首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electron microscopic studies of the leg ciliary epithelium was carried out in two mollusks. In the epithelium of the leg of adult animals, the centrioles were mostly formed de novo with participation of deuterosomes during the formation of basal bodies. Transformation of the centriolar cylinder in a mature basal body is accompanied by the cylinder elongation and appearance of pericentriolar structures, such as rootlet system, basal legs, and basal plate. Centriolegenesis proceeds in both ciliate and nonciliate (with microvilli) cells of the epithelium. It has been proposed that the cell with microvilli represent a transitional stage in differentiation of the ciliary cells.  相似文献   

2.
Actin microfilaments were localized in quail oviduct ciliated cells using decoration with myosin subfragment S1 and immunogold labeling. These polarized epithelial cells show a well developed cytoskeleton due to the presence of numerous cilia and microvilli at their apical pole. Most S1-decorated microfilaments extend from the microvilli downward towards the upper part of the ciliary striated rootlets with which they are connected. From the microvillous roots, a few microfilaments connect the proximal part of the basal body or the basal foot associated with the basal body. Microfilament polarity is shown by S1 arrowheads pointing away from the microvillous tip to the cell body. Furthermore, short microfilaments are attached to the plasma membrane at the anchoring sites of basal bodies and run along the basal body. The polarity of these short microfilaments is directed from the basal body anchoring fibers downward to the cytoplasm. At the cell periphery, microfilaments from microvillous roots and ciliary apparatus are connected with those of the circumferential actin belt which is associated with the apical zonula adhaerens. Together with the other cytoskeletal elements, the microfilaments increase ciliary anchorage and could be involved in the coordination of ciliary beating. Moreover, microvilli surrounding the cilia probably modify ciliary beating by offering resistance to cilium bending. The presence of microvilli could explain the fact that mainly the upper part of the cilia appanars to be involved in the axonemal bending in metazoan ciliated cells.  相似文献   

3.
Only one sensory cell type has been observed within the glandular epithelium of the proboscis in the heteronemertine Riseriellus occultus. These bipolar cells are abundant and scattered singly throughout the proboscis length. The apical surface of each dendrite bears a single cilium enclosed by a ring of six to eight prominent microvilli. The cilium has the typical 9×2 + 2 axoneme arrangement and is equipped with a cross-striated vertical rootlet extending from the basal body. No accessory centriole or horizontal rootlet was observed. Large, modified microvilli (stereovilli) surrounding the cilium are joined together by a system of fine filaments derived from the glycocalyx. Each microvillus contains a bundle of actin-like filaments which anchor on the indented inner surface of a dense, apical ring situated beneath the level of the ciliary basal body. The tip of the cilium is expanded and modified to form a bulb-like structure which lies above the level where the surrounding microvilli terminate. In the region where the cilium emerges from the microvillar cone, the membrane of the microvillar apices makes contact with a corresponding portion of the ciliary membrane. At this level microvilli and cilium are apparently firmly linked by junctional systems resembling adherens junctions. The results suggest that these sensory cells may be mechanoreceptors. © 1996 Wiley-Liss, Inc.  相似文献   

4.
The ciliated cells of tracheal epithelium were mechanically fragmented to remove the cytoplasmic soluble contents, and the apical zone was examined to clarify the three-dimensional structures of basal body and cytoskeletal filaments using freeze-fracture-etch approaches. The basal body was connected to the apical plasma membrane by definite laminae, formerly called alar sheets. The distal one-half of the basal foot was composed of several smooth-surfaced 12-nm fibrils. Intermediate filament networks extended to the lower half plane of the basal body, and enmeshed the basal body tightly by tiny 5- to 8-nm fibrils. Actin core bundles of microvilli also had tiny crosslinking fibrils. Some actin filaments were seen to run horizontally at the upper half plane of the basal body. Tracheal cilated cells also had circular actin filament bundles just inside the zonula adherens as many other epithelial cells. These cytoskeletal networks which enmeshed both basal bodies and core filaments of microvilli may function as a coordinator of ciliary beating.  相似文献   

5.
Ciliated cysts in the human uterine tube epithelium were investigated with the transmission electron microscope. The cysts were about 3-9 microns in diameter and were provided with many ciliary apparatuses and microvilli. Degenerative changes of these cilia, such as electron-dense round or irregular bodies and amorphous substance, were observed in many cysts, but complete disappearance of ciliary structures was not detected in any ciliated cysts. The ciliated cysts were mostly observed in basal cells and were occasionally found in ciliated cells bordering the tubal lumen. In the basal cells, these cysts distended with the increase in degenerated cilia. Distended ciliated-cyst-containing cells became exposed directly to the tubal lumen. U- or reverse omega-shaped deep indentations of the apical surface of ciliated cells confirmed the opening of ciliated cysts into the lumen. It was suggested that the ciliated cysts result from the premature differentiation of basal cells or disturbed migration of centrioles in ciliogenic cells.  相似文献   

6.
Immunoreactivity for ezrin, a membrane-organizing phosphoprotein that tethers actin microfilaments to cell membrane proteins, was evaluated as a polarization marker in the intraocular neuroepithelial cells of vertebrates, especially in the retinal pigment epithelium (RPE). Six fetal human eyes representing the 14th-28th gestational weeks, 9 normal adult eyes, 12 eyes with intraocular tumors, and 26 eyes from 15 other vertebrate species were analyzed by immunohistochemistry using the avidin-biotinylated peroxidase complex (ABC) method and monoclonal antibody (mAb) 3C12 to ezrin. The apical cytoplasm and microvilli of the human RPE always reacted with mAb 3C12, but the basal cytoplasm was labeled in reactive RPE only. In autopsy eyes and if fixation was delayed, ezrin immunoreactivity in RPE was more diffuse. Developing RPE became gradually immunoreactive from the 14th week of gestation onward. The microvilli of the baboon, pig, raccoon dog, cow, and rat RPE cells were likewise labeled, and their basal cytoplasm was variably immunoreactive as well, but the microvilli of the avian RPE did not react with the antibody used. In all six mammals mentioned, both layers of the ciliary epithelium and the anterior iris epithelium reacted for ezrin, and the posterior epithelium was weakly labeled in pig, cow, and rat eyes. Normal peripheral and reactive human retina, and normal baboon, pig, raccoon dog, cow, rat, black grouse, and jay eyes, showed immunoreaction for ezrin in Müller cells, usually in their microvilli. Ezrin is widely found in RPE and anterior segment neuroepithelia of the mammalian eye, in which it may segregate membrane proteins to specific membrane surfaces, especially to the apical microvilli of the RPE, which intimately interact with outer segments of photoreceptor cells. The ezrin gene on human chromosome 6q25-26 is consequently a candidate gene for causing retinal degenerations.  相似文献   

7.
Three basic types of cells are distinguished in the rat vomeronasal epithelium at birth: bipolar neurons, supporting cells, and basal cells. Neurons at this time include both immature and differentiated cells. By the end of the first postnatal week, all neurons show morphological signs of maturity in their cytoplasm, including abundant granular and smooth endoplasmic reticulum, neurotubules, dense lamellar bodies, apical centrioles, and tufts of microvilli. During the third week microvilli are more frequently encountered and appear to be longer and more branched. Supporting cells appear well-developed by the second day after birth. During the first ten days of life, supporting cells lose their centrioles and all of the complex associated with ciliary generation in the apical zone. Basal cells appear to be more numerous in newborns than in older animals. Protrusions projecting into the lumen are frequently observed in the epithelium of newborn animals, both on the dendrites of neurons and on supporting cells. After the third week, such protrusions are only observed in the transitional zone between the sensory and the non-sensory epithelia of the vomeronasal tubes. In this transitional zone, a fourth cell type showing apical protrusions with microvilli differentiates. Cytoplasm in this type resembles that of neighboring ciliated cells but has no cilia or centrioles. These transitional cells are considered to be cells in an intermediate state of differentiation, between that of the differentiated neurons and supporting cells of the sensory epithelium and that of the predominate ciliated cells of the non-sensory epithelium. The results suggest that by the end of the third week the vomeronasal epithelium is morphologically mature.  相似文献   

8.
The sensory epithelium of the abdominal sense organ (ASO) of the scallop Mizuchopecten yessoensis is composed of three cell types, sensory cells, mucous cells, and multiciliated cells. Sensory cells bear a single long (up to 250 microm) cilium surrounded by an inner ring of nine modified microvilli and an outer ring of ordinary microvilli paired with modified microvilli. Sensory cells make up about 90% of the total number of cells in the sensory epithelium. Mucous cells, which are much wider than sensory cells, bear only ordinary microvilli on their apical surface. Rare multiciliated cells with short (4-6 microm) cilia are scattered in the periphery of the sensory epithelium sheet. All hairs, cilium, and microvilli of each sensory cell are interconnected by a fibrous network. Nine modified microvilli of a single cell are interconnected by prominent laterally running fibrous links. Membrane-associated electron-dense material of modified microvilli is connected to the ciliary membrane-associated electron-dense material by fine string-like links. These links mechanically bridge the space between the cilium and modified microvilli, as do mechanical links, described for the stereocilia and kinocilium of vertebrate vestibular and cochlear hair cells. The proximal portion of a sensory cilium is about 100 microm long and has a typical 9 x 2+2 axoneme arrangement. The distal portion of a cilium is approximately 2 times thinner than the proximal one and is filled with homogeneous electron-dense material. Along the distal portion, diffuse material associated with the external surface of the membrane is found. The rigidity of distal portion of a cilium is much less than that of the proximal one.  相似文献   

9.
Arab A  Caetano FH 《Cytobios》2001,105(408):45-53
Solenopsis saevissima has a midgut composed of columnar, regenerative, and goblet cells. The midgut epithelium was covered by a basal lamina. Outside the basal lamina, layers of inner oblique, circular, and outer longitudinal muscles were present. Columnar cells showed a basal plasma membrane containing numerous folds, mitochondria, and the nucleus. Rough endoplasmic reticulum, Golgi bodies, membrane bounded vacuoles, and spherocrystals were found in this region. The apical plasma membrane was constituted by microvilli, which were above a region rich in mitochondria. Regenerative cells were found in groups lying by the basal lamina. Goblet cells were associated with an ion-transporting mechanism between the haemolymph and the midgut epithelium. These cells were lying by the midgut lumen and large microvilli were evident, but the cytoplasmic features were similar to the columnar cells.  相似文献   

10.
The squamates are composed of many taxa, among which there is morphological variation in the vomeronasal organ (VNO). To elucidate the evolution of chemoreception in squamate reptiles, morphological data from the VNO from a variety of squamate species is required. In this study, the morphology of the VNO of the grass lizard Takydromus tachydromoides was examined using light and electron microscopy. The VNO consists of a pair of dome-shaped structures, which communicate with the oral cavity. There are no associated glandular structures. Microvilli are present on the apical surfaces of receptor cells in its sensory epithelium, as well as on supporting cells, and there are centrioles and ciliary precursor bodies on the dendrites. In addition to ciliated cells and basal cells in the non-sensory epithelium, there is a novel type of non-ciliated cell in T. tachydromoides. They have constricted apical cytoplasm and microvilli instead of cilia, and are sparsely distributed in the epithelium. Based on these results, the variation in the morphology of the VNO in scincomorpha, a representative squamate taxon, is discussed.  相似文献   

11.
The ultrastructure of the spermathecal epithelium of the African Migratory Locust Locusta migratoria migratorioides R. & F. (Orthoptera: Acrididae) was investigated with the aid of transmission and scanning electron microscopic methods. The unpaired spermatheca can be subdivided into a multiple coiled tube and a terminal bulb region with vestibule, small apical and extensive pre-apical diverticulum. The wall of the spermatheca consists of a chitin intima, a layer of epithelial cells with a distinct apical microvilli border and a layer of gland cells, whereby slender projections of the epithelial cells extend between the gland cells. Through extensive folding, the basal plasma membrane of the gland and epithelial cells form a huge labyrinth, which is bounded by a basal lamina. Extending into the above mentioned projections there are bundles of parallel-arrayed microtubules, which run perpendicular to the microvilli border of the epithelial cell. They end in the base region of the microvilli and in the basal labyrinth on hemidesmosomes and serve to provide a mechanically stressable anchorage for the epithelium. The gland cells show structures typical for the production of export proteins: ribosomes, rER, dictyosomes, as well as vesicles of different size and electron-density. Every gland cell contains an extracellular cavity, arising through invagination, which is coated with a microvilli border. Over an end-apparatus and a ductule joining onto it (also with chitin intima) the lumen of the extracellular cavity is connected with the spermathecal lumen. The release of secretions and other substances from the epithelium into the spermatheca lumen is as possible as the uptake of substances from the latter into the epithelium. Regional differences in the fine structure of the cuticular intima, epithelial and gland cells point to different functions of the epithelium in these regions.  相似文献   

12.
M. N. Adal    Brian  Morton 《Journal of Zoology》1973,170(4):533-556
The structure of the pallial eyes of Laternula truncata (Lamarck 1818) has been studied using the light and electron microscopes. The eye is complex and can be- considered to be- the most advanced yet described for a bivalve mollusc. The cornea consists of modified flattened epithelial cells with an external border of microvilli. The cornea covers a large, circular, multinucleate lens. The lens comprises (1) centrally located translucent lens cells, (2) laterally located supporting cells from which cell processes interdigitate with processes from the lens cells. The retina is two layered and inverted. The proximal and distal retinae are made up of concentrically arranged laminae derived from the membranes of ciliary basal bodies. The cilia comprise a base and feet, but no root system and have a 9+0 arrangement of filaments.
The pigment cup or tapetum is bounded by a sclerotic coat and is three layered, each layer possessing characteristic pigment granules. From the base of the eye arises a large optic nerve.
The eye possesses an eye appendage, the epithelium of which is invaginated on its internal border to form a groove within which are found some 28 cilia. The cilia, it is thought, make contact with the microvilli of the epithelium when the appendage is touched. Such an action serves to protect the delicate eye from damage.
The structure of the eye is compared with that of other molluscs, particularly members of the Bivalvia.  相似文献   

13.
Ultrastructural examination of the head kidney of Periophthalmus koelreuteri (Pallas) (Teleostei, Gobiidae) revealed that the nephronic tubule cells are bound by tight junctions and desmosomes with little intercellular space. The first proximal segment (PI) consists of low columnar cells with well developed brush borders, indented nuclei, and numerous apical endocytic vesicles and lysosomes. A second cell type possessing clusters of apical cilia and lacking brush border and lysosomes is occasionally found between PI cells. The second proximal segment (PII) is formed of high columnar cells with brush border, regular spherical nuclei and numerous mitochondria located between well developed infoldings of the basal membrane. Single ciliary structures protrude into the lumen from PI and PII cells. The distal segment is lined by low columnar epithelium with few microvilli, regular spherical nuclei, numerous scattered mitochondria, and microbodies. The collecting tubule cells are cuboidal with few euchromatic nuclei, some mitochondria, and secondary lysosomes.  相似文献   

14.
The aim of the present paper was to reexamine fine structural characteristics and glycogen topochemistry of ciliary processes in small laboratory mammals (hamsters, guinea-pigs and mice). A two-layered epithelium continuously covered all ciliary processes. The epithelium consisted of inner nonpigmented and outer pigmented cells whose apices faced each other. They were linked by desmosomes and tight junctions. Basal cell aspects showed extensively interdigitating processes adjacent to the inner (rarely also outer) basal lamina. The ciliary process core was made up of reticular fibers, few fibrocytes, and capillaries with or without fenestrations. No glycogen particles were found in the ciliary epithelium using the PA-TSC-SP procedure.  相似文献   

15.
The epidermis of Gyratrix hermaphroditus can be described as semi-syn-cytial. Its ultrastructure is characterized by microvilli and cilia with two strong rootlets perpendicular to each other. The apical part of the epithelium contains mitochondria and vacuoles. The basal synthesizing layer is provided with cell boundaries, at least between the type II penetrating receptors in the anterior and posterior end of the worm. Four different types of sensory receptors are described. The type I receptor has a protruding cilium-bearing process and is found all over the body. The type II receptor is found in the anterior and posterior end and has a retracted process with a kinocilium surrounded by eight stereocilia. The type III receptor bears a balloon-shaped modified cilium and is located at the anterior end. The type IV receptor has a short cilium with an unstable ciliary membrane and occurs in the proboscis epithelium as well as in the pharynx epithelium. Phylogenetical aspects of the semi-syncytial epithelium and functional aspects of the sensory receptors are discussed.  相似文献   

16.
TMEM16A/ANO1 is a calcium-activated chloride channel expressed in several types of epithelia and involved in various physiological processes, including proliferation and development. During mouse embryonic development, the expression of TMEM16A in the olfactory epithelium is dynamic. TMEM16A is expressed at the apical surface of the entire olfactory epithelium at embryonic day E12.5 while from E16.5 its expression is restricted to a region near the transition zone with the respiratory epithelium. To investigate whether TMEM16A plays a role in the development of the mouse olfactory epithelium, we obtained the first immunohistochemistry study comparing the morphological properties of the olfactory epithelium and nasal glands in TMEM16A-/- and TMEM16A+/+ littermate mice. A comparison between the expression of the olfactory marker protein and adenylyl cyclase III shows that genetic ablation of TMEM16A did not seem to affect the maturation of olfactory sensory neurons and their ciliary layer. As TMEM16A is expressed at the apical part of supporting cells and in their microvilli, we used ezrin and cytokeratin 8 as markers of microvilli and cell body of supporting cells, respectively, and found that morphology and development of supporting cells were similar in TMEM16A-/- and TMEM16A+/+ littermate mice. The average number of supporting cells, olfactory sensory neurons, horizontal and globose basal cells were not significantly different in the two types of mice. Moreover, we also observed that the morphology of Bowman’s glands, nasal septal glands and lateral nasal glands did not change in the absence of TMEM16A. Our results indicate that the development of mouse olfactory epithelium and nasal glands does not seem to be affected by the genetic ablation of TMEM16A.  相似文献   

17.
The alimentary canal of Daphnia pulex consists of a tube-shaped foregut, a midgut (mesenteron) with an anterior pair of small diverticula, and a short hindgut. The foregut and hindgut are structurally similar. Each is formed by a low cuboidal epithelium 5 mum tall and lined with a chitinous intima. The midgut wall consists of a simple epithelium resting on a thick beaded basal lamina which is surrounded by a spiraling muscularis. Anteriorly the midgut cells are columnar in shape being 30 mum in height each having a basal nucleus, anteriorly concentrated mitochondria and in apical border of long thin microvilli. Posteriorly the midgut cells become progressively shorter so that in the posteriormost region of the midgut the cells are 5 mum tall and cuboidal in shape. The microvilli concomitantly become shorter and thicker. All mesenteron cells contain the usual cytoplasmic organelles. The paired digestive diverticula are simple evaginations of the midgut. The wall of each consists of a simple epithelium of cuboidal cells 25 mum in height, each with a brushed border of long thin microvilli. Enzyme secretion appears to be holocrine in mode and not confined to any one region of the mesenteron though definitely polarized anteriorly. The thin gut muscularis encircles the entire length of the midgut and caeca. Thick and thin filaments appear to be in a 6:1 ratio.  相似文献   

18.
Four cell types are present in the olfactory epithelium of Neoceratodus forsteri, i.e., olfactory receptor cells, supporting cells, non-sensory ciliated cells, and basal cells. Only microvilli and no cilia were observed on the receptor cells. The neurotubules pass out into these microvilli. Conspicuous arrays of agranular endoplasmic reticulum are present in the nuclear region of the receptor cells. The supporting cells are provided with microvilli. These cells may be secretory. The non-sensory ciliated cells produce secretory granules containing acid mucopolysaccharides. A discontinuous zonula occludens appears to be present.  相似文献   

19.
Electron-microscopy study of the ciliary epithelium structure of the mollusk Lymnaea stagnalis was carried out under the action of hydroxyurea. By the method of radioautography, a high proliferative activity of the ciliary epithelium was established as the norm; a cluster distribution of cells, including the label, was noted. The presence of hydroxyurea in the mollusk organism was shown to inhibit proliferation. Scanning electron microscopy of the molluskan foot surface revealed clusters of nonciliated cells and of cells with short villi in control epithelial folds. Under hydroxyurea treatment for 24 h, such sites disappeared completely and ciliary epithelium looked uniform and was composed of cells with long cilia. By transmission electron microscopy, it was established that hydroxyurea did not affect the formation of the basal body and course of ciliogenesis. It has been suggested that hydroxyurea not only inhibits proliferative activity of epithelial cells, but also induces differentiation of unciliated into the ciliated cells.  相似文献   

20.
In quail oviduct epithelium, as in all metazoan and protozoan ciliated cells, cilia beat in a coordinated cycle. They are arranged in a polarized pattern oriented according to the anteroposterior axis of the oviduct and are most likely responsible for transport of the ovum and egg white proteins from the infundibulum toward the uterus. Orientation of ciliary beating is related to that of the basal bodies, indicated by the location of the lateral basal foot, which points in the direction of the active stroke of ciliary beating. This arrangement of the ciliary cortex occurs as the ultimate step in ciliogenesis and following the oviduct development. Cilia first develop in a random orientation and reorient later, simultaneously with the development of the cortical cytoskeleton. In order to know when the final orientation of basal bodies and cilia is determined in the course of oviduct development, microsurgical reversal of a segment of the immature oviduct was performed. Then, after hormone-induced development and ciliogenesis, ciliary orientation was examined in the inverted segment and in normal parts of the ciliated epithelium. In the inverted segment, orientation was reversed, as shown by a video recording of the direction of effective flow produced by beating cilia, by the three-dimensional bending forms of cilia immobilized during the beating cycle and screened by scanning electron microscopy, and by the position of basal body appendages as seen in thin sections by transmission electron microscopy. These results demonstrate that basal body and ciliary orientation are irreversibly determined prior to development by an endogenous signal present early in the cells of the immature oviduct, transmitted to daughter cells during the proliferative phase and expressed at the end of ciliogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号