首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Odor-detection in the malaria mosquito Anopheles gambiae involves large families of diverse proteins, including multiple odorant binding proteins (AgOBPs) and olfactory receptors (AgORs). The receptors AgOR1 and AgOR2, as well as the binding protein AgOBP1, have been implicated in the recognition of human host odors. In this study, we have explored the expression of these olfactory proteins, as well as the ubiquitous odorant receptor heteromerization partner AgOR7, in the thirteen flagellomeres (segments) of female and male antenna. Expressing cells were visualized by adapting a whole mount fluorescence in situ hybridization method. In female mosquitoes, AgOR1-expressing olfactory receptor neurons (ORNs) were almost exclusively segregated in segments 3 to 9, whereas AgOR2-expressing ORNs were distributed over flagellomeres 2 to 13. Different individuals comprised a similar number of cells expressing a distinct AgOR type, although their antennal topography and number per flagellomere varied. AgOBP1-expressing support cells were present in segments 3 to 13 of the female antenna, with increasing numbers towards the distal end. In male mosquitoes, total numbers of AgOR- and AgOBP1-expressing cells were much lower. While AgOR2-expressing cells were found on both terminal flagellomeres, AgOR1 cells were restricted to the most distal segment. High densities of AgOBP1-expressing cells were identified in segment 13, whereas segment 12 comprised very few. Altogether, the results demonstrate that both sexes express the two olfactory receptor types as well as the binding protein AgOBP1 but there is a significant sexual dimorphism concerning the number and distribution of these cells. This may suggest gender-specific differences in the ability to detect distinct odorants, specifically human host-derived volatiles.  相似文献   

3.
Despite many decades of multilateral global efforts, a significant portion of the world population continues to be plagued with one or more mosquito‐vectored diseases. These include malaria and filariasis, as well as numerous arboviral‐associated illnesses, such as dengue and yellow fevers. The dynamics of disease transmission by mosquitoes is complex, and involves both vector competence and vectorial capacity. One area of intensive effort is the study of chemosensory‐driven behaviours in the malaria vector mosquito Anopheles gambiae Giles, the modulation of which is likely to provide opportunities for disease reduction. In this context, recent studies characterize a large divergent family of An. gambiae odorant receptors (AgORs) that play critical roles in olfactory signal transduction. This work facilitates high‐throughput, cell‐based calcium mobilization screens of AgOR‐expressing human embryonic kidney cells identifying a large number of conventional AgOR ligands, as well as the first nonconventional Orco (olfactory receptor co‐receptor) family agonist. As such, ligand‐mediated modulation serves as a proof‐of‐concept demonstration that AgORs represent viable targets for high‐throughput screening and for the eventual development of behaviour‐modifying olfactory compounds. Such attractants or repellents could foster malaria reduction programmes.  相似文献   

4.
5.
BACKGROUND: Many species of mosquitoes, including the major malaria vector Anopheles gambiae, utilize carbon dioxide (CO(2)) and 1-octen-3-ol as olfactory cues in host-seeking behaviors that underlie their vectorial capacity. However, the molecular and cellular basis of such olfactory responses remains largely unknown. RESULTS: Here, we use molecular and physiological approaches coupled with systematic functional analyses to define the complete olfactory sensory map of the An. gambiae maxillary palp, an olfactory appendage that mediates the detection of these compounds. In doing so, we identify three olfactory receptor neurons (ORNs) that are organized in stereotyped triads within the maxillary-palp capitate-peg-sensillum population. One ORN is CO(2)-responsive and characterized by the coexpression of three receptors that confer CO(2) responses, whereas the other ORNs express characteristic odorant receptors (AgORs) that are responsible for their in vivo olfactory responses. CONCLUSIONS: Our results describe a complete and highly concordant map of both the molecular and cellular olfactory components on the maxillary palp of the adult female An. gambiae mosquito. These results also facilitate the understanding of how An. gambiae mosquitoes sense olfactory cues that might be exploited to compromise their ability to transmit malaria.  相似文献   

6.
Anopheles gambiae is the principal Afrotropical vector for human malaria, in which olfaction mediates a wide range of both adult and larval behaviors. Indeed, mosquitoes depend on the ability to respond to chemical cues for feeding, host preference, and mate location/selection. Building upon previous work that has characterized a large family of An. gambiae odorant receptors (AgORs), we now use behavioral analyses and gene silencing to examine directly the role of AgORs, as well as a newly identified family of candidate chemosensory genes, the An. gambiae variant ionotropic receptors (AgIRs), in the larval olfactory system. Our results validate previous studies that directly implicate specific AgORs in behavioral responses to DEET as well as other odorants and reveal the existence of at least two distinct olfactory signaling pathways that are active in An. gambiae. One system depends directly on AgORs; the other is AgOR-independent and requires the expression and activity of AgIRs. In addition to clarifying the mechanistic basis for olfaction in this system, these advances may ultimately enhance the development of vector control strategies, targeting olfactory pathways in mosquitoes to reduce the catastrophic effects of malaria and other mosquito-borne diseases.  相似文献   

7.
8.
The recent availability of the genome of Anopheles gambiae offers an extraordinary opportunity for comparative studies of the diversity of transposable elements (TEs) and their evolutionary dynamics between two related species, taking advantage of the existing information from Drosophila melanogaster. To this goal, we screened the genome of A. gambiae for elements belonging to the Ty3/gypsy group of long-terminal repeat (LTR) retrotransposons. The A. gambiae genome displays a rich diversity of LTR retrotransposons, clearly greater than D. melanogaster. We have characterized in detail 63 families, belonging to five of the nine main lineages of the Ty3/gypsy group. The Mag lineage is the most diverse and abundant, with more than 30 families. In sharp contrast with this finding, a single family belonging to this lineage has been found in D. melanogaster, here reported for the first time in the literature, most probably consisting of old inactive elements. The CsRn1 lineage is also abundant in A. gambiae but almost absent from D. melanogaster. Conversely, the Osvaldo lineage has been detected in Drosophila but not in Anopheles. Comparison of structural characteristics of different families led to the identification of several lineage-specific features such as the primer-binding site (PBS), the gag-pol translational recoding signal (TRS), which is extraordinarily diverse within the Ty3/gypsy retrotransposons of A. gambiae, or the presence/absence of specific amino acid motifs. Interestingly, some of these characteristics, although in general well conserved within lineages, may have evolved independently in particular branches of the phylogenetic tree. We also show evidence of recent activity for around 75% of the families. Nevertheless, almost all families contain a high proportion of degenerate members and solitary LTRs (solo LTRs), indicative of a lower turnover rate of retrotransposons belonging to the Ty3/gypsy group in A. gambiae than in D. melanogaster. Finally, we have detected significant overrepresentations of insertions on the X chromosome versus autosomes and of putatively active insertions on euchromatin versus heterochromatin.  相似文献   

9.
Host preference and blood feeding are restricted to female mosquitoes. Olfaction plays a major role in host-seeking behaviour, which is likely to be associated with a subset of mosquito olfactory genes. Proteins involved in olfaction include the odorant receptors (ORs) and the odorant-binding proteins (OBPs). OBPs are thought to function as a carrier within insect antennae for transporting odours to the olfactory receptors. Here we report the annotation of 32 genes encoding putative OBPs in the malaria mosquito Anopheles gambiae and their tissue-specific expression in two mosquito species of the Anopheles complex; a highly anthropophilic species An. gambiae sensu stricto and an opportunistic, but more zoophilic species, An. arabiensis. RT-PCR shows that some of the genes are expressed mainly in head tissue and a subset of these show highest expression in female heads. One of the genes (agCP1588) which has not been identified as an OBP, has a high similarity (40%) to the Drosophila pheromone-binding protein 4 (PBPRP4) and is only expressed in heads of both An. gambiae and An. arabiensis, and at higher levels in female heads. Two genes (agCP3071 and agCP15554) are expressed only in female heads and agC15554 also shows higher expression levels in An. gambiae. The expression profiles of the genes in the two members of the Anopheles complex provides the first step towards further molecular analysis of the mosquito olfactory apparatus.  相似文献   

10.
Sensory neuron membrane proteins (SNMPs) are membrane bound proteins initially identified in olfactory receptor neurons of Lepidoptera and are thought to play a role in odor detection; SNMPs belong to a larger gene family characterized by the human protein CD36. We have identified 12-14 candidate SNMP/CD36 homologs from each of the genomes of Drosophila melanogaster, D. pseudoobscura, Anopheles gambiae and Aedes aegypti (Diptera), eight candidate homologs from Apis mellifera (Hymenoptera), and 15 from Tribolium castaneum (Coleoptera). Analysis (sequence similarity and intron locations) suggests that the insect SNMP/CD36 genes fall into three major groups. Group 1 includes the previously characterized D. melanogaster emp (epithelial membrane protein). Group 2 includes the previously characterized D. melanogaster croquemort, ninaD, santa maria, and peste. Group 3 genes include the SNMPs, which fall into two subgroups referred to as SNMP1 and SNMP2. D. melanogaster SNMP1 (CG7000) shares both significant sequence similarity and five of its six intron insertion sites with the lepidopteran Bombyx mori SNMP1. The topological conservation of this gene family within the three major holometabolous lineages indicates that it predates the coleopteran and hymenoptera/dipera/lepidoptera split 300+ million years ago. The current state of knowledge of the characterized insect members of this gene family is discussed.  相似文献   

11.
The Anopheles gambiae genome sequence has been analyzed to find ATP-binding cassette protein genes based on deduced protein similarity to known family members. A nonredundant collection of 44 putative genes was identified including five genes not detected by the original Anopheles genome project machine annotation. These genes encode at least one member of all the human and Drosophila melanogaster ATP-binding protein subgroups. Like D. melanogaster, A. gambiae has subgroup ABCH genes encoding proteins different from the ABC proteins found in other complex organisms. The largest Anopheles subgroup is the ABCC genes which includes one member that can potentially encode ten different isoforms of the protein by differential splicing. As with Drosophila, the second largest Anopheles group is the ABCG subgroup with 12 genes compared to 15 genes in D. melanogaster, but only 5 genes in the human genome. In contrast, fewer ABCA and ABCB genes were identified in the mosquito genome than in the human or Drosophila genomes. Gene duplication is very evident in the Anopheles ABC genes with two groups of four genes, one group with three genes and three groups with two head to tail duplicated genes. These characteristics argue that the A. gambiae is actively using gene duplication as a mechanism to drive genetic variation in this important gene group.  相似文献   

12.
13.
An in silico comparative genomics approach was used to identify putative orthologs to genetically mapped genes from the mosquito, Aedes aegypti, in the Drosophila melanogaster and Anopheles gambiae genome databases. Comparative chromosome positions of 73 D. melanogaster orthologs indicated significant deviations from a random distribution across each of the five A. aegypti chromosomal regions, suggesting that some ancestral chromosome elements have been conserved. However, the two genomes also reflect extensive reshuffling within and between chromosomal regions. Comparative chromosome positions of A. gambiae orthologs indicate unequivocally that A. aegypti chromosome regions share extensive homology to the five A. gambiae chromosome arms. Whole-arm or near-whole-arm homology was contradicted with only two genes among the 75 A. aegypti genes for which orthologs to A. gambiae were identified. The two genomes contain large conserved chromosome segments that generally correspond to break/fusion events and a reciprocal translocation with extensive paracentric inversions evident within. Only very tightly linked genes are likely to retain conserved linear orders within chromosome segments. The D. melanogaster and A. gambiae genome databases therefore offer limited potential for comparative positional gene determinations among even closely related dipterans, indicating the necessity for additional genome sequencing projects with other dipteran species.  相似文献   

14.
15.
Olfaction in Drosophila   总被引:3,自引:0,他引:3  
The fruit fly, Drosophila melanogaster, is equipped with a sophisticated olfactory sensory system that permits it to recognize and discriminate hundreds of discrete odorants. The perception of these odorants is essential for the animal to identify relevant food sources and suitable sites for egg-laying. Advances in the last year have begun to define the molecular basis of this insect's discriminatory power. The identification of a large multi-gene family of candidate Drosophila odorant receptors suggests that, as in other animals, a multitude of distinct odorants is recognized by a diversity of ligand-binding receptors. How olfactory signals are transduced and interpreted by the brain remains an important question for future analysis. The availability of genetic tools and a complete genome sequence makes Drosophila a particularly attractive organism for studying the molecular basis of olfaction.  相似文献   

16.
Phylogenetic analysis groups mammalian odorant receptors into two broad classes and numerous subfamilies. These subfamilies are proposed to reflect functional organization. Testing this idea requires an assay allowing detailed functional characterization of odorant receptors. Here we show that a variety of Class I and Class II mouse odorant receptors can be functionally expressed in Xenopus laevis oocytes. Receptor constructs included the N-terminal 20 residues of human rhodopsin and were co-expressed with Galphaolf and the cystic fibrosis transmembrane regulator to allow electrophysiological measurement of receptor responses. For most mouse odorant receptors tested, these conditions were sufficient for functional expression. Co-expression of accessory proteins was required to allow functional surface expression of some mouse odorant receptors. We used this assay to examine the receptive ranges of all members of the mouse odorant receptor 42 (MOR42) subfamily. MOR42-1 responded to dicarboxylic acids, preferring a 10-12 carbon chain length. MOR42-2 responded to monocarboxylic acids (7-10 carbons). MOR42-3 responded to dicarboxylic acids (8-10 carbons) and monocarboxylic acids (10-12 carbons). Thus, the receptive range of each receptor was unique. However, overlap between the individual receptive ranges suggests that the members of this subfamily form one contiguous subfamily receptive range, suggesting that odorant receptor subfamilies do constitute functional units.  相似文献   

17.
18.

Background

Insect odorant receptors (ORs) function as odorant-gated ion channels consisting of a conventional, odorant-binding OR and the Orco coreceptor. While Orco can function as a homomeric ion channel, the role(s) of the conventional OR in heteromeric OR complexes has largely focused only on odorant recognition.

Results

To investigate other roles of odorant-binding ORs, we have employed patch clamp electrophysiology to investigate the properties of the channel pore of several OR complexes formed by a range of different odorant-specific Anopheles gambiae ORs (AgOrs) each paired with AgOrco. These studies reveal significant differences in cation permeability and ruthenium red susceptibility among different AgOr complexes.

Conclusions

With observable differences in channel function, the data support a model in which the odorant-binding OR also affects the channel pore. The variable effect contributed by the conventional OR on the conductive properties of odorant-gated sensory channels adds additional complexity to insect olfactory signaling, with differences in odor coding beginning with ORs on the periphery of the olfactory system.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号