首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
This article describes specific procedures for conducting quality assessment of Affymetrix GeneChip(R) soybean genome data and for performing analyses to determine differential gene expression using the open-source R programming environment in conjunction with the open-source Bioconductor software. We describe procedures for extracting those Affymetrix probe set IDs related specifically to the soybean genome on the Affymetrix soybean chip and demonstrate the use of exploratory plots including images of raw probe-level data, boxplots, density plots and M versus A plots. RNA degradation and recommended procedures from Affymetrix for quality control are discussed. An appropriate probe-level model provides an excellent quality assessment tool. To demonstrate this, we discuss and display chip pseudo-images of weights, residuals and signed residuals and additional probe-level modeling plots that may be used to identify aberrant chips. The Robust Multichip Averaging (RMA) procedure was used for background correction, normalization and summarization of the AffyBatch probe-level data to obtain expression level data and to discover differentially expressed genes. Examples of boxplots and MA plots are presented for the expression level data. Volcano plots and heatmaps are used to demonstrate the use of (log) fold changes in conjunction with ordinary and moderated t-statistics for determining interesting genes. We show, with real data, how implementation of functions in R and Bioconductor successfully identified differentially expressed genes that may play a role in soybean resistance to a fungal pathogen, Phakopsora pachyrhizi. Complete source code for performing all quality assessment and statistical procedures may be downloaded from our web source: http://css.ncifcrf.gov/services/download/MicroarraySoybean.zip.  相似文献   

2.
MOTIVATION: Finding differentially expressed genes is a fundamental objective of a microarray experiment. Numerous methods have been proposed to perform this task. Existing methods are based on point estimates of gene expression level obtained from each microarray experiment. This approach discards potentially useful information about measurement error that can be obtained from an appropriate probe-level analysis. Probabilistic probe-level models can be used to measure gene expression and also provide a level of uncertainty in this measurement. This probe-level measurement error provides useful information which can help in the identification of differentially expressed genes. RESULTS: We propose a Bayesian method to include probe-level measurement error into the detection of differentially expressed genes from replicated experiments. A variational approximation is used for efficient parameter estimation. We compare this approximation with MAP and MCMC parameter estimation in terms of computational efficiency and accuracy. The method is used to calculate the probability of positive log-ratio (PPLR) of expression levels between conditions. Using the measurements from a recently developed Affymetrix probe-level model, multi-mgMOS, we test PPLR on a spike-in dataset and a mouse time-course dataset. Results show that the inclusion of probe-level measurement error improves accuracy in detecting differential gene expression. AVAILABILITY: The MAP approximation and variational inference described in this paper have been implemented in an R package pplr. The MCMC method is implemented in Matlab. Both software are available from http://umber.sbs.man.ac.uk/resources/puma.  相似文献   

3.

Background  

There are currently many different methods for processing and summarizing probe-level data from Affymetrix oligonucleotide arrays. It is of great interest to validate these methods and identify those that are most effective. There is no single best way to do this validation, and a variety of approaches is needed. Moreover, gene expression data are collected to answer a variety of scientific questions, and the same method may not be best for all questions. Only a handful of validation studies have been done so far, most of which rely on spike-in datasets and focus on the question of detecting differential expression. Here we seek methods that excel at estimating relative expression. We evaluate methods by identifying those that give the strongest linear association between expression measurements by array and the "gold-standard" assay.  相似文献   

4.
5.
affy--analysis of Affymetrix GeneChip data at the probe level   总被引:32,自引:0,他引:32  
MOTIVATION: The processing of the Affymetrix GeneChip data has been a recent focus for data analysts. Alternatives to the original procedure have been proposed and some of these new methods are widely used. RESULTS: The affy package is an R package of functions and classes for the analysis of oligonucleotide arrays manufactured by Affymetrix. The package is currently in its second release, affy provides the user with extreme flexibility when carrying out an analysis and make it possible to access and manipulate probe intensity data. In this paper, we present the main classes and functions in the package and demonstrate how they can be used to process probe-level data. We also demonstrate the importance of probe-level analysis when using the Affymetrix GeneChip platform.  相似文献   

6.
The utility of previously generated microarray data is severely limited owing to small study size, leading to under-powered analysis, and failure of replication. Multiplicity of platforms and various sources of systematic noise limit the ability to compile existing data from similar studies. We present a model for transformation of data across different generations of Affymetrix arrays, developed using previously published datasets describing technical replicates performed with two generations of arrays. The transformation is based upon a probe set-specific regression model, generated from replicate measurements across platforms, performed using correlation coefficients. The model, when applied to the expression intensities of 5069 shared, sequence-matched probe sets in three different generations of Affymetrix Human oligonucleotide arrays, showed significant improvement in inter generation correlations between sample-wide means and individual probe set pairs. The approach was further validated by an observed reduction in Euclidean distance between signal intensities across generations for the predicted values. Finally, application of the model to independent, but related datasets resulted in improved clustering of samples based upon their biological, as opposed to technical, attributes. Our results suggest that this transformation method is a valuable tool for integrating microarray datasets from different generations of arrays.  相似文献   

7.
8.

Background  

The identification of differentially expressed genes (DEGs) from Affymetrix GeneChips arrays is currently done by first computing expression levels from the low-level probe intensities, then deriving significance by comparing these expression levels between conditions. The proposed PL-LM (Probe-Level Linear Model) method implements a linear model applied on the probe-level data to directly estimate the treatment effect. A finite mixture of Gaussian components is then used to identify DEGs using the coefficients estimated by the linear model. This approach can readily be applied to experimental design with or without replication.  相似文献   

9.
MOTIVATION: Affymetrix GeneChip arrays are currently the most widely used microarray technology. Many summarization methods have been developed to provide gene expression levels from Affymetrix probe-level data. Most of the currently popular methods do not provide a measure of uncertainty for the expression level of each gene. The use of probabilistic models can overcome this limitation. A full hierarchical Bayesian approach requires the use of computationally intensive MCMC methods that are impractical for large datasets. An alternative computationally efficient probabilistic model, mgMOS, uses Gamma distributions to model specific and non-specific binding with a latent variable to capture variations in probe affinity. Although promising, the main limitations of this model are that it does not use information from multiple chips and does not account for specific binding to the mismatch (MM) probes. RESULTS: We extend mgMOS to model the binding affinity of probe-pairs across multiple chips and to capture the effect of specific binding to MM probes. The new model, multi-mgMOS, provides improved accuracy, as demonstrated on some bench-mark datasets and a real time-course dataset, and is much more computationally efficient than a competing hierarchical Bayesian approach that requires MCMC sampling. We demonstrate how the probabilistic model can be used to estimate credibility intervals for expression levels and their log-ratios between conditions. AVAILABILITY: Both mgMOS and the new model multi-mgMOS have been implemented in an R package, which is available at http://www.bioinf.man.ac.uk/resources/puma.  相似文献   

10.
Data analysis and management represent a major challenge for gene expression studies using microarrays. Here, we compare different methods of analysis and demonstrate the utility of a personal microarray database. Gene expression during HIV infection of cell lines was studied using Affymetrix U-133 A and B chips. The data were analyzed using Affymetrix Microarray Suite and Data Mining Tool, Silicon Genetics GeneSpring, and dChip from Harvard School of Public Health. A small-scale database was established with FileMaker Pro Developer to manage and analyze the data. There was great variability among the programs in the lists of significantly changed genes constructed from the same data. Similarly choices of different parameters for normalization, comparison, and standardization greatly affected the outcome. As many probe sets on the U133 chip target the same Unigene clusters, the Unigene information can be used as an internal control to confirm and interpret the probe set results. Algorithms used for the determination of changes in gene expression require further refinement and standardization. The use of a personal database powered with Unigene information can enhance the analysis of gene expression data.  相似文献   

11.
Together with the widely used Affymetrix microarrays, the recently introduced Illumina platform has become a cost-effective alternative for genome-wide studies. To efficiently use data from both array platforms, there is a pressing need for methods that allow systematic integration of multiple datasets, especially when the number of samples is small. To address these needs, we introduce a meta-analytic procedure for combining Affymetrix and Illumina data in the context of detecting differentially expressed genes between the platforms. We first investigate the effect of different expression change estimation procedures within the platforms on the agreement of the most differentially expressed genes. Using the best estimation methods, we then show the benefits of the integrative analysis in producing reproducible results across bootstrap samples. In particular, we demonstrate its biological relevance in identifying small but consistent changes during T helper 2 cell differentiation.  相似文献   

12.
13.
The recent advent of exon microarrays has made it possible to reveal differences in alternative splicing events on a global scale. We introduce a novel statistical procedure that takes full advantage of the probe-level information on Affymetrix exon arrays when detecting differential splicing between sample groups. In comparison to existing ranking methods, the procedure shows superior reproducibility and accuracy in distinguishing true biological findings from background noise in high agreement with experimental validations.  相似文献   

14.
15.
We outline and describe steps for a statistically rigorous approach to analyzing probe-level Affymetrix GeneChip data. The approach employs classical linear mixed models and operates on a gene-by-gene basis. Forgoing any attempts at gene presence or absence calls, the method simultaneously considers the data across all chips in an experiment. Primary output includes precise estimates of fold change (some as low as 1.1), their statistical significance, and measures of array and probe variability. The method can accommodate complex experiments involving many kinds of treatments and can test for their effects at the probe level. Furthermore, mismatch probe data can be incorporated in different ways or ignored altogether. Data from an ionizing radiation experiment on human cell lines illustrate the key concepts.  相似文献   

16.
We describe a novel algorithm (ChipStat) for detecting gene-expression changes utilizing probe-level comparisons of replicate Affymetrix oligonucleotide microarray data. A combined detection approach is shown to yield greater sensitivity than a number of widely used methodologies including SAM, dChip and logit-T. Using this approach, we identify alterations in functional pathways during murine neonatal-pubertal mammary development that include the coordinate upregulation of major urinary proteins and the downregulation of loci exhibiting reciprocal imprinting.  相似文献   

17.
MOTIVATION: Although copy-number aberrations are known to contribute to the diversity of the human DNA and cause various diseases, many aberrations and their phenotypes are still to be explored. The recent development of single-nucleotide polymorphism (SNP) arrays provides researchers with tools for calling genotypes and identifying chromosomal aberrations at an order-of-magnitude greater resolution than possible a few years ago. The fundamental problem in array-based copy-number (CN) analysis is to obtain CN estimates at a single-locus resolution with high accuracy and precision such that downstream segmentation methods are more likely to succeed. RESULTS: We propose a preprocessing method for estimating raw CNs from Affymetrix SNP arrays. Its core utilizes a multichip probe-level model analogous to that for high-density oligonucleotide expression arrays. We extend this model by adding an adjustment for sequence-specific allelic imbalances such as cross-hybridization between allele A and allele B probes. We focus on total CN estimates, which allows us to further constrain the probe-level model to increase the signal-to-noise ratio of CN estimates. Further improvement is obtained by controlling for PCR effects. Each part of the model is fitted robustly. The performance is assessed by quantifying how well raw CNs alone differentiate between one and two copies on Chromosome X (ChrX) at a single-locus resolution (27kb) up to a 200kb resolution. The evaluation is done with publicly available HapMap data. AVAILABILITY: The proposed method is available as part of an open-source R package named aroma.affymetrix. Because it is a bounded-memory algorithm, any number of arrays can be analyzed.  相似文献   

18.
Affymetrix GeneChips are one of the best established microarray platforms. This powerful technique allows users to measure the expression of thousands of genes simultaneously. However, a microarray experiment is a sophisticated and time consuming endeavor with many potential sources of unwanted variation that could compromise the results if left uncontrolled. Increasing data volume and data complexity have triggered growing concern and awareness of the importance of assessing the quality of generated microarray data. In this review, we give an overview of current methods and software tools for quality assessment of Affymetrix GeneChip data. We focus on quality metrics, diagnostic plots, probe-level methods, pseudo-images, and classification methods to identify corrupted chips. We also describe RNA quality assessment methods which play an important role in challenging RNA sources like formalin embedded biopsies, laser-micro dissected samples, or single cells. No wet-lab methods are discussed in this paper.  相似文献   

19.
20.
Microarrays measure the expression of large numbers of genes simultaneously and can be used to delve into interaction networks involving many genes at a time. However, it is often difficult to decide to what extent knowledge about the expression of genes gleaned in one model organism can be transferred to other species. This can be examined either by measuring the expression of genes of interest under comparable experimental conditions in other species, or by gathering the necessary data from comparable microarray experiments. However, it is essential to know which genes to compare between the organisms. To facilitate comparison of expression data across different species, we have implemented a Web-based software tool that provides information about sequence orthologs across a range of Affymetrix microarray chips. AffyTrees provides a quick and easy way of assigning which probe sets on different Affymetrix chips measure the expression of orthologous genes. Even in cases where gene or genome duplications have complicated the assignment, groups of comparable probe sets can be identified. The phylogenetic trees provide a resource that can be used to improve sequence annotation and detect biases in the sequence complement of Affymetrix chips. Being able to identify sequence orthologs and recognize biases in the sequence complement of chips is necessary for reliable cross-species microarray comparison. As the amount of work required to generate a single phylogeny in a nonautomated manner is considerable, AffyTrees can greatly reduce the workload for scientists interested in large-scale cross-species comparisons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号