首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Ion coordination in the amphotericin B channel.   总被引:1,自引:0,他引:1       下载免费PDF全文
The antifungal polyene antibiotic amphotericin B forms channels in lipid membranes that are permeable to ions, water, and nonelectrolytes. Anion, cation, and ion pair coordination in the water-filled pore of the "barrel" unit of the channels was studied by molecular dynamics simulations. Unlike the case of the gramicidin A channel, the water molecules do not create a single-file configuration in the pore, and some cross sections of the channel contain three or four water molecules. Both the anion and cation are strongly bound to ligand groups and water molecules located in the channel. The coordination number of the ions is about six. The chloride has two binding sites in the pore. The binding with water is dominant; more than four water molecules are localized in the anion coordination sphere. Three motifs of the ion coordination were monitored. The dominant motif occurs when the anion is bound to one ligand group. The ion is bound to two or three ligand groups in the less favorable configurations. The strong affinity of cations to the channel is determined by the negatively charged ligand oxygens, whose electrostatic field dominates over the field of the hydrogens. The ligand contribution to the coordination number of the sodium ion is noticeably higher than in the case of the anion. As in the case of the anion, there are three motifs of the cation coordination. The favorable one occurs when the cation is bound to two ligand oxygens. In the less favorable cases, the cation is bound to three or four oxygens. In the contact ion pair, the cation and anion are bound to two ligand oxygens and one ligand hydrogen, respectively. There exist intermediate solvent-shared states of the ion pair. The average distances between ions in these states are twice as large as that of the contact ion pair. The stability of the solvent-shared state is defined by the water molecule oriented along the electrostatic field of both ions.  相似文献   

2.
Energy of Amphotericin B cholesterol complex in a membrane was calculated by the method of atom--atomic potentials. The complex is shown to have two stable states. One of them is stabilized by electrostatic interactions between charged groups of neighbouring antibiotic molecules due to a decline of the molecules to the pore radius. Another state with radial orientation of antibiotic molecules and smaller pore diameter is stabilized mainly by van-der-Waals forces. A conclusion is made that transitions between open and closed states may result from small shifts and turn of all the antibiotic molecules in the complex.  相似文献   

3.
Kh A Gadzhi-zade 《Biofizika》1983,28(6):999-1001
The dependence of the blockage of amphotericin B channel conductance on the concentration of inorganic anions is shown. A model of the interaction of amphotericin B channel with blocker ion is proposed. According to the model the blocker ion is bound to the charged groups of the channel entrance. The inorganic anions also interact with these groups and affect the blocker concentration near the channel entrance.  相似文献   

4.
A microscopic model of an amphotericin B channel is proposed. The structure of the pores is generated using the atomic coordinates of the molecule in the structure determined experimentally by X-ray diffraction. The net charges of the atoms are determined by Mulliken analysis. With these charges the electrostatic energy profiles are calculated for a monovalent ion passing through the channels formed by different number of antibiotic molecules having different radii. The water inside the channel was considered through a continuum medium using the dielectric constant of the bulk, and the membrane contribution was included using the virtual images of the pore in a dielectric slab of epsilon = 3. The model satisfactorily explains the permeability and selectivity characteristics as well as other observations yet unexplained. The electrostatic profiles obtained reinforce the hypothesis of the existence of channels formed by a variable number of units.  相似文献   

5.
The interaction of amphotericin B with ergosterol was studied in aqueous solutions of propanol. The mode of the interaction was found to be related to the aggregation state of amphotericin B. Ergosterol does not react (or reacts extremely slowly) with monomeric amphotericin B. Traces of a small aggregate, probably a dimer, enable a cooperative reaction. At high concentrations of the dimer, the reaction is immediate and the concentration of amphotericin B complexed with ergosterol is twice as high as the amount of added sterol. The interaction with ergosterol is hindered when the antibiotic is in micellar form. The pharmaceutical form, Fungizone, behaves similarly to the pure amphotericin B. Fungizone's greater solubility in water does not modify either the extent or the mode of interaction with ergosterol.  相似文献   

6.
7.
Unique interaction of scorpion toxins with the hERG channel   总被引:1,自引:0,他引:1  
ERG potassium channels specify one component of the delayed rectifier in the heart and are likely to play an important functional role in other excitable cells. Compared to other K+ channels, the human ERG (hERG) channel possesses an unusually long S5-P linker that presumably forms an alpha-helix important for channel function. hERG-specific toxins bind to the outer mouth of the hERG channel. Channel residues in the middle of the S5-P linker and at the pore entrance are critical for toxin binding. One of these scorpion toxins is BeKm-1. Residues critical for BeKm-1 binding to the hERG channel are located in the alpha-helix and the following loop, whereas the "traditional" interaction surface of other short scorpion toxins is formed by residues on the beta-sheet. This unique localization of BeKm-1's interaction surface and its specific action on the hERG channel suggest a unique outer mouth structure of the hERG channel. We used the mutant cycle analysis approach to define contacts in the toxin-channel complex. This information provides critical constraints and is important for molecular modeling of the hERG pore structure.  相似文献   

8.
Amphotericin B is a polyene macrolide antibiotic used to treat systemic fungal infections. Amphotericin B's chemotherapeutic action requires the formation of transmembrane channels, which are known to transmit monovalent ions. We have investigated the ion passage pathways through the pore of a realistic model structure of the channel and computed the associated thermodynamic properties. Our calculations combined the free energy computations using the Poisson equation with a continuum solvent model and the molecular simulations in which solvent molecules were present explicitly. It was found that there are no substantial structural barriers to a single sodium or chloride ion passage. Thermodynamic free energy calculations showed that the path along which the ions prefer to move is off center from the channel's central axis. In accordance with experiments, Monte Carlo molecular simulations established that sodium ions can pass through the pore. When it encounters a chloride anion in the channel, the sodium cation prefers to form a solvent-bridged pair configuration with the anion.  相似文献   

9.
Sublethal amounts of amphotericin B inhibited the interaction of Candida albicans with cultured fibroblasts. Different C. albicans clinical isolates exhibited varying degrees of sensitivity to the drug, but those isolates that were the most infective in control cultures appeared to be the most resistant to amphotericin B mediated infection inhibition. Although amphotericin B inhibited germ tube formation at the sublethal concentration of 0.3 microgram/mL, lower concentrations inhibited infection without preventing germination. The extent of this latter activity varied with the isolate and amphotericin B concentration and appeared to be related to sublethal effects on germinated yeasts. While amphotericin B effectively prevented new fibroblast infection, it did not dissociate those yeasts which had established an infection before its addition.  相似文献   

10.
The electric potential at the entrance of the amphotericin channel was varied by changing the membrane surface charge, modifying the charged groups of amphotericin molecule or adding of MgSO4. It has been shown that the zero current potential and channel selectivity depend on the potential at the entrance of the channel. It has been found that anion and cation current through amphotericin channel are coupled. Possible usage of CMF for studying radical stages in catalytic Fe2+-oxidation of liposomes heterogeneous processes has been shown.  相似文献   

11.
The interaction of Cl- with a gramicidin-like channel   总被引:1,自引:0,他引:1  
Molecular dynamics simulations have been used to study the interaction of Cl- with a gramicidin-like channel. The results suggest that there is a high-energy barrier at the entrance of the channel, which would correspond to a permeability 10(-9)-times that of a cation of the same size. This could account for the cationic selectivity of the gramicidin channel and indicates that valence selectivity is kinetically controlled.  相似文献   

12.
The effects of dipole modifiers and their structural analogs on the single channel activity of amphotericin B in sterol-containing planar phosphocholine membranes are studied. It is shown that the addition of phloretin in solutions bathing membranes containing cholesterol or ergosterol decreases the conductance of single amphotericin B channels. Quercetin decreases the channel conductance in cholesterol-containing bilayers while it does not affect the channel conductance in ergosterol-containing membranes. It is demonstrated that the insertion of styryl dyes, such as RH 421, RH 237 or RH 160, in bilayers with either cholesterol or ergosterol leads to the increase of the current amplitude of amphotericin B pores. Introduction of 5α-androstan-3β-ol into a membrane-forming solution increases the amphotericin B channel conductance in a concentration-dependent manner. All the effects are likely to be attributed to the influence of the membrane dipole potential on the conductance of single amphotericin B channels. However, specific interactions of some dipole modifiers with polyene-sterol complexes might also contribute to the activity of single amphotericin B pores. It has been shown that the channel dwell time increases with increasing sterol concentration, and it is higher for cholesterol-containing membranes than for bilayers including ergosterol, 6-ketocholestanol, 7-ketocholestanol or 5α-androstan-3β-ol. These findings suggest that the processes of association/dissociation of channel forming molecules depend on the membrane fluidity.  相似文献   

13.
The mechanism of adenosine triphosphate (ATP)-sensitive potassium (KATP) channel activation by Mg-nucleotides was studied using a mutation (G334D) in the Kir6.2 subunit of the channel that renders KATP channels insensitive to nucleotide inhibition and has no apparent effect on their gating. KATP channels carrying this mutation (Kir6.2-G334D/SUR1 channels) were activated by MgATP and MgADP with an EC50 of 112 and 8 µM, respectively. This activation was largely suppressed by mutation of the Walker A lysines in the nucleotide-binding domains of SUR1: the remaining small (∼10%), slowly developing component of MgATP activation was fully inhibited by the lipid kinase inhibitor LY294002. The EC50 for activation of Kir6.2-G334D/SUR1 currents by MgADP was lower than that for MgATP, and the time course of activation was faster. The poorly hydrolyzable analogue MgATPγS also activated Kir6.2-G334D/SUR1. AMPPCP both failed to activate Kir6.2-G334D/SUR1 and to prevent its activation by MgATP. Maximal stimulatory concentrations of MgATP (10 mM) and MgADP (1 mM) exerted identical effects on the single-channel kinetics: they dramatically elevated the open probability (PO > 0.8), increased the mean open time and the mean burst duration, reduced the frequency and number of interburst closed states, and eliminated the short burst states. By comparing our results with those obtained for wild-type KATP channels, we conclude that the MgADP sensitivity of the wild-type KATP channel can be described quantitatively by a combination of inhibition at Kir6.2 (measured for wild-type channels in the absence of Mg2+) and activation via SUR1 (determined for Kir6.2-G334D/SUR1 channels). However, this is not the case for the effects of MgATP.  相似文献   

14.
The use of sea anemone toxin, veratridine and scorpion toxin which specifically interact with the gating system of the sodium channel and maintain the channel in an open conformation has permitted a study of the mechanism of transport of monovalent cations through the selectivity filter of this channel. The initial rate of 22Na+ influx through the tetrodotoxin-sensitive Na+ channels of excitable cells is dependent upon the external concentrations of Na+ and Na+-substitutes with the following properties. (a) It is saturable at high Na+ concentrations and increases with the external Na+ concentration in a cooperative manner (nH = 1.6). (b) At low external Na+ concentrations (1 mM), it is activated and then inhibited by increasing external concentrations of monovalent cations such as Li+, guanidinium, hydrazinium, hydroxylamine and K+. The activating effect of these cations disappears at higher external Na+ concentrations (10 mM). The experimental data are consistent with a model involving at least two allosteric cation-binding sites per Na+ channel. The binding of monovalent cations to Na+ sites is characterized by a high positive homotropic cooperativity. Most of the work describes the properties of the Na+ channel in neuroblastoma cells. The mechanism has also been shown to be valid for excitable cells of other types and origins.  相似文献   

15.
R Luedtke  F Karush 《Biochemistry》1982,21(23):5738-5744
The interaction of membrane-bound ligand with bivalent and monovalent fragments of monoclonal antibody was studied by fluorescence and precipitation analysis using synthetic lipid vesicles. The ligand N epsilon-[5-(dimethylamino)-naphthyl-1-sulfonyl]lysine was linked to the hydrophobic anchor dipalmitoylphosphatidylethanolamine and ranged between 0.01 and 1 mol% of the membrane components. The effects of cholesterol on the specific interaction were observed over the range of 0-50 mol%. A precipitation assay was developed to evaluate various factors related to the cross-linking of small unilamellar vesicles by bivalent antibody. The cholesterol content was critical for this process as demonstrated by the increased efficiency of precipitation over the range of 0-40 mol% of this component. Fluorescence analysis yielded the parallel finding of increased accessibility of the ligand to the antibody with greater cholesterol content. Increased surface density of the ligand also was found to enhance the intervesicle interaction. Finally, a comparison of the kinetics by fluorescence analysis of the binding of monovalent and bivalent fragments indicated that the bivalent interaction involved primarily the cross-linking of vesicles in accord with published findings of the interaction of monoclonal antibody with cell membrane antigens.  相似文献   

16.
The effects of sulfur dioxide (SO(2)) derivatives (bisulfite and sulfite, 1:3 M/M) on voltage-dependent sodium channel in isolated rat ventricular myocyte were studied using the whole cell patch-clamp technique. SO(2) derivatives increased sodium current (I(Na)) in a concentration-dependent manner. SO(2) derivatives at 10 microM significantly shifted steady-state inactivation curve of I(Na) to more positive potentials, but did not affect the activation curve. SO(2) derivatives markedly shifted the curve of time-dependent recovery of I(Na) from inactivation to the left, and accelerated the recovery of I(Na). SO(2) derivatives also significantly shortened the activation and inactivation time constants of I(Na). These results indicated that SO(2) derivatives produced concentration-dependent stimulation of cardiac sodium channels, which due mainly to the interaction of the drug with sodium channels in the inactivated state.  相似文献   

17.
18.
This study investigates the interaction of the aminoglycoside antibiotic neomycin with the slow vacuolar (SV) channel in vacuoles from Arabidopsis thaliana mesophyll cells. Patch-clamp experiments in the excised patch configuration revealed a complex pattern of neomycin effects on the channel: applied at concentrations in the submicromolar to millimolar range neomycin (a) blocked macroscopic SV currents in a voltage- and concentration-dependent manner, (b) slowed down activation and deactivation kinetics of the channel, and most interestingly, (c) at concentrations above 10 muM, neomycin shifted the SV activation threshold towards negative membrane potentials, causing a two-phasic activation at high concentrations. Single channel experiments showed that neomycin causes these macroscopic effects by combining a decrease of the single channel conductance with a concomitant increase of the channel's open probability. Our results clearly demonstrate that the SV channel can be activated at physiologically relevant tonoplast potentials in the presence of an organic effector molecule. We therefore propose the existence of a cellular equivalent regulating the activity of the SV channel in vivo.  相似文献   

19.
The mechanism of ATP-sensitive potassium (K(ATP)) channel closure by ATP is unclear, and various kinetic models in which ATP binds to open or to closed states have previously been presented. Effects of phosphatidylinositol bisphosphate (PIP2) and multiple Kir6.2 mutations on ATP inhibition and open probability in the absence of ATP are explainable in kinetic models where ATP stabilizes a closed state and interaction with an open state is not required. Evidence that ATP can in fact interact with the open state of the channel is presented here. The mutant Kir6.2[L164C] is very sensitive to Cd2+ block, but very insensitive to ATP, with no significant inhibition in 1 mM ATP. However, 1 mM ATP fully protects the channel from Cd2+ block. Allosteric kinetic models in which the channel can be in either open or closed states with or without ATP bound are considered. Such models predict a pedestal in the ATP inhibition, i.e., a maximal amount of inhibition at saturating ATP concentrations. This pedestal is predicted to occur at >50 mM ATP in the L164C mutant, but at >1 mM in the double mutant L164C/R176A. As predicted, ATP inhibits Kir6.2[L164C/R176A] to a maximum of approximately 40%, with a clear plateau beyond 2 mM. These results indicate that ATP acts as an allosteric ligand, interacting with both open and closed states of the channel.  相似文献   

20.
The interaction between the polyene macrolide antibiotic, amphotericin B, and ergosterol in egg phosphatidylcholine multilayers was investigated using head group and acyl chain nitroxide spin-labelled phosphatidylcholine as probes. At physiological concentrations of less than 15 mol% sterol in egg phosphatidylcholine multilayers amphotericin B accumulates near the head group region until an amphotericin B : ergosterol ratio of approximately 0.7 is achieved. As the proportion of amphotericin B is increased above this value, formation of an acyl chain disordering complex occurs which has an approximate antibiotic:sterol ratio of unity. Dicetyl phosphate was used to increase the solubility of ergosterol past its normal limit in pure egg phosphatidylcholine (approximately 15 mol%). At concentrations of ergosterol higher than 15 mol% a complex of two ergosterol molecules and one amphotericin B was postulated when there was insufficient antibiotic to form a 1:1 complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号