首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Ac elements present in the unstable wxm7 and wx-m9 alleles of maize trigger different patterns of Ds excision in trans. To determine whether this differential regulation is a feature of the Ac alleles themselves or is mediated by genetically distinct factors, maize plants heterozygous for the wx-m7 and wx-m9 alleles were crossed to tester strains homozygous for Ds reporter alleles. Kernels showing the variegation pattern characteristic for the Ac elements carried in the wx-m7 and wx-m9 alleles were found to be present in the ratios expected from the genetic constitution of the strains. The aleurone variegation caused by excision of the Ds reporter element and the endosperm variegation caused by excision of Ac from the wx-m7 and wx-m9 alleles themselves segregated with the original wx-m alleles. In addition, stable Wx and wx derivatives of wx-m9 that have lost Ac no longer exert any trans effect on the wx-m7 allele (and vice versa). Therefore it is concluded that the observed variegation patterns are autonomously determined by specific trans effects of the particular Ac element.  相似文献   

2.
Summary Transposable element Activator (Ac) induced wild-type stable revertants, derived from McClintock's Dissociation (Ds) insertion shrunken (sh) mutant sh-m5933, have been examined for sucrose synthases, SS1 and SS2, encoded by the revertant (Sh) locus and the non-allelic gene Sus (previously designated as Ss2), respectively. A structurally normal Sh locus has been previously described in these revertants. Immuno-blot (Western) and Southern hybridization analyses reported here identify one of the nine alleles, Sh-r5, as unique for several features. It showed altered tissue specificity, as the SS1 protein encoded by the Sh-r5 allele was readily detectable in the immature embryo which is otherwise characterized by the Sus expression only. The level of Sh-r5 expression at the protein and enzyme level was marked by endosperm specific SS1 abundance and a significant down-regulation in the embryo similar to the standard Sh and Sus loci in endosperm and embryo, respectively. We infer that tissue specific levels of gene expression among maize Ss genes is significantly determined by trans-regulatory factors present in these two tissues. The Sh-r5 strain also exhibited a complete loss of the Sus expression in all tissues tested in the plant. Lack of any detectable phenotypic abnormality in the Sh-r5 strain due to the loss of SS2 protein indicated that either the SS2 protein is nonessential or that the two SS isozymes are functionally compensatory. Genomic filter hybridizations with the Sus cDNA clone indicated that the Sus locus in the Sh-r5 strain was not deleted and was, in fact, unique among these revertants. Together, these data provide an unusual insight into the regulation and function of the two SS isozymes in the maize plant.  相似文献   

3.
Summary The Robertson's Mutator stock of maize exhibits a high mutation rate due to the transposition of theMu family of transposable elements. All characterizedMu elements contain similar 200-bp terminal inverted repeats, yet the internal sequences of the elements may be completely unrelated. Non-Mutator stocks of maize have a 20–100-fold lower mutation rate relative to Mutator stocks, yet they contain multiple sequences that hybridize to theMu terminal inverted repeats. Most of these sequences do not cohybridize to internal regions of previously clonedMu elements. We have cloned two such sequences from the maize line B37, a non-Mutator inbred line. These sequences, termedMu4 andMu5, have an organization characteristic of transposable elements and possess 200-bpMu terminal inverted repeats that flank internal DNA, which is unrelated to other clonedMu elements.Mu4 andMu5 are both flanked by 9-bp direct repeats as has been observed for otherMu elements. However, we have no direct evidence that they have recently transposed because they have not been found in known genes. Although the internal regions ofMu4 andMu5 are not related by sequence similarity, both elements share an unusual structural feature: the terminal inverted repeats extend more than 100 bp internally fromMu-similar termini. The distribution of these elements in maize lines and related species suggests thatMu elements are an ancient component of the maize genome. Moreover, the structure of theMu termini and the fact thatMu termini are found flanking different internal sequences leads us to speculate thatMu termini once may have been capable of transposing as independent entities.  相似文献   

4.
Summary The two components of theBg-rbg transposable element system of maize have been cloned. TheBg element, isolated from the mutable allelewx-m32 :: Bg is inserted in the intron of theWaxy (Wx) gene between exons 12 and 13. The length of the element is of 4869 bp.Bg has 5 by terminal inverted repeats, and generates upon insertion an 8 by direct duplication of the target sequence. Both ends of theBg element contain a 76 by direct repeat adjacent to the terminal inverted repeats. The hexamer motif TATCGkC G is here repeated several times in direct or inverse orientation. Therbg element was isolated from the mutable alleleo2m(r) where it is located in the promoter region of theOpaque-2 (O2) gene.rbg is approximately 4.5 kb in length, has terminal inverted repeats identical to those of theBg element, and is also flanked by an 8 by direct duplication at the target site. LikeBg, rbg carries the 76 by direct repeats. Restriction enzyme analysis reveals that, compared toBg, the receptor element is distinguishable by small deletion and insertion events. Sequence data indicate that not more than 75% homology exists at the DNA level between therbg element and the autonomousBg element.  相似文献   

5.
Summary We have previously shown that the maize transposable element Ds1 introduced into maize plants by agroinfection can be excised from the genome of geminivirus maize streak virus (MSV). Excision depended strictly on the presence of an active Ac element in the plants. In this study, the excision products or footprints left in the MSV genome after Ds1 excision were extensively characterized and the effects of flanking sequences on Ds1 excision were analysed. Most types of footprints obtained were comparable to those described for Ds1 excision in the maize genome, and could be explained by the models proposed for excision of plant transposable elements. In two revertants, however, some terminal sequences of the Ds1 element were found to have been left behind at the excision site. The finding of this novel type of Ds1 footprint indicated that gene conversion events occurred during and/or after Ds1 excision from the MSV genome. A partial deletion of one copy of the 8 by duplications flanking the Ds1 element had no effect on the frequency or on the types of footprints of Ds1 excision from the MSV genome. Thus, the duplicated 8 by sequences flanking the transposable element are not involved in Ds1 excision. These results, as well as a statistical analysis of the modifications of the bases flanking the Ds1 element after excision, are discussed in terms of excision models.  相似文献   

6.
Summary Previous experiments have revealed that the maize transposable element Activator (Ac) may become active during tissue culture. The objective of the present study was to determine whether a second transposable element, Suppressor-mutator (Spm), could also be activated in tissue culture and detected in regenerated maize plants. Approximately 500 R1 progeny of 143 regenerated plants (derived from 49 embryo cell lines) were crossed as males onto an Spm-responsive tester stock. Spm activity was observed in two R1 progeny of a single regenerated plant. This plant had been regenerated from Type II (friable embryogenic) callus of an A188 × B73 genetic background after 8 months in culture; the absence of Spm activity in four other plants regenerated from this same callus demonstrates that Spm activity was not present before culturing. Approximately 20 Spm-homologous DNA sequences were detected in each of the inbreds used to initiate the tissue cultures; it is presumed that one of these became active to give rise to Spm activity.  相似文献   

7.
8.
Summary The unstable mutant bz-x3m arose in a plant subjected to X-irradiation. The element at the bronze locus is non-autonomous and recombination data indicate that an autonomous element is tightly linked. The autonomous element has been designated Mx (mobile element induced by X-rays) and the non-autonomous element, rMx (responder to Mx). Linkage data indicate that a second Mx lies near the end of the short arm of chromosome 9; in one plant, an Mx that is unlinked was detected. Distinguishing characteristics of bz-x3m are a large window of time in endosperm development during which somatic reversions can arise and a wide range in the frequency at which they occur; these features are heritable. With increasing doses of bz-x3m and Mx, the window expands and the frequency range increases. In kernels containing the bz-x3m allele and the tightly linked Mx, breakage occurs in chromosome 9 distal to the C locus, resulting in breakage-fusion-bridge patterns for endosperm markers that lie proximal to the break. The frequency of breaks and the developmental time at which they occur exhibit the same dosage effect as the somatic reversions of the bz-x3m allele. These observations suggest that an rMx (designated rMxBr) that causes chromosome breakage is positioned distal to the C locus. At the molecular level, the bz-x3m allele is associated with a 0.5 kb increase in fragment size in DNA samples digested with BglII, EcoRI, HindIII and PstI; in germinal revertants, the fragment size returns to that of the progenitor.  相似文献   

9.
Summary The Bz2 locus of Zea mays has been cloned, utilizing the presence of the transposable element Dissociation (Ds) at the locus as a gene tag. The Ds element inserted in the bz2-m allele was identified among many members of the Ac/Ds family in a Southern blot analysis of a population segregating for bz2-m and Bz2. After cloning a DNA fragment from the bz2-m allele, sequences flanking the Ds insertion were shown to be Bz2-specific and were used to isolate a homologous fragment from a wild-type Bz2 line. The Ds insertion in the bz2-m allele was found to be a Ds2 element identical to the Ds insertion in adh1-2F11.  相似文献   

10.
Mobility of the hobo transposable element was determined for several strains of Drosophila melanogaster and several Drosophila species. Mobility was assessed by use of an in vivo transient assay in the soma of developing embryos, which monitored hobo excision from injected indicator plasmids. Excision was detected in a D. melanogaster strain (cn; ry 42) devoid of endogenous hobo elements only after co-injection of a helper plasmid containing functional hobo transposase under either heat shock or normal promoter regulation. Excision was also detected in D. melanogaster without helper in strains known to contain genomic copies of hobo. In Drosophila species confirmed not to contain hobo, hobo excision occurred at significant rates both in the presence and absence of co-injected helper plasmid. In four of the seven species tested, excision frequencies were two- to fivefold lower in the presence of plasmid-borne hobo. hobo excision donor sites were sequenced in indicator plasmids extracted from D. melanogaster cn; ry 42 and D. virilis embryos. In the presence of hobo transposase, the predominant excision sites were identical in both species, having breakpoints at the hobo termini with an inverted duplication of proximal insertion site DNA. However, in the absence of hobo transposase in D. virilis, excision breakpoints were apparently random and occurred distal to the hobo termini. The data indicate that hobo is capable of functioning in the soma during embryogenesis, and that its mobility is unrestricted in drosophilids. Furthermore, drosophilids not containing hobo are able to mobilize hobo, presumably by a hobo-related cross-mobilizing system. The cross-mobilizing system in D. virilis is not functionally identical to hobo with respect to excision sequence specificity.  相似文献   

11.
A reverse genetic system for studying excision of the transposable elementDs1 in maize plants has been established previously. In this system, theDs1 element, as part of the genome of maize streak virus (MSV), is introduced into maize plants via agroinfection. In the presence of theAc element, excision ofDs1 from the MSV genome results in the appearance of viral symptoms on the maize plants. Here, we used this system to study DNA sequences requiredin cis for excision ofDs1. TheDs1 element contains theAc transposase binding motif AAACGG in only one of its subterminal regions (defined here as the 5′ subterminal region). We showed that mutation of these motifs abolished completely the excision capacity ofDs1. This is the first direct demonstration that the transposase binding motifs are essential for excision. Mutagenesis with oligonucleotide insertions in the other (3′) subterminal region resulted in elements with either a reduced or an increased excision efficiency, indicating that this subterminal region also has an important function.  相似文献   

12.
Genetic data suggest that transposition of the maize elementActivator (Ac) is modulated by host factors. Using gel retardation and DNase I protection assays we identified maize proteins which bind to seven subterminal sites in both ends ofAc. Four DNase I-protected sites contain a GGTAAA sequence, the other three include either GATAAA or GTTAAA. The specificity of the maize protein binding toAc was verified by using a synthetic fragment containing four GGTAAA motifs as probe and competitor in gel retardation assays. All seven binding sites are located within regions requiredin cis for transposition. A maize protein binding site with the same sequence has previously been identified in the terminal inverted repeats of the maizeMutator element. Thus, the protein, that recognizes this sequence is a good candidate for a regulatory host factor forAc transposition.  相似文献   

13.
Summary Allelism tests between the standard Uq element (Uq1) and five newly activated germinal Uq elements (Uq2, Uq3, UQ4, Uq5, and Uq6) demonstrate that these new Uq elements are independent of Uq1. Gametes that either contain one Uq or various combinations of two different and phenotypically distinguishable Uq elements, have been constructed either with or without the a-ruq reporter allele. Genetic analyses of the progenies of the gametes (using the standard a-ruq tested line as the other parent) have indicated that (i) each Uq element, when present alone, has the capacity to express full activity except when a secondary transposition or loss of activity has occurred; (ii) all five new Uq elements are independent of Uq1 with respect to transposition activity; and (iii) these newly originated Uqs are clustered on one linkage group. Uq2 is allelic to Uq4, and Uq3 is allelic to Uq5, whereas Uq6 is linked to both allelic pairs. A putative linkage map of these Uq elements is presented. In reciprocal crosses there is a striking difference in phenotypic segregation of Uq; when transmitted via the male parent Uq loses full expression capacity.  相似文献   

14.
15.
Summary Two genomic clones, pC1.2 and p20D (containing inserts of 2.0 and 1.6 kb, respectively) were isolated from the A2b region to polytene chromosome IV of Chironomus thummi thummi salivary gland cells. Upon in situ hybridization to polytene chromosomes of C. thummi thummi and C. thummi piger, p20D DNA hybridized mainly over the A2b region of chromosome IV, whereas pC1.2 DNA hybridized to at least 90 sites distributed over all the chromosomes. A partial nucleotide sequence analysis showed that these clones were very similar and allowed the detection of a 596 by insert in the pC1.2 clone. This insert possesses all of the essential features of a Class II transposable element and was called MEC. It carries a nearly perfect 107 by terminal inverted repeat containing one mismatch and is flanked by a 5 by direct repeat. The 372 by central region contains a short open reading frame with a coding capacity of 58 amino acids.  相似文献   

16.
We report here the first cloning of a chalcone flavonone isomerase gene (CHI) from maize. Northern blot experiments indicate that the maize CHI gene (ZmCHI1) is regulated in the pericarp by the P gene, a myb homologue. The ZmCHI1 gene encodes a 24.3 kDa product 55% and 58% identical to CHI-A and CHI-B from Petunia, respectively. This maize CHI gene has four exons and an intron-exon structure identical to the CHI-B gene of Petunia hybrida. RFLP mapping data indicate that some inbred lines contain two additional CHI-homologous sequences, suggesting an organization more complex than that found in Petunia or bean. The possibility that the additional CHI-homologous sequences are responsible for the lack of CHI mutants in maize will be discussed.  相似文献   

17.
Summary A quiescent Uq transposable element has been activated in a maize plant treated with 5-aza-2-deoxycyti-dine. This activated Uq cosegregates with a heritable dominant miniature (Mn) kernel phenotype, indicating its physical association with a maize miniature locus (Mn:: Uq). The Mn:: Uq mutant is dominant in producing a miniature seed phenotype of variable size and in reducing seedling vigor in the early growth stage. Genetic experiments indicate that the Mn:: Uq mutant also affects the activity of the male gametophyte, whereby pollen germination is inhibited, thus lacking pollen tube growth resulting in the male nontransmissibility of this mutant. Proof for the Uq element in this mutant is derived by its ability to transactivate the standard a-ruq reporter allele to yield spotted aleurone tissue. However, the Mn:: Uq mutant does not transactivate a normally Uq-responsive c-ruq allele, suggesting a structural difference between the two ruq receptors at the A1 and C1 loci. It is anticipated that cloning of the Uq transposable element would facilitate the molecular cloning and characterization of the maize miniature gene.Journal Paper No. J-13425 of the Iowa Agriculture and Home Economics Experiment Station, Ames, Iowa 50011, USA, Project No. 2850  相似文献   

18.
Summary The c2 locus of Zea mays, identified as one of the genes affecting anthocyanin biosynthesis, was cloned using the transposable element En (Spm) as a gene tag. The Spm element present at the c2 locus in the autonomously mutating c2-m1 line was isolated using En1 element specific probes. Sequences flanking the element were identified as c2 locus specific and were used to clone the nonautonomous c2-m2 and wild-type alleles. The cloning and analysis of a cDNA complementary to the c2 locus provided evidence that this gene encodes the enzyme chalcone synthase.  相似文献   

19.
To develop an efficient gene tagging system in rice, a plasmid was constructed carrying a non-autonomous maize Ds element in the untranslated leader sequence of a hygromycin B resistance gene fused with the 35S promoter of cauliflower mosaic virus. This plasmid was cotransfected by electroporation into rice protoplasts together with a plasmid containing the maize Ac transposase gene transcribed from the 35S promoter. Five lines of evidence obtained from the analyses of hygromycin B-resistant calli, regenerated plants and their progeny showed that the introduced Ds was trans-activated by the Ac transposase gene in rice. (1) Cotransfection of the two plasmids is necessary for generation of hygromycin B resistant transformants. (2) Ds excision sites are detected by Southern blot hybridization. (3) Characteristic sequence alterations are found at Ds excision sites. (4) Newly integrated Ds is detected in the rice genome. (5) Generation of 8 by target duplications is observed at the Ds integration sites on the rice chromosomes. Our results also show that Ds can be trans-activated by the transiently expressed Ac transposase at early stages of protoplast culture and integrated stably into the rice genome, while the cotransfected Ac transposase gene is not integrated. Segregation data from such a transgenic rice plant carrying no Ac transposase gene showed that four Ds copies were stably integrated into three different chromosomes, one of which also contained the functional hph gene restored by Ds excision. The results indicate that a dispersed distribution of Ds throughout genomes not bearing the active Ac transposase gene can be achieved by simultaneous transfection with Ds and the Ac transposase gene.  相似文献   

20.
Carr M 《Genetica》2008,132(2):113-122
The Diopsid stalk-eyed flies are an increasingly well-studied group. Presented here is evidence of the first known transposable elements discovered in these flies. The vertumnana mariner subfamily was identified in the Diopsini tribe, but could not be amplified in species of the Sphyracephalini tribe. PCR screening with degenerate primers revealed that multiple mariner subfamilies are present within the Diopsidae. Most of the sequenced elements appear to be pseudogenes; however two subfamilies are shown to be evolving under purifying selection, raising the possibility that mariner is active in some Diopsid species. Evidence is presented of a possible horizontal transfer event involving an unknown Teleopsis species and the Tephritid fly Bactrocera neohumeralis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号