermore, stimulation of RTKs also induces BACE internalization into endosomes and Golgi apparatus. This enhancement of BACE activity and A β production upon RTK activation could be specifically inhibited by Src family kinase inhibitors and by depletion of endogenous c-Src with RNAi, and could be mimicked by over-expressed c-Src. Moreover, blockage of BACE internalization by a dominant negative form of Rab5 also abolished the enhancement of BACE activity and Aβ production, indicating the requirement of BACE internalization for the enhanced activity. Taken together, our study presents evidence that BACE activity and Aβ production are under the regulation of RTKs and this is achieved via RTK-stimulated BACE internalization, and suggests that an aberration of such regulation might contribute to pathogenic Aβ production.  相似文献   

20.
Memapsin 1 is closely homologous to memapsin 2 (BACE), or beta-secretase, whose action on beta-amyloid precursor protein (APP) leads to the production of beta-amyloid (A beta) peptide and the progression of Alzheimer's disease. Memapsin 2 is a current target for the development of inhibitor drugs to treat Alzheimer's disease. Although memapsin 1 hydrolyzes the beta-secretase site of APP, it is not significantly present in the brain, and no direct evidence links it to Alzheimer's disease. We report here the residue specificity of eight memapsin 1 subsites. In substrate positions P(4), P(3), P(2), P(1), P(1)', P(2)', P(3)', and P(4)', the most preferred residues are Glu, Leu, Asn, Phe, Met, Ile, Phe, and Trp, respectively, while the second preferred residues are Gln, Ile, Asp, Leu, Leu, Val, Trp, and Phe, respectively. Other less preferred residues can also be accommodated in these subsites of memapsin 1. Despite the broad specificity, these residue preferences are strikingly similar to those of human memapsin 2 [Turner et al. (2001) Biochemistry 40, 10001-10006] and thus pose a serious problem to the design of differentially selective inhibitors capable of inhibiting memapsin 2. This difficulty was confirmed by the finding that several potent memapsin 2 inhibitors effectively inhibited memapsin 1 as well. Several possible approaches to overcome this problem are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号