首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intrabulbar connections of respiratory nuclei and the medullary reticular formation and also descending pathways from these structures in the spinal cord were studied by the retrograde horseradish peroxidase axonal transport method in cats. Neurons of the nucleus ambiguus and nucleus retroambigualis (ventral respiratory group) and of the ventrolateral part of the nucleus of the tractus solitarius (dorsal respiratory group) were shown to form direct two-way connections with each other and with the medial region of the medulla. Neurons of the pneumotaxic center send uncrossed axons to the nucleus ambiguus and to the medial medullary reticular formation. Neurons of the contralateral homonymous nucleus and neurons of the nucleus of the tractus solitarius are sources of projections of the locus coeruleus. A well developed system of direct connections was found between neurons of respiratory nuclei of the two halves of the brain. The possible role of these nuclear formations in genesis of the respiratory rhythm and regulation of the respiratory and other motor functions of the reticular formation is discussed.A. A. Bogomolets Institute of Physiology, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Neirofiziologiya, Vol. 14, No. 2, pp. 149–157, March–April, 1982.  相似文献   

2.
The primaryhypothesis of this study was that the cough motor pattern is produced,at least in part, by the medullary respiratory neuronal network inresponse to inputs from "cough" and pulmonary stretch receptorrelay neurons in the nucleus tractus solitarii. Computer simulations ofa distributed network model with proposed connections from the nucleustractus solitarii to ventrolateral medullary respiratory neuronsproduced coughlike inspiratory and expiratory motor patterns. Predictedresponses of various "types" of neurons (I-DRIVER, I-AUG, I-DEC,E-AUG, and E-DEC) derived from the simulations were tested in vivo.Parallel and sequential responses of functionally characterizedrespiratory-modulated neurons were monitored during fictive cough indecerebrate, paralyzed, ventilated cats. Coughlike patterns in phrenicand lumbar nerves were elicited by mechanical stimulation of theintrathoracic trachea. Altered discharge patterns were measured in mosttypes of respiratory neurons during fictive cough. The resultssupported many of the specific predictions of our cough generationmodel and suggested several revisions. The two main conclusions were asfollows: 1) TheBötzinger/rostral ventral respiratory group neurons implicated inthe generation of the eupneic pattern of breathing also participate inthe configuration of the cough motor pattern.2) This altered activity ofBötzinger/rostral ventral respiratory group neurons istransmitted to phrenic, intercostal, and abdominal motoneurons via thesame bulbospinal neurons that provide descending drive during eupnea.

  相似文献   

3.
A mathematical model of the medullary respiratory oscillator, composed of two mutually inhibiting populations (inspiratory and expiratory) of computer-simulated neurons, is presented. Each population consists of randomly interconnected subpopulations of excitatory and inhibitory neurons, is presented. Each population consists of randomly interconnected subpopulations of excitatory and inhibitory neurons. Neuronal coupling is such that either the inspiratory or expiratory population alone is capable of cyclic activity. Weak inhibitory connections between inspiratory and expiratory populations provide satisfactory reciprocating activity independent of the natural frequency of either population alone. Initiation and persistence of rhythmic activity is dependent on a diffused noncyclic excitatory input. Vagal discharge, simulated by phasic inhibition of inspiratory neurons, results in increased respiratory frequency with decreased inspiratory activity. In the absence of simulated vagal discharge, uniform facilitation of synaptic connections increases averaged activities of inspiratory and expiratory populations, with minor effect on frequency. In the presence of simulated vagal discharge, facilitation of synaptic connections increases both frequency and amplitude. The simulated effects of synaptic facilitation, with and without vagal discharge, mimic the physiological response to CO2 in the intact and vagotimized animal.  相似文献   

4.
Chemical lesions in the medullary raphe nuclei region influence cough. This study examined whether firing patterns of caudal medullary midline neurons were altered during cough. Extracellular neuron activity was recorded with microelectrode arrays in decerebrated, neuromuscular-blocked, ventilated cats. Cough-like motor patterns (fictive cough) in phrenic and lumbar nerves were elicited by mechanical stimulation of the intrathoracic trachea. Discharge patterns of respiratory and nonrespiratory-modulated neurons were altered during cough cycles (58/133); 45 increased and 13 decreased activity. Fourteen cells changed firing rate during the inspiratory and/or expiratory phases of cough. Altered patterns in 43 cells were associated with the duration of, or extended beyond, the cough episodes. The different response categories suggest that multiple factors influence the discharge patterns during coughing: e.g., respiratory-modulated and tonic inputs and intrinsic connections. These results suggest involvement of midline neurons (i.e., raphe nuclei) in the cough reflex.  相似文献   

5.
Li Q  Song G 《生理学报》2001,53(5):401-404
实验在10只成年家兔上进行,斜方体后核(RTN)内微量注入霍乱毒素β亚单位耦合辣根过氧化酶(CB-HRP)后,在脑桥Koelliker-Fuse 核,臂旁内侧核及臂旁外侧核观察到大量HRP标记神经元,在延髓孤束核腹外侧区,疑核和后疑核,面神经后核的腹侧及内侧区观察到少数HRP标记神经元,在面神经后核,疑核及后疑核区域观察到大量HRP顺行标记末梢纤维,实验结果表明,RTN和脑桥及延髓的呼吸相关结构之间存在纤维联系。  相似文献   

6.
Brain stem respiratory neuron activity in the cat was studied in relation to efferent outflow (phrenic discharge) under the influence of several forcing inputs: 1) CO2 tension: hypocapnia produces disappearance of firing in some neurons, and conversion of respiratory-modulated to continuous (tonic) firing in others. 2) Lung inflation: during the Bruer-Hering reflex, some neurons have "classical" responses and others have "paradoxical" responses (i.e., opposite in direction to peripheral discharge). 3) Electrical stimulation: stimulus trains to the pneumotaxic center region (rostral lateral pons) produce phase-switching, whose threshold is: a) sharp (indicating action of positive-feedback mechanisms), and b) dependent on timing of stimulus delivery (indicating continuous excitability changes during each respiratory phase). Auto- and crosscorrelation analysis revealed the existence of short-term interactions between: a) medullary inspiratory (I) neurons and phrenic motoneurons; b) pairs of medullary I neurons; c) medullary I neurons and expiratory (E) neurons. A model of the respiratory oscillator is presented, in which the processes of conversion of tonic to phasic activity and switching of the respiratory phases are explained by recurrent excitatory and inhibitory loops.  相似文献   

7.
The purpose was to evaluate activities of medullary respiratory neurons during equivalent changes in phrenic discharge resulting from hypercapnia and hypoxia. Decerebrate, cerebellectomized, paralyzed, and ventilated cats were used. Vagi were sectioned at left midcervical and right intrathoracic levels caudal to the origin of right recurrent laryngeal nerve. Activities of phrenic nerve and single respiratory neurons were monitored. Neurons exhibiting antidromic action potentials following stimulations of the spinal cord and recurrent laryngeal nerve were designated, respectively, bulbospinal or laryngeal. The remaining neurons were not antidromically activated. Hypercapnia caused significant augmentations of discharge frequencies for all neuronal groups. Many of these neurons had no change or declines of activity in hypoxia. We conclude that central chemoreceptor afferent influences are ubiquitous, but excitatory influences from carotid chemoreceptors are more limited in distribution among medullary respiratory neurons. Hypoxia will increase activities of neurons that receive sufficient excitatory peripheral chemoreceptor afferents to overcome direct depression by brain stem hypoxia. The possibility that responses of respiratory muscles to hypoxia are programmed within the medulla is discussed.  相似文献   

8.
In microelectrophysiological investigations influences of different nuclear regions of the amygdaloid complex on the spike activity of the functionally identified single respiratory neurons of the medulla oblongata were studied in anesthetized cats. It was established a qualitative different character of the changes of unit activity of the medullary respiratory neurons in case of stimulation of phylogenetically old corticomedial or new basolateral nuclear groups of the amygdala. It was shown higher reactivity of the investigated neurons to stimulation of the corticomedial nuclei than basolateral. The influences of the corticomedial nuclear groups on the bulbar inspiratory and expiratory neurons were facilitatory as well as inhibitory with prevailing excitatory effects. It was found that influences of the phylogenetically new neoamygdaloid structures of basolateral region on spike activity of the bulbar respiratory neurons differ accordingly to their topographical differentiation. Mechanisms of amygdaloid control of activity of the medullary respiratory neurons are discussed.  相似文献   

9.
Using a histochemical technique, we examined distribution of the neurons containing a marker of nitric oxide synthase (NOS), NADPH-diaphorase (NADPH-d), on frontal slices of the medulla and upper cervical spinal segments of 4-day-old rats. It was demonstrated that NADPH-d-positive cells are present within the dorsal and ventral medullary respiratory groups. The highest density of the labeled middle-size multipolar neurons (27.9±2.6 cells per 0.1 mm2 of the slice) was observed in the rostral part of the ventral respiratory group, within the reticular lateral paragigantocellular nucleus. Similar NADPH-d-positive neurons were also observed in other reticular formation structures: rostroventrolateral reticular, gigantocellular, and ventral medullary nuclei, and in the ventral part of the paramedial nucleus. There were no labeled neurons in the lateral reticular nucleus. Single small and medium-size labeled neurons were found at all rostro-caudal levels of thenucl. ambiguous (nuclei retrofacialis, ambiguous, andretroam-biguous). Groups of NADPH-d-positive neurons were also revealed within the dorsal respiratory group, along the whole length of thenucl. tractus solitarii (mostly in its ventrolateral parts). Single labeled neurons were also observed in thenucl. n. hypoglossi, and their groups were observed in the dorsal motor part of thenucl. n. vagus. Involvement of the structures containing NADPH-d-positive neurons in the processes related to generation of the respiratory activity is discussed. Our neuroanatomical experiments prove that in early postnatal mammals NO is actively involved in generation and regulation of the medullary respiratory rhythm. Neirofiziologiya/Neurophysiology, Vol. 32, No. 2, pp. 128–136, March–April, 2000.  相似文献   

10.
The effects of the distension of the lower oesophageal sphincter were studied on the inspiratory activity of 96 medullary neurons located either in the dorsal or in the ventral respiratory groups and on the inspiratory activity of the costal and crural parts of the diaphragm in barbiturate anaesthetized cat. Inhibition of the inspiratory activity of the crural part of the diaphragm during oesophageal distension was never associated with significant changes of the medullary inspiratory neuron discharge. These results suggest that the observed crural inhibition is due to reflex loop that does not include the inspiratory neurons belonging to the dorsal and the ventral respiratory groups.  相似文献   

11.
Opiates have effects on respiratory neurons that depress tidal volume and air exchange, reduce chest wall compliance, and slow rhythm. The most dose-sensitive opioid effect is slowing of the respiratory rhythm through mechanisms that have not been thoroughly investigated. An in vivo dose-response analysis was performed on medullary respiratory neurons of adult cats to investigate two untested hypotheses related to mechanisms of opioid-mediated rhythm slowing: 1) Opiates suppress intrinsic conductances that limit discharge duration in medullary inspiratory and expiratory neurons, and 2) opiates delay the onset and lengthen the duration of discharges postsynaptically in phase-regulating postinspiratory and late-inspiratory neurons. In anesthetized and unanesthetized decerebrate cats, a threshold dose (3 microg/kg) of the mu-opioid receptor agonist fentanyl slowed respiratory rhythm by prolonging discharges of inspiratory and expiratory bulbospinal neurons. Additional doses (2-4 microg/kg) of fentanyl also lengthened the interburst silent periods in each type of neuron and delayed the rate of membrane depolarization to firing threshold without altering synaptic drive potential amplitude, input resistance, peak action potential frequency, action potential shape, or afterhyperpolarization. Fentanyl also prolonged discharges of postinspiratory and late-inspiratory neurons in doses that slowed the rhythm of inspiratory and expiratory neurons without altering peak membrane depolarization and hyperpolarization, input resistance, or action potential properties. The temporal changes evoked in the tested neurons can explain the slowing of network respiratory rhythm, but the lack of significant, direct opioid-mediated membrane effects suggests that actions emanating from other types of upstream bulbar respiratory neurons account for rhythm slowing.  相似文献   

12.
In the publication the modern condition of the problem of suprabulbar regulation of breathing is analysed. The review on structure, neurochemistry and anatomic connections of the red nucleus and substantia nigra with the medullary respiratory center is submitted. The data on the respiratory effects of GABA and apomorphine microinjected into the red nucleus and substantia nigra as well as effects of their electrostimulation after the blockade of GABA and dopamine receptors in the respiratory center are discussed. The conceptual scheme of the mechanisms of realization the respiratory influences of the extrapyramydal system is offered.  相似文献   

13.
Connections among ventrolateral medullary respiratory neurons inferred from spike train analysis were incorporated into a model and simulated with the program SYSTM11 (MacGregor 1987). Inspiratory (I) and expiratory (E) neurons with augmenting (AUG) and decrementing (DEC) discharge patterns and rostral I-E/I neurons exhibited varying degrees of adaptation, but no endogenous bursting properties. Simulation parameters were adjusted so that respiratory phase durations, neuronal discharge patterns, and short-time scale correlations were similar to corresponding measurements from anesthetized, vagotomized, adult cats. Rhythmogenesis persisted when the strength of each set of connections was increased 100% over a smaller effective value. Changes in phase durations and discharge patterns caused by manipulation of connection strengths or population activity led to several predictions. (a) Excitation of the I-E/I population prolongs the inspiratory phase. (b) Rhythmic activity can be reestablished in the absence of I-E/I activity by unpatterned excitation of I-DEC and I-AUG neurons. (c) An increase in I-DEC neuron activity can cause an apneustic respiratory pattern. (d) A decrease in I-DEC neuron activity increases the slope of the inspiratory ramp and shortens inspiration. (e) Excitation of the E-DEC population prolongs the expiratory phase or produces apnea; inhibition of E-DEC neurons reduces expiratory time. (f) Excitation of E-AUG cells causes I-AUG neurons to exhibit a step rather than a ramp increase in firing rate at the onset of their active phase. The results suggest mechanisms by which the duration of each phase of breathing and neuronal discharge patterns may be regulated. Received: 24 February 1993/Accepted in revised form: 8 September 1993  相似文献   

14.
In prior studies that used transneuronal transport of isogenic recombinants of pseudorabies virus, we established that medial medullary reticular formation (MRF) neurons sent collateralized projections to both diaphragm and abdominal muscle motoneurons. Furthermore, inactivation of MRF neurons in cats and ferrets increased the excitability of diaphragm and abdominal motoneurons, suggesting that MRF neurons controlling respiratory activity are inhibitory. To test this hypothesis, the present study determined the neurochemical phenotypes of MRF premotor respiratory neurons in the ferret by using immunohistochemical procedures. Dual-labeling immunohistochemistry combining pseudorabies virus injections into respiratory muscles with the detection of glutamic acid decarboxylase-like immunoreactive and glutamate-like immunoreactive cells showed that both GABAergic and glutamatergic MRF neurons project to respiratory motoneurons, although the latter are more common. These data suggest that the role of the MRF in respiratory regulation is multifaceted, as this region provides both inhibitory and excitatory influences on motoneuron activity.  相似文献   

15.
We performed anatomical and physiological studies to determine the site and actions of sulfated cholecystokinin octapeptide (CCK8-S) on breathing. Peptide locations were determined by combined immunodetection of CCK8-S- containing synaptic varicosities and retrograde labeling of medullary neurons projecting to the ventral respiratory group. Retrogradely labeled neurons and CCK8-S immunolabeled varicosities overlapped within the nuclei of the solitary tract, ventral respiratory group, and the Kolliker-Fuse nucleus. Additional CCK8-S immunoreactive terminals were located in the rostroventrolateral medullary reticular nucleus, lateral paragigantocellular reticular nucleus, and the caudal pontine reticular nucleus. The respiratory effects of CCK8-S, which binds to CCK(A) and CCK(B) receptors, were examined by intravenous injection in adult rats and by bath application in the in vitro neonatal rat brainstem - spinal cord preparation. CCK8-S produced an increase in the mean amplitude of diaphragmatic electromyogram (EMG) of 28 +/- 35% (SD) and a decrease in mean respiratory interval of 13 +/- 4% in vivo. In vitro, CCK8-S significantly increased inspiratory duration and decreased respiratory interval, primarily by shortening expiratory duration. CCK8-unsulfated, a specific agonist for CCK(B) receptors, did not produce these effects. CCK8-S effects in the in vitro preparation were partially blocked by the CCK receptor antagonist lorglumide (final bath concentration 600 nM). These results suggest that CCK8-S modulates the respiratory rhythm via CCK(A) receptors within one or more medullary or pontine respiratory groups in both neonatal and adult rats.  相似文献   

16.
Current consensus holds that a single medullary network generates respiratory rhythm in mammals. Pre-B?tzinger Complex inspiratory (I) neurons, isolated in transverse slices, and preinspiratory (pre-I) neurons, found only in more intact en bloc preparations and in vivo, are each proposed as necessary for rhythm generation. Opioids slow I, but not pre-I, neuronal burst periods. In slices, opioids gradually lengthened respiratory periods, whereas in more intact preparations, periods jumped nondeterministically to integer multiples of the control period (quantal slowing). These findings suggest that opioid-induced quantal slowing results from transmission failure of rhythmic drive from pre-I neurons to preB?tC I networks, depressed below threshold for spontaneous rhythmic activity. Thus, both I (in the slice), and pre-I neurons are sufficient for respiratory rhythmogenesis.  相似文献   

17.
The expiration reflex is a distinct airway defensive response characterized by a brief, intense expiratory effort and coordinated adduction and abduction of the laryngeal folds. This study addressed the hypothesis that the ventrolateral medullary respiratory network participates in the reflex. Extracellular neuron activity was recorded with microelectrode arrays in decerebrated, neuromuscular-blocked, ventilated cats. In 32 recordings (17 cats), 232 neurons were monitored in the rostral (including B?tzinger and pre-B?tzinger complexes) and caudal ventral respiratory group. Neurons were classified by firing pattern, evaluated for spinal projections, functional associations with recurrent laryngeal and lumbar nerves, and firing rate changes during brief, large increases in lumbar motor nerve discharge (fictive expiration reflex, FER) elicited during mechanical stimulation of the vocal folds. Two hundred eight neurons were respiratory modulated, and 24 were nonrespiratory; 104 of the respiratory and 6 of the nonrespiratory-modulated neurons had altered peak firing rates during the FER. Increased firing rates of bulbospinal neurons and expiratory laryngeal premotor and motoneurons during the expiratory burst of FER were accompanied by changes in the firing patterns of putative propriobulbar neurons proposed to participate in the eupneic respiratory network. The results support the hypothesis that elements of the rostral and caudal ventral respiratory groups participate in generating and shaping the motor output of the FER. A model is proposed for the participation of the respiratory network in the expiration reflex.  相似文献   

18.
Studies were conducted to test the hypothesis that nonrespiratory-modulated units are last-order interneurons mediating the effects of intercostal muscle tendon organs on medullary inspiratory neuron activity. Vagotomized, anesthetized, or decerebrate cats were used. Results show the following. 1) Afferents from different receptor types (i.e., intercostal tendon organs and chest wall cutaneous receptors) that inhibit medullary inspiratory neuron activities evoke the same units. 2) Gastrocnemius muscle group I afferent fibers evoke some of the same units as intercostal afferents but do not alter respiratory activity. 3) The "pneumotaxic center" and laryngeal nerve afferents, which inhibit medullary inspiratory activity, evoke different medullary units than intercostal afferents. 4) Evoked units are not active in spontaneously breathing cats. Additional results suggest that a few respiratory neurons near the retrofacial nucleus may be involved in the mediation of the inspiratory inhibitory effects of intercostal tendon organs. These results do not establish the mechanism by which intercostal muscle tendon organs reduces medullary inspiratory activity.  相似文献   

19.
The main experimental data on the organization of the respiratory center accumulated during the past 200 years are summarized. It is emphasized that the existence of separate, reciprocally interrelated, inspiratory and expiratory centers has never been proved. The notion of multiple respiratory centers in the CNS, including pneumotaxic, apneustic, gasping, and deep-exhalation centers, which allegedly underlie the multiple forms of respiratory movements, is demonstrated to be unjustified. Upon systemic consideration, the evidence in favor of the decisive role of neurons of the pre-Bötzinger complex and preinspiratory neurons in initiating the respiratory rhythm and maintaining rhythm generation in the respiratory center is contradictory and unconvincing. It is assumed that the respiratory center located in the medullary region of the brain of intact animals and humans fulfills the main functions of endogenous self-sustained generation of the respiratory rhythm, chemoregulation, and mechanoregulation in the respiratory system in an integrated manner, according to the general requirements of the body at a given moment.  相似文献   

20.
Electrical and chemical stimulation methods were used to determine the topographic organization of the medullary raphe nuclei (MRN) in controlling the systemic arterial blood pressure (BP) and phrenic nerve activities (PNA). Decerebrated, unanesthetized and bilateral vagotomized cats were used. Effective points in the MRN were systematically explored with constant current stimulation. We found stimulation of the rostral MRN produced a decrease in PNA amplitude and increase in BP and PNA frequency. Stimulation of the caudal MRN produced increases in BP and the amplitude and frequency of PNA. Microinjection of glutamate solution into the caudal or the rostral MRN points produced qualitatively similar results. Thus, we concluded that the caudal MRN neurons had excitatory connections whereas the rostral MRN neurons had excitatory and inhibitory connections to the cardiovascular preganglionic neurons and the phrenic nerve motoneurons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号