首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
ADP, added to suspensions of aspirinized 32P-prelabelled washed platelets, induced reversible platelet aggregation, the rapid elevation of cytosolic Ca2+ (maximum at 2 s), 20 kDa myosin light chain phosphorylation (maximum faster than 3 s), 40 kDa protein phosphorylation (maximum at 3-10 s) and phosphatidic acid formation (maximum at 30 s). Prior addition of epinephrine potentiated platelet aggregation, cytosolic Ca2(+)-elevation, 20 and 40 kDa protein phosphorylation evoked by ADP, but it did not enhance phosphatidic acid formation induced by ADP. The potentiating effect of epinephrine on aggregation, cytosolic Ca2(+)-increase and 20 and 40 kDa protein phosphorylation induced by ADP was also observed in the presence of EGTA. Ethylisopropylamiloride, an inhibitor of Na+/H(+)-exchange, did not affect the potentiation of ADP-induced platelet aggregation by epinephrine. We conclude that epinephrine primes platelets to increase Ca2(+)-influx and Ca2(+)-mobilization in response to ADP. The potentiation of cytosolic Ca2(+)-elevation by epinephrine leads to further stimulation of myosin light chain phosphorylation and protein kinase C activation and ultimately to enhanced platelet aggregation. These effects of epinephrine do not seem to take place at the level of phospholipase C.  相似文献   

2.
Rat hepatocytes whose phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) had been labelled for 60 min with 32P were treated with glucagon for 10 min or phenylephrine for 2 min. Glucagon caused a 20% increase in PIP but no change in PIP2 whereas phenylephrine caused a similar increase in PIP but a 15% decrease in PIP2. Addition of both hormones together for 10 min produced a 40% increase in PIP. A crude liver mitochondrial fraction incubated with [32P]Pi and ADP incorporated label into PIP, PIP2 and phosphatidic acid. The PIP2 was shown to be in contaminating plasma membranes and PIP in both lysosomal and plasma-membrane contamination. A minor but definitely mitochondrial phospholipid, more polar than PIP2, was shown to be labelled with 32P both in vitro and in hepatocytes. The rate of 32P incorporation into PIP was faster in mitochondrial/plasma-membrane preparations from rats treated with glucagon or if 3 microM-Ca2+ and Ruthenium Red were present in the incubation buffer. Loss of 32P from membranes labelled in vitro was shown to be accompanied by formation of inositol 1,4,5-trisphosphate (IP3) and inositol 1,4-bisphosphate, and was faster in preparations from glucagon-treated rats or in the presence of 3 microM-Ca2+. It is concluded that glucagon stimulates both PIP2 phosphodiesterase and phosphatidylinositol kinase activities, as does the presence of 3 microM-Ca2+. The resulting formation of IP3 may be responsible for the observed release of intracellular Ca2+ stores. The roles of a guanine nucleotide regulatory protein and phosphorylation in mediating these effects are discussed.  相似文献   

3.
Stimulation of tracheal smooth muscle cells in culture with ionomycin resulted in a rapid increase in cytosolic free Ca2+ concentration ([Ca2+]i) and an increase in both myosin light chain kinase and myosin light chain phosphorylation. These responses were markedly inhibited in the absence of extracellular Ca2+. Pretreatment of cells with 1-[N-O-bis(5-isoquinolinesulfonyl)-N- methyl-L-tyrosyl]-4-phenylpiperazine (KN-62), a specific inhibitor of the multifunctional calmodulin-dependent protein kinase II (CaM kinase II), did not affect the increase in [Ca2+]i but inhibited ionomycin-induced phosphorylation of myosin light chain kinase at the regulatory site near the calmodulin-binding domain. KN-62 inhibited CaM kinase II activity toward purified myosin light chain kinase. Phosphorylation of myosin light chain kinase decreased its sensitivity to activation by Ca2+ in cell lysates. Pretreatment of cells with KN-62 prevented this desensitization to Ca2+ and potentiated myosin light chain phosphorylation. We propose that the Ca(2+)-dependent phosphorylation of myosin light chain kinase by CaM kinase II decreases the Ca2+ sensitivity of myosin light chain phosphorylation in smooth muscle.  相似文献   

4.
Sarcoplasmic reticulum vesicles were phosphorylated with [gamma-32P]ATP in the presence of external Ca2+ without added Mg2+. The phosphoenzyme (EP) formed had tightly bound Ca2+ and was dephosphorylated by ADP. When the external Ca2+ was chelated after phosphorylation, Ca2+ dissociated from the EP and ADP addition no longer induced dephosphorylation. Subsequent addition of CaCl2 caused rapid recombination of Ca2+ and restoration of the ADP sensitivity. These findings show that the dissociation and recombination of Ca2+ took place on the outer surface of the membranes, indicating the existence of EP with bound Ca2+ which was exposed to the external medium (Caout.EP). The Ca2+ affinity of the Ca2+ binding site in Caout.EP was comparable to that of the high affinity Ca2+ binding site in the dephosphoenzyme (E). This shows that phosphorylation is not accompanied by an appreciable reduction in the Ca2+ affinity of the Ca2+ binding site, provided this site is exposed to the external medium. The transition from ADP-sensitive EP to ADP-insensitive induced by Ca2+ chelation was unaffected by Mg2+ in the medium. Mg2+ did not activate hydrolysis of the ADP-sensitive EP with bound Ca2+, whereas it markedly accelerated hydrolysis of the ADP-insensitive EP without bound Ca2+.  相似文献   

5.
The addition of inositol 1,4,5-trisphosphate (IP3) to a 45Ca-preloaded human platelet membrane fraction (dense tubular system) induced a transient release of Ca2+. When the vesicle fraction was loaded with 45Ca2+ to isotopic equilibrium in the presence of the catalytic subunit of the cAMP-dependent protein kinase, the level of Ca2+ uptake was increased and the subsequent IP3-induced Ca2+ release was enhanced. The stimulation was observed regardless of the IP3 concentration used, and was maximal with an enzyme concentration of 5 micrograms/ml. The addition of the protein kinase inhibitor prevented the stimulatory effect of the catalytic subunit on IP3-induced calcium release, and also abolished the calcium release detected in the absence of added enzyme. It is concluded that a cAMP-dependent protein phosphorylation may be involved in the regulation of the IP3-induced Ca2+ release in human platelets.  相似文献   

6.
Sarcoplasmic reticulum vesicles were preloaded with either 45Ca2+ or unlabeled Ca2+. The unidirectional Ca2+ efflux and influx, together with Ca2+-dependent ATP hydrolysis and phosphorylation of the membrane-bound (Ca2+, Mg2+)-ATPase, were determined in the presence of ATP and ADP. The Ca2+ efflux depended on ATP (or ADP or both). It also required the external Ca2+. The Ca2+ concentration dependence of the efflux was similar to the Ca2+ concentration dependences of Ca2+ influx, Ca2+-dependent ATP hydrolysis, and phosphoenzyme formation. The rate of the efflux was approximately in proportion to the concentration of the phosphoenzyme up to 10 microM Ca2+. These results and other findings indicate that the Ca2+ efflux represents the Ca2+-Ca2+ exchange (between the external medium and the internal medium) mediated by the phosphoenzyme. In the range of 0.6-5.2 microM Mg2+, no appreciable Ca2+-Ca2+ exchange was detected although phosphoenzyme formation occurred to a large extent. Elevation of Mg2+ in the range 5.2 microM-4.8 mM caused a remarkable activation of the exchange, whereas the amount of the phosphoenzyme only approximately doubled. The kinetic analysis shows that this activation results largely from the Mg2+-induced acceleration of an exchange between the bound Ca2+ of the phosphoenzyme and the free Ca2+ in the internal medium. It is concluded that Mg2+ is essential for the exposure of the bound Ca2+ of the phosphoenzyme to the internal medium.  相似文献   

7.
Ca2+ release triggered by inositol 1,4,5-trisphosphate (IP3) has been measured in saponin-permeabilized human platelets with quin2 or 45Ca2+. Ca2+ was sequestered by intracellular organelles in the presence of ATP, and IP3 released half of the sequestered Ca2+. The addition of cyclic AMP (cAMP) to permeabilized platelets transiently accelerated Ca2+ sequestration, but did not alter the steady-state level. In contrast, IP3-induced Ca2+ release was greatly inhibited by cAMP. Phorbol myristate acetate, an activator of protein kinase C did not affect IP3-induced Ca2+ release. These results indicate that cAMP may be involved in the regulation of IP3-induced Ca2+ release in human platelets.  相似文献   

8.
Several studies have shown that PKA-mediated phosphorylation of IP3R1 at serines S1588 and S1755 enhances the receptor's ability to mobilize Ca2+. In contrast, much less is known about whether Ca2+ mobilization via IP3R2 and IP3R3 is regulated by PKA. We report here that IP3R2 is only very weakly phosphorylated in response to PKA activation and is probably not a physiological substrate for this kinase. IP3R3, however, is known to be phosphorylated by PKA at three sites (S916, S934, and S1832) and, thus, we examined how phosphorylation of these sites affects Ca2+ mobilization in DT40-3KO cells stably expressing either exogenous wild-type or mutant IP3R3s; an antibody raised against phospho-serine 934 of IP3R3 was used to demonstrate that the exogenous IP3R3s are strongly phosphorylated in response to PKA activation. Surprisingly, our data show that IP3R3-mediated Ca2+ mobilization is unaffected by phosphorylation of S916, S934, and S1832. In contrast, phosphorylation of exogenous IP3R1 (monitored with an antibody against phospho-serine 1755) enhances Ca2+ mobilization, indicating that DT40-3KO cells have the capacity to respond to phosphorylation of IP3Rs. Overall, these data suggest that modification of Ca2+ flux may not be the primary effect of IP3R3 phosphorylation by PKA.  相似文献   

9.
The regulation of extracellular Ca2+ entry into fura-2-loaded human platelets was examined following stimulation with thrombin. In the presence of external Ca2+, stimulation of platelets with thrombin resulted in a rapid increase, followed by a plateau, in intracellular Ca2+ concentration ([Ca2+]i). Pretreatment with wortmannin, a specific inhibitor of myosin light chain kinase, suppressed only the plateau phase and had no effect on the initial rapid increase in [Ca2+]i. In Ca(2+)-free EGTA buffer, thrombin induced a transient and relatively small increase in [Ca2+]i caused by Ca2+ release from internal stores. When Ca2+ was added subsequently to the Ca(2+)-free medium within 10 min after thrombin activation, a marked increase in [Ca2+]i was seen, reflecting thrombin-stimulated external Ca2+ entry. With the Ca(2+)-free medium, wortmannin did not affect either the Ca2+ mobilization from the internal stores or the rapid external Ca2+ entry at early time points (within 5 s) after thrombin stimulation, whereas it significantly inhibited Ca2+ entry when Ca2+ was added later (at 3 min). Wortmannin inhibition of this late Ca2+ entry and that of 20-kDa myosin light chain phosphorylation after thrombin stimulation were dose- and preincubation time-dependent and correlated well with each other. These results suggest that two different channels are responsible for Ca2+ entry in human platelets at the early and late phases of thrombin stimulation and that the channel responsible for the late phase of Ca2+ entry may be activated by a mechanism involving myosin light chain kinase.  相似文献   

10.
Actin, myosin, and "native" tropomyosin (NTM) were separately isolated from chicken gizzard muscle and rabbit skeletal muscle. With various combinations of the isolated contractile proteins, Mg-ATPase activity and superprecipitation activity were measured. It was thus found that gizzard myosin and gizzard NTM behaved differently from skeletal myosin and skeletal NTM, whereas gizzard actin functioned in the same wasy as skeletal actin. It was also found that gizzard myosin preparations were often Ca-sensitive, that is, that the two activities of gizzard myosin plus actin without NTM were activated by low concentrations of Ca2+. The Mg-ATPase activity of a Ca-insensitive preparation of gizzard myosin was not activated by actin even in the presence of Ca2+. When Ca-sensitive gizzard myosin was incubated with ATP (and Mg2+) in the presence of Ca2+, a light-chain component of gizzard myosin was phosphorylated. The light-chain phosphorylation also occurred when Ca-insensitive myosin was incubated with gizzard NTM and ATP (plus Mg2+) in the presence of Ca2+. In either case, the light-chain phosphorylation required Ca2+. Phosphorylated gizzard myosin in combination with actin was able to exhibit superprecipitation, and Mg-ATPase of the phosphorylated gizzard myosin was activated by actin; the actin activation and superprecipitation were found to occur even in the absence of Ca2+ and NTM or tropomyosin. The phosphorylated light-chain component was found to be dephosphorylated by a partially purified preparation of gizzard myosin light-chain phosphatase. Gizzard myosin thus dephosphorylated behaved exactly like untreated Ca-insensitive gizzard myosin; in combination with actin, it did not superprecipitate either in the presence of Ca2+ or in its absence, but did superprecipitated in the presence of NTM and Ca2+. Ca-activated hydrolysis of ATP catalyzed by gizzard myosin B proceeded at a reduced rate after removal of Ca2+ (by adding EGTA), whereas that catalyzed by a combination of actin, gizzard myosin, and gizzard NTM proceeded at the same rate even after removal of Ca2+. However, addition of a partially purified preparation of gizzard myosin light-chain phosphatase was found to make the recombined system behave like myosin B. Based on these findings, it appears that myosin light-chain kinase and myosin light-chain phosphatase can function as regulatory proteins for contraction and relaxation, respectively, of gizzard muscle.  相似文献   

11.
In an attempt to elucidate the Ca2+-regulated mechanism of motility in Physarum plasmodia, we improved the preparation method for myosin B and pure myosin. The obtained results are as follows: 1. We obtained two types of myosin B which are distinguishable from each other with respect to their sensitivity to Ca2+. The inactive type of myosin B had low superprecipitation activities both in the presence and in the absence of Ca2+. The active type showed very high superprecipitation activity in EGTA, and the activity was conspicuously inhibited by Ca2+. The active type was converted into the inactive type by treatment with potato acid phosphatase. Also the inactive type or the phosphatase-treated active type was converted into the active type upon reacting with ATP-gamma-S. 2. In the reaction with ATP-gamma-S, only the myosin HC of myosin B was phosphorylated. The phosphorylation was independent of Ca2+ and calmodulin, and the extent was about 1 mol/mol HC. 3. The Ca2+ sensitivity in the superprecipitation of the active type was not decreased by adding an excess amount of F-actin. Besides, the actin-activated Mg2+-ATPase activity of purified phosphorylated myosin was not Ca2+-sensitive. Therefore, presence of a Ca2+-dependent inhibitory factor(s) that could bind to myosin was suggested. 4. The Mg2+-ATPase activity of purified phosphorylated myosin was 7-8 times enhanced by F-actin, but that of dephosphorylated myosin was hardly activated at all. 5. In a gel filtration in 0.5 M KCl, phosphorylated myosin was eluted behind dephosphorylated myosin. Electron microscopy applying the rotary-shadow method showed significant difference in flexibility in the tail between phosphorylated and dephosphorylated myosin molecules. 6. In 40 mM KCl and 5-10 mM MgCl2, phosphorylated myosin formed thick filaments, but dephosphorylated myosin did not, whether there was ATP or not. The above results clearly show that the phosphorylation of myosin HC is indispensable to ATP-induced superprecipitation, the actin-activated Mg2+-ATPase activity, and the formation of thick filaments of myosin. A myosin-linked factor(s) that inhibits an actin-myosin interaction in a Ca2+-dependent manner may exist.  相似文献   

12.
Initiation of smooth muscle contraction is associated with Ca2+/calmodulin activation of myosin light chain kinase which catalyzes the phosphorylation of the 20-kDa light chain of myosin. In tracheal smooth muscle cells in culture, the extent of myosin light chain phosphorylation is less than 10% at basal cytosolic free Ca2+ concentrations of 150 nM. Stimulation of these cells with serotonin, histamine, carbachol, or the Ca2+ ionophore, ionomycin, increases free cytosolic Ca2+ concentrations and the extent of myosin light chain phosphorylation. Light chain phosphorylation reaches a maximal value of 67% at Ca2+ concentrations below 1 microM. The relationship between the extent of light chain phosphorylation and cytosolic free Ca2+ concentration is apparently independent of the source of free intracellular Ca2+ or the agent used to stimulate the cells and is not altered by pre-exposure of the contractile apparatus to high concentrations of free Ca2+. Pretreatment of cells with 8-bromo-cyclic GMP or forskolin decreases free cytosolic Ca2+ concentrations and the extent of myosin light chain phosphorylation in response to histamine or ionomycin. Pretreatment with 8-bromo-cyclic GMP also decreases the maximal extent of light chain phosphorylation. These results indicate that cytosolic free Ca2+ concentration, per se, is a primary determinant for myosin light chain phosphorylation in tracheal smooth muscle cells.  相似文献   

13.
Using five species of mammalian and avian cells, the authors succeeded in preparing Triton-treated culture cells that contract upon addition of MgATP. The contraction of these Triton cell models was inhibited by N-ethylmaleimide-modified myosin subfragment-1, a specific inhibitor of actin-myosin interaction. Triton cell models adhered more strongly to the substratum than glycerinated ones. Triton cell models of mouse 3T3 and human MRC-5 cells showed Ca2+-sensitive contraction. They required Ca2+ of 1 microM or more for the contraction. Other Triton cell models and all glycerinated cell models did not require Ca2+ for the contraction. The Ca2+-dependent contraction of 3T3 and MRC-5 cell models was inhibited by chlorpromazine, an inhibitor of calmodulin. The Ca2+-sensitivity of the contraction was lost by pretreatment of these cell models with adenosine 5'-O-(3-thiotriphosphate) in the presence of Ca2+. These results agree with a hypothesis that Ca2+-calmodulin-dependent phosphorylation of myosin light chain regulates actin-myosin interactions in non-muscle cells.  相似文献   

14.
Activation of Ca2+-mobilizing receptors rapidly increases the cytoplasmic Ca2+ concentration both by releasing Ca2+ stored in endoplasmic reticulum and by stimulating Ca2+ entry into the cells. The mechanism by which Ca2+ release occurs has recently been elucidated. Receptor activation of phospholipase C results in the hydrolysis of the plasma membrane lipid, phosphatidylinositol 4,5-bisphosphate (PIP2), to yield two intracellular messengers, diacylglycerol (DAG) and (1,4,5)inositol trisphosphate [(1,4,5)IP3]. DAG remains in the plasma membrane where it stimulates protein phosphorylation via the phospholipid-dependent protein kinase C. (1,4,5)IP3 diffuses to and interacts with specific sites on the endoplasmic reticulum to release stored Ca2+. Receptor stimulation of phospholipase C appears to be mediated by one or more guanine nucleotide-dependent regulatory proteins by a mechanism analogous to hormonal activation of adenylyl cyclase. The actions of (1,4,5)IP3 on Ca2+ mobilization are terminated by two metabolic pathways, sequential dephosphorylation to inositol bisphosphate (IP2), inositol monophosphate (IP) and inositol or by phosphorylation to inositol tetrakisphosphate (IP4) and sequential dephosphorylation to different inositol phosphates. A sustained cellular response also requires Ca2+ entry into the cell from the extracellular space. The mechanism by which hormones increase Ca2+ entry is not known; a recent proposal involving movement of Ca2+ through the endoplasmic reticulum, possibly regulated by IP4, will be considered here.  相似文献   

15.
Myosin (opaque myosin) isolated from the opaque portion of scallop smooth muscle, a catch muscle, was subjected to limited digestion by trypsin during the steady-state ATPase reaction. The 200-kDa heavy chain of opaque myosin was cleaved into 125- and 74-kDa fragments. The proteolytic rate in the absence of Ca2+ was lower than that in the presence of Ca2+, and was similar to that in the presence of ADP and absence of Ca2+. The results suggest that the steady-state intermediate of opaque myosin ATPase in the absence of Ca2+ is EADP, which is consistent with the previous results based on the difference UV-absorption spectrum (Takahashi, M., Sohma, H., & Morita, F. (1988) J. Biochem. 104, 102-107). In the presence of F-actin, the proteolytic rates were decreased, but the digestive patterns by trypsin were similar to those of myosin alone. Even in the presence of F-actin, the proteolytic rate during the ATPase reaction in the absence of Ca2+ was lower than that in the presence of Ca2+, and was similar to that in the presence of ADP and absence of Ca2+. In addition, there was another trypsin-susceptible site which is probably located at 18 kDa from the N-terminal of the heavy chain. The site in the absence of Ca2+ was hardly cleaved when ATP or ADP was present. Similar tendencies were observed even in the presence of F-actin. These findings suggest that the intermediate of opaque myosin ATPase at the steady state in the absence of Ca2+ is EADP even in the presence of F-actin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
In alpha-toxin-permeabilized guinea-pig ileum smooth muscle, a step increase in Ca2+ caused a rapid rise in force and myosin light chain (LC20) phosphorylation, followed by their spontaneous decline to a low steady level even though Ca2+ remained constant. Carbachol resensitized the muscles to Ca2+, causing an increase in both the steady state force and LC20 phosphorylation at constant Ca2+. In beta-escin permeabilized preparations, calmodulin and okadaic acid converted the phasic responses to Ca2+ to more tonic ones. We conclude that Ca2(+)-sensitivity of force is modulated through changes in LC20 kinase/phosphatase activity ratio by Ca2+ itself (desensitization) and by agonists (sensitization).  相似文献   

17.
The regulation of the rate of mitochondrial oxidative phosphorylation and arsenylation was studied at two external free Ca2+ concentrations. The rate of arsenate-stimulated respiration in absence of added ADP was not affected by external 10(-9) and 10(-6) M Ca2+ levels or carboxyatractyloside, while state 3 respiration was profoundly modified. In addition, the kinetic analysis showed that the rate of arsenylation in the presence of ADP was more efficient (Vm/Km ratio 3.5 times higher) in the catalytic process than phosphorylation. Therefore, this suggests that the activity of the ATP/ADP carrier is importantly controlled by Ca2+. The evaluation of the control in phosphorylation showed that the flux-control coefficients (Ci) exerted by the ATP/ADP carrier (ranged between 0.23 and 0.48) and the ATP synthase (0.05-0.57) were modified in a reciprocal way by Ca2+ and Pi concentrations. This suggests that these two enzymes are coupling sequentially through a common intermediate, the intramitochondrial ATP/ADP ratio. Other important steps controlling phosphorylation were the b-c1 complex (Ci = 0.30) and the cytochrome oxidase (Ci = 0.23) but they were not modified by Ca2+. It was also found that the main step controlling arsenylation was the ATP synthase (Ci = 0.74). The increment in the inorganic arsenate concentration induced a diminution in the control exerted by the ATP synthase (from 0.73 to 0.56). The results suggest that Ca2+ and Pi (or inorganic arsenate) could be regulated by ATP synthesis through an activating effect on ATP/ADP carrier and/or ATP synthase.  相似文献   

18.
The ATP-induced difference UV-absorption spectrum of myosin isolated from the opaque portion of scallop smooth muscle (opaque myosin) was Ca2+-sensitive at 40 mM KCl and 1.5 M sucrose. On adding sucrose to 1.5 M, the turbidity of myosin decreased to 24% and the characteristic two forms of the difference spectrum, the ATP-form and ADP-form (Morita, F. (1967) J. Biol. Chem. 242, 4501-4506), were distinguishable. In the presence of Ca2+, the difference spectrum was the ATP-form first and then decayed into the ADP-form with the depletion of ATP. In the absence of Ca2+, however, only the ADP-form was observed. The ADP-form observed in the absence of Ca2+ returned to the ATP-form when the regulatory light chain-a (RLC-a), one of the regulatory light chains of opaque myosin, was phosphorylated. These results suggest that the main intermediate at the steady state of opaque myosin ATPase is converted depending on the concentration of Ca2+, from EPADP in the presence of Ca2+ to EADP in the absence of Ca2+. It changes to EPADP in the absence of Ca2+ on the phosphorylation of RLC-a. Consistent results were obtained by measuring the ATP-induced Trp-fluorescence increase of opaque myosin in the absence of sucrose. Since the opaque portion of scallop smooth muscle is known to be responsible for catch contraction (Ruegg, J.C. (1961) Proc. R. Soc. London Ser. B 154, 224-249), these findings lead us to suppose that the opaque myosin in vivo may stay in the E.ADP complex during the catch state. It changes to EPADP by the phosphorylation of RLC-a, which may terminate the catch state.  相似文献   

19.
Skinned cells of chicken gizzard were used to study the effect of a smooth muscle phosphatase (SMP-IV) on activation and relaxation of tension. SMP-IV has previously been shown to dephosphorylate light chains on myosin. When this phosphatase was added to submaximally Ca2+-activated skinned cells, tension increased while phosphorylation of myosin light chains decreased. In contrast, when the myosin phosphatase was added to cell bundles activated in the absence of Ca2+ by a Ca2+-insensitive myosin light chain kinase, tension and phosphorylation of the myosin light chains both decreased. These data suggest that Ca2+ inhibits the deactivation of tension even when myosin light chains are dephosphorylated to a low level. Furthermore, comparison of Ca2+-activated cells caused to relax in CTP, in the presence or absence of Ca2+, shows that cells in the presence of Ca2+ do not relax completely, whereas in the absence of Ca2+ cells completely relax. Solutions containing Ca2+ and CTP, however, are incapable of generating tension from the resting state. Endogenous myosin light chain kinase is not active in solutions containing CTP and dephosphorylation of myosin light chains occurs in CTP solutions both in the presence and absence of Ca2+. These data imply that Ca2+ inhibits relaxation even though myosin light chains are dephosphorylated. These data are consistent with a model wherein an obligatory Ca2+-activated myosin light chain phosphorylation is followed by a second Ca2+ activation process for further tension development or maintenance.  相似文献   

20.
J D Lechleiter  D E Clapham 《Cell》1992,69(2):283-294
Following receptor activation in Xenopus oocytes, spiral waves of intracellular Ca2+ release were observed. We have identified key molecular elements in the pathway that give rise to Ca2+ excitability. The patterns of Ca2+ release produced by GTP-gamma-S and by inositol 1,4,5-trisphosphate (IP3) are indistinguishable from receptor-induced Ca2+ patterns. The regenerative Ca2+ activity is critically dependent on the presence of IP3 and on the concentration of intracellular Ca2+, but is independent of extracellular Ca2+. Broad regions of the intracellular milieu can be synchronously excited to initiate Ca2+ waves and produce pulsating foci of Ca2+ release. By testing the temperature dependence of wavefront propagation, we provide evidence for an underlying process limited by diffusion, consistent with the elementary theory of excitable media. We propose a model for intracellular Ca2+ signaling in which wave propagation is controlled by IP3-mediated Ca2+ release from internal stores, but is modulated by the cytoplasmic concentration and diffusion of Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号