首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The DNA damage response (DDR) cascade and ROS (reactive oxygen species) signaling are both involved in the induction of cell death after DNA damage, but a mechanistic link between these two pathways has not been clearly elucidated. This study demonstrates that ROS induction after treatment of cells with neocarzinostatin (NCS), an ionizing radiation mimetic, is at least partly mediated by increasing histone H2AX. Increased levels of ROS and cell death induced by H2AX overexpression alone or DNA damage leading to H2AX accumulation are reduced by treating cells with the antioxidant N-Acetyl-L-Cysteine (NAC), the NADP(H) oxidase (Nox) inhibitor DPI, expression of Rac1N17, and knockdown of Nox1, but not Nox4, indicating that induction of ROS by H2AX is mediated through Nox1 and Rac1 GTPase. H2AX increases Nox1 activity partly by reducing the interaction between a Nox1 activator NOXA1 and its inhibitor 14-3-3zeta. These results point to a novel role of histone H2AX that regulates Nox1-mediated ROS generation after DNA damage.  相似文献   

2.
3.
4.
Induction of phase II antioxidant enzymes by activation of Nrf2/ARE (antioxidant response element) signaling has been considered as a promising strategy to combat with oxidative stress-related diseases. In the present study, we tested for potential effects of sesamin, a major lignan contained in sesame seeds, its stereoisomer episesamin, and their metabolites on Nrf2/ARE activation in rat pheochromocytoma PC12 cells. Luciferase reporter assays showed that primary metabolites of sesamin and episesamin, SC-1 and EC-1 were the most potent ARE activators among all tested compounds. SC-1 {(1R,2S,5R,6S)-6-(3,4-dihydroxyphenyl)-2-(3,4-methylenedioxyphenyl)-3,7-dioxabicyclo-[3,3,0]octane} enhanced nuclear translocation of Nrf2 and up-regulated expression of phase II antioxidant enzymes including heme oxygenase-1 (HO-1). Treatment with SC-1 resulted in increased phosphorylation of p38 MAP kinase and transient increase in intracellular ROS levels. N-acetylcysteine (NAC) treatment abolished p38 phosphorylation as well as HO-1 induction caused by SC-1, indicating that ROS are upstream signals of p38 in Nrf2/ARE activation by SC-1. Furthermore, preconditioning with SC-1 attenuated H(2)O(2)-induced cell death in a dose-dependent manner. Finally, treatment with a HO-1 inhibitor, Zn-protoporphyrin (ZnPP), and overexpression of a dominant-negative mutant of Nrf2 diminished SC-1-mediated neuroprotection. Our results demonstrate that SC-1 is capable of protecting against oxidative stress-induced neuronal cell death in part through induction of HO-1 via Nrf2/ARE activation, suggesting its potential to reduce oxidative stress and ameliorate oxidative stress-related neurodegenerative diseases.  相似文献   

5.
6.
NADPH oxidases are major sources of superoxide (O2*-) and hydrogen peroxide (H2O2) in vascular cells. Production of these reactive oxygen species (ROS) is essential for cell proliferation and differentiation, while ROS overproduction has been implicated in hypertension and atherosclerosis. It is known that the heme-containing catalytic subunits Nox1 and Nox4 are responsible for oxygen reduction in vascular smooth muscle cells from large arteries. However, the exact mechanism of ROS production by NADPH oxidases is not completely understood. We hypothesized that Nox1 and Nox4 play distinct roles in basal and angiotensin II (AngII)-stimulated production of O2*- and H2O2. Nox1 and Nox4 expression in rat aortic smooth muscle cells (RASMCs) was selectively reduced by treatment with siNox4 or antisense Nox1 adenovirus. Production of O2*- and H2O2 in intact RASMCs was analyzed by dihydroethidium and Amplex Red assay. Activity of NADPH oxidases was measured by NADPH-dependent O2*- and H2O2 production using electron spin resonance (ESR) and 1-hydroxy-3-carboxypyrrolidine (CPH) in the membrane fraction in the absence of cytosolic superoxide dismutase. It was found that production of O2*- by quiescent RASMC NADPH oxidases was five times less than H2O2 production. Stimulation of cells with AngII led to a 2-fold increase of O2*- production by NADPH oxidases, with a small 15 to 30% increase in H2O2 formation. Depletion of Nox4 in RASMCs led to diminished basal H2O2 production, but did not affect O2*- or H2O2 production stimulated by AngII. In contrast, depletion of Nox1 in RASMCs inhibited production of O2*- and AngII-stimulated H2O2 in the membrane fraction and intact cells. Our data suggest that Nox4 produces mainly H2O2, while Nox1 generates mostly O2*- that is later converted to H2O2. Therefore, Nox4 is responsible for basal H2O2 production, while O2*- production in nonstimulated and AngII-stimulated cells depends on Nox1. The difference in the products generated by Nox1 and Nox4 may help to explain the distinct roles of these NADPH oxidases in cell signaling. These findings also provide important insight into the origin of H2O2 in vascular cells, and may partially account for the limited pharmacological effect of antioxidant treatments with O2*- scavengers that do not affect H2O2.  相似文献   

7.
8.
Hypoxia sensing and related signaling events, including activation of hypoxia-inducible factor 1 (HIF-1), represent key features in cell physiology and lung function. Using cultured A549 cells, we investigated the role of NAD(P)H oxidase 1 (Nox1), suggested to be a subunit of a low-output NAD(P)H oxidase complex, in hypoxia signaling. Nox1 expression was detected on both the mRNA and protein levels. Upregulation of Nox1 mRNA and protein occurred during hypoxia, accompanied by enhanced reactive oxygen species (ROS) generation. A549 cells, which were transfected with a Nox1 expression vector, revealed an increase in ROS generation accompanied by activation of HIF-1-dependent target gene expression (heme oxygenase 1 mRNA, hypoxia-responsive-element reporter gene activity). In A549 cells stably overexpressing Nox1, accumulation of HIF-1alpha in normoxia and an additional increase in hypoxia were noted. Interference with ROS metabolism by the flavoprotein inhibitor diphenylene iodonium (DPI) and catalase inhibited HIF-1 induction. This suggests that H2O2 links Nox1 and HIF-1 activation. We conclude that hypoxic upregulation of Nox1 and subsequently augmented ROS generation may activate HIF-1-dependent pathways.  相似文献   

9.
Reactive oxygen species (ROS) participate as second messengers in the mitogenic signal transduction. Most of the experimental data supporting the role of ROS as signaling molecules have been obtained by using H2O2. Exposure of cells to H2O2 rapidly increases tyrosine phosphorylation of tyrosine kinase receptors (TKRs) in the absence of growth factor binding, thus inducing the activation of downstream signaling cascades, like that of protein kinase B (AKT). Another molecule able to induce an increase of intracellular ROS levels is diethylmaleate (DEM), which acts by depleting the ROS scavenger reduced glutathione (GSH). A comparison of the effects exerted by H2O2 and DEM shows that the latter induces redox modifications milder than those generated by H2O2. We also demonstrated that DEM-induced redox modifications are not accompanied by platelet-derived growth factor-receptor (PDGF-R) and epidermal growth factor-receptor Tyr phosphorylation, although they are able to activate ERKs and AKT, with kinetics different from those observed following H2O2 treatment. The activation of these two pathways is not blocked by AG1296, a selective inhibitor of PDGF-R Tyr kinase, thus confirming that the effects of DEM are not mediated by the TKR phosphorylation. On the contrary, PP2 (4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazole[3,4-d]pyrimidine), an inhibitor of Src kinase, completely prevents DEM- and H2O2-induced AKT activation but has no effect on the pathway of ERKs. Finally, nitration of Tyr residues in PDGF-R is observed in DEM-treated cells, thus suggesting that ROS-induced modifications different from Tyr phosphorylation can occur at the growth factor-receptor level and can be involved in the regulation of signaling pathways.  相似文献   

10.
Human immunodeficiency virus, type 1 Tat is known to exert pleiotropic effects on the vascular endothelium through mitogen-activated protein (MAP) kinases, although the signaling pathways leading to MAP kinase activation are incompletely understood. We focused on proximal pathways potentially governing downstream MAP kinase activity by Tat. Within 2 min, Tat activated both Ras and Rho GTPases in endothelial cells, leading to ERK phosphorylation by 10 min. Notably, Rac1 was necessary for downstream activation of RhoA and both Rac1 and RhoA acted upstream of the Ras/ERK cassette. Antioxidants and the oxidase inhibitor diphenylene iodonium blocked ERK phosphorylation, but specific interference with the canonical Nox2 oxidase had no effect on ERK. Instead, knock down of the novel oxidase Nox4 completely suppressed Tat-dependent Ras and ERK activation downstream of Rac1 and RhoA. Conversely, interference with Rac1, PAK1, and Nox2 blocked JNK phosphorylation, whereas RhoA(N19) and Nox4 knock down did not. Further, knock down of Nox2, but not Nox4, blocked Tat-induced cytoskeletal rearrangement, whereas knock down of Nox4, but not Nox2, blocked Tat-dependent proliferation. Rac1, therefore, bifurcates Tat signaling, leading to concurrent but separate Nox4-dependent Ras/ERK activation, and Nox2-dependent JNK activation. Tat signaling, therefore, provides an example of Nox-specific differential control of MAP kinase pathways.  相似文献   

11.
Recent studies have suggested that, in certain cases, necrosis, like apoptosis, may be programmed, involving the activation and inhibition of many signaling pathways. In this study, we examined whether necrosis induced by H(2)O(2) is regulated by signaling pathways in primary hepatocytes. A detailed time course revealed that H(2)O(2) treated to hepatocytes is consumed within minutes, but hepatocytes undergo necrosis several hours later. Thus, H(2)O(2) treatment induces a "lag phase" where signaling changes occur, including PKC activation, Akt (PKB) downregulation, activation of JNK, and downregulation of AMP-activated kinase (AMPK). Investigation of various inhibitors demonstrated that PKC inhibitors were effective in reducing necrosis caused by H(2)O(2) (~80%). PKC inhibitor treatment decreased PKC activity but, surprisingly, also upregulated Akt and AMPK, suggesting that various PKC isoforms negatively regulate Akt and AMPK. Akt did not appear to play a significant role in H(2)O(2)-induced necrosis, since PKC inhibitor treatment protected hepatocytes from H(2)O(2) even when Akt was inhibited. On the other hand, compound C, a selective AMPK inhibitor, abrogated the protective effect of PKC inhibitors against necrosis induced by H(2)O(2). Furthermore, AMPK activators protected against H(2)O(2)-induced necrosis, suggesting that much of the protective effect of PKC inhibition was mediated through the upregulation of AMPK. Work with PKC inhibitors suggested that atypical PKC downregulates AMPK in response to H(2)O(2). Knockdown of PKC-alpha using antisense oligonucleotides also slightly protected (~22%) against H(2)O(2). Taken together, our data demonstrate that the modulation of signaling pathways involving PKC and AMPK can alter H(2)O(2)-induced necrosis, suggesting that a signaling "program" is important in mediating H(2)O(2)-induced necrosis in primary hepatocytes.  相似文献   

12.
We investigated the role of reactive oxygen species (ROS) in promoting cell survival during oxidative stress induced by the inflammatory mediator tumor necrosis factor-α (TNF-α) in cerebral microvascular endothelial cells (CMVEC) from newborn piglets. Nox4 is the major isoform of NADPH oxidase responsible for TNF-α-induced oxidative stress and apoptosis in CMVEC. We present novel data that Nox4 NADPH oxidase-derived ROS also initiate a cell survival mechanism by increasing production of a gaseous antioxidant mediator carbon monoxide (CO) by constitutive heme oxygenase-2 (HO-2). TNF-α rapidly enhanced endogenous CO production in a superoxide- and NADPH oxidase-dependent manner in CMVEC with innate, but not with small interfering RNA (siRNA)-downregulated Nox4 activity. CORM-A1, a CO-releasing compound, inhibited Nox4-mediated ROS production and enhanced cell survival in TNF-α-challenged CMVEC. The ROS-induced CO-mediated survival mechanism requires functional interactions between the protein kinase B/Akt and extracellular signal-related kinase (ERK)/p38 MAPK signaling pathways activated by TNF-α. In Akt siRNA-transfected CMVEC and in cells with pharmacologically inhibited Akt, Erk1/2, and p38 mitogen-activated protein kinase (MAPK) activities, CORM-A1 was no longer capable of blocking Nox4 activation and apoptosis caused by TNF-α. Overall, Nox4 NADPH oxidase-derived ROS initiate both death and survival pathways in TNF-α-challenged CMVEC. The ROS-dependent cell survival pathway is mediated by an endogenous antioxidant CO, which inhibits Nox4 activation via a mechanism that includes Akt, ERK1/2, and p38 MAPK signaling pathways. The ability of CO to inhibit TNF-α-induced ERK1/2 and p38 MAPK activities in an Akt-dependent manner appears to be the key element in ROS-dependent survival of endothelial cells during TNF-α-mediated brain inflammatory disease.  相似文献   

13.
14.
Although both tumor necrosis factor (TNF) and H2O2 induce activation of c-Jun N-terminal kinase (JNK) kinase cascades, it is not known whether they utilize distinct intracellular signaling pathways. In this study, we first examined a variety of pharmacological inhibitors on TNF and H2O2-induced JNK activation. Go6983 or staurosporine, which inhibits protein kinase C isoforms had no effects on TNF or H2O2-induced JNK activation. However, Go6976 and calphostin, which can inhibit protein kinase C as well as protein kinase D (PKD), blocked H2O2- but not TNF-induced JNK activation, suggesting that PKD may be specifically involved in H2O2-induced JNK activation. Consistently, H2O2, but not TNF, induced phosphorylation of PKD and translocation of PKD from endothelial cell membrane to cytoplasm where it associates with the JNK upstream activator, apoptosis signal-regulating kinase 1 (ASK1). The association is mediated through the pleckstrin homology domain of PKD and the C-terminal domain of ASK1. Inhibition of PKD by Go6976 or by small interfering RNA of PKD blocked H2O2-induced ASK1-JNK activation and endothelial cell apoptosis. Interestingly, H2O2 induced 14-3-3 binding to PKD via the phospho-Ser-205/208 and phospho-Ser-219/223 and H2O2-induced 14-3-3 binding of PKD was specifically blocked by Go6976 but not by Go6983. More significantly, the 14-3-3-binding defective forms of PKD failed to associate with ASK1 and to activate JNK signaling, highlighting the importance of 14-3-3 binding of PKD in H2O2-induced activation of ASK1-JNK cascade. Thus, our data have identified PKD as a critical mediator in H2O2- but not TNF-induced ASK1-JNK signaling.  相似文献   

15.
Acquired resistance to tamoxifen (TAM) is a serious therapeutic problem in breast cancer patients. In this study, we found that the expressions of anti-oxidant proteins (gamma-glutamylcysteine ligase heavy chain (gamma-GCL h), heme oxygenase-1, thioredoxin and peroxiredoxin1) in TAM-resistant MCF-7 (TAMR-MCF-7) cells were higher than control MCF-7 cells. Molecular analyses using antioxidant response element (ARE)-containing reporters and gel-shift supported the critical role of NF-E2-related factor2 (Nrf2)/ARE in the overexpression of antioxidant proteins in TAMR-MCF-7 cells. Intracellular peroxide production was significantly decreased in TAMR-MCF-7 cells and TAM resistance was partially reversed by Nrf2 siRNA. The basal phosphorylation of extracellular signal-regulated kinase (ERK) and p38 kinase were increased in the TAMR-MCF-7 cells and the inhibition of ERK significantly decreased the activity of minimal ARE reporter and gamma-GCL h protein expression in TAMR-MCF-7 cells. However, exposure of TAMR-MCF-7 cells to 17-beta-estradiol or ICI-182,780 did not significantly change gamma-GCL h expression. These results suggest that the persistent activation of Nrf2/ARE is critical for the enhanced expression of anti-oxidant proteins in TAM-resistant breast cancer cells and the pathway of ERK, but not of estrogen receptor signaling are involved in the up-regulation of Nrf2/ARE.  相似文献   

16.
17.
Redox cycling compounds (RCCs) generate μM concentrations of hydrogen peroxide (H(2)O(2)) in the presence of strong reducing agents, common buffer components used to maintain the catalytic activity and/or folding of target proteins for high throughput screening (HTS) assays. H(2)O(2) generated by RCCs can indirectly inhibit the catalytic activity of proteins by oxidizing accessible cysteine, tryptophan, methionine, histidine, or selenocysteine residues, and indeed several important classes of protein targets are susceptible to H(2)O(2)-mediated inactivation; protein tyrosine phosphatases, cysteine proteases, and metalloenzymes. The main sources of H(2)O(2) in cells are the Nox enzyme/SOD systems, peroxisome metabolism, and the autoxidation of reactive chemicals by enzyme mediated redox cycling at both the microsomal and mitochondrial sites of electron transport. Given the role of H(2)O(2) as a second messenger involved in the regulation of many signaling pathways it is hardly surprising that compounds that can generate intracellular H(2)O(2) by enzyme mediated redox cycling would have pleiotropic effects. RCCs can therefore have serious negative consequences for the probe and/or lead generation process: primary HTS assay hit rates may be inflated by RCC false positives; crucial resources will be diverted to develop and implement follow up assays to distinguish RCCs from real hits; and screening databases will become annotated with the promiscuous activity of RCCs. In an attempt to mitigate the serious impact of RCCs on probe and lead generation, two groups have independently developed assays to indentify RCCs.  相似文献   

18.
19.
Mitogen-activated protein kinase (MAPK) cascades are activated by diverse extracellular signals and participate in the regulation of an array of cellular programs. In this study, we investigated the roles of MAPKs in the induction of phase II detoxifying enzymes by chemicals. Treatment of human hepatoma (HepG2) and murine hepatoma (Hepa1c1c7) cells with tert-butylhydroquinone (tBHQ) or sulforaphane (SUL), two potent phase II enzyme inducers, stimulated the activity of extracellular signal-regulated protein kinase 2 (ERK2) but not c-Jun N-terminal kinase 1. tBHQ and SUL also activated MAPK kinase. Inhibition of MAPK kinase with its inhibitor, PD98059, abolished ERK2 activation and impaired the induction of quinone reductase, a phase II detoxifying enzyme, and antioxidant response element (ARE)-linked reporter gene by tBHQ and SUL. Overexpression of a dominant-negative mutant of ERK2 also attenuated tBHQ and SUL induction of ARE reporter gene activity. Interestingly, although expression of Ras and its mutant forms showed distinct effects on basal ARE reporter gene activity, they did not affect the activation of reporter gene by the inducers. Furthermore, a dominant-negative mutant of Ras had little effect on ERK2 activation by tBHQ and SUL, implicating a Ras-independent mechanism. Indeed, both tBHQ and SUL were able to stimulate Raf-1 kinase activity in vivo as well as in vitro. Thus, our results indicate that the induction of ARE-dependent phase II detoxifying enzymes is mediated by a MAPK pathway, which may involve direct activation of Raf-1 by the inducers.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号