首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previously nuclear reformation following metaphase in HeLaS3 cells was conceptualized in terms of a stepwise process which was continuous throughout anaphase and telophase. This concept was based on a three-dimensional visualization by scanning electron microscopy (SEM) of individual, organically prepared chromatid structures (prenuclei) which could be sequentially arranged. Morphologic analysis revealed unique topographies and morphometric properties which suggested that it should be possible to isolate populations of prenuclei aqueously. Such an isolation using detergents and density centrifugation is presented which yields metaphase plates and two populations of prenuclei with distinctive morphology. Essentially, prenuclei are freed from late mitotic cells in suspension cultures of synchronized HeLaS3 cells by treatment with 0.1% Nonidet-P40 followed by treatment with a mixture of Tween 40-desoxycholate (0.5%). Critical for the isolation is the presence of a divalent cation (5 mM Mg+ +) and an acid pH (~ 5.8). After density centrifugation, 2N decondensing structures (late intermediates) are recovered from 42% Percoll, and a mixture of 2N predecondensing (early intermediates) and 4N metaphase plates are recovered from 52% Percoll. The latter intermediates can be further separated into highly enriched populations (>94% pure) by fluorescence-activated sorting. Predecondensing structures are of the same overall morphology as prenuclei isolated previously by organic means, can also be ordered sequentially to demonstrate nuclear morphogenesis, and retain centromere/kinetochore loci. These chromosomal loci based on immunostaining of individual structures appear to be positioned centrally during chromatid reassociation and then appear to be dispersed prior to structural rearrangements leading to formation of a disc-like prenucleus. The significance of grouping intermediates temporally and of two protocols of isolation yielding the same structures is discussed with regard to a study of the requirements for nuclear morphogenesis in late mitosis.  相似文献   

2.
Metaphase chromatids are believed to consist of loops of chromatin anchored to a central scaffold, of which a major component is the decatenatory enzyme DNA topoisomerase II. Silver impregnation selectively stains an axial element of metaphase and anaphase chromatids; but we find that in earlier stages of mitosis, silver staining reveals an initially single, folded midline structure, which separates at prometaphase to form two chromatid axes. Inhibition of topoisomerase II prevents this separation, and also prevents the contraction of chromatids that occurs when metaphase is arrested. Immunolocalization of topoisomerase II alpha reveals chromatid cores analogous to those seen with silver staining. We conclude that the chromatid cores in early mitosis form a single structure, constrained by DNA catenations, which must separate before metaphase chromatids can be resolved.  相似文献   

3.
In mitosis, cohesion appears to be present along the entire length of the chromosome, between centromeres and along chromosome arms. By metaphase, sister chromatids appear as two adjacent but visibly distinct rods. Sister chromatids separate from one another in anaphase by releasing all chromosome cohesion. This is different from meiosis I, in which pairs of sister chromatids separate from one another, moving to each spindle pole by releasing cohesion only between sister chromatid arms. Then, in anaphase II, sister chromatids separate by releasing centromere cohesion. Our objective was to find where cohesion is present or absent on chromosomes in mitosis and meiosis and when and how it is released. We determined cohesion directly by pulling on chromosomes with two micromanipulation needles. Thus, we could distinguish for the first time between apparent doubleness as seen in the microscope and physical separability. We found that apparent doubleness can be deceiving: Visibly distinct sister chromatids often cannot be separated. We also demonstrated that cohesion is released gradually in anaphase, with chromosomes looking as if they were unzipped or pulled apart. This implied that tension from spindle forces was required, but we showed directly that no tension was necessary to pull chromatids apart.  相似文献   

4.
We used a genetic assay to monitor the behavior of sister chromatids during the cell cycle. We show that the ability to induce sister chromatid exchanges (SCE) with ionizing radiation is maximal in budded cells with undivided nuclei and then decreases prior to nuclear division. SCE can be induced in cells arrested in G2 using either nocodazole or cdc mutants. These data show that sister chromatids have two different states prior to nuclear division. We suggest that the sister chromatids of cir. III, a circular derivative of chromosome III, separate (anaphase A) prior to spindle elongation (anaphase B). Other interpretations are also discussed. SCE can be induced in cdc mutants that arrest in G2 and in nocodazole-treated cells, suggesting that mitotic checkpoints arrest cells prior to sister chromatid separation. Received: 3 July 1996 / Accepted: 4 October 1996  相似文献   

5.
Current models of mitotic chromosome structure are based largely on the examination of maximally condensed metaphase chromosomes. Here, we test these models by correlating the distribution of two scaffold components with the appearance of prophase chromosome folding intermediates. We confirm an axial distribution of topoisomerase IIalpha and the condensin subunit, structural maintenance of chromosomes 2 (SMC2), in unextracted metaphase chromosomes, with SMC2 localizing to a 150-200-nm-diameter central core. In contrast to predictions of radial loop/scaffold models, this axial distribution does not appear until late prophase, after formation of uniformly condensed middle prophase chromosomes. Instead, SMC2 associates throughout early and middle prophase chromatids, frequently forming foci over the chromosome exterior. Early prophase condensation occurs through folding of large-scale chromatin fibers into condensed masses. These resolve into linear, 200-300-nm-diameter middle prophase chromatids that double in diameter by late prophase. We propose a unified model of chromosome structure in which hierarchical levels of chromatin folding are stabilized late in mitosis by an axial "glue."  相似文献   

6.
BACKGROUND: Gene amplification and chromosomal rearrangements are frequent properties of cancer cells, provoking considerable interest in the mechanism of gene amplification and its consequences - particularly its relationship to chromosomal rearrangements. We recently studied the amplification of the gene for adenylate deaminase 2 (AMPD2) in Chinese hamster cells. Using fluorescent in situ hybridization (FISH), we found that early amplification of the AMPD2 gene is based on unequal gene segregation at mitosis, rather than local over-replication. We observed large inverted repeats of the amplified sequences, consistent with an amplification mechanism involving cycles of chromatid breakage, followed by fusion after replication and, in mitosis, the formation of bridges between the fused sister chromatids that leads to further breaks - a process we refer to as chromatid breakage-fusion-bridge (BFB) cycles. Our previous work left open the question of how this mechanism of gene amplification is related, if at all, to the chromosomal rearrangements that generate the dicentric, ring and double-minute (DM) chromosomes observed in some AMPD2-amplified metaphase cells, which are not predicted intermediates of chromatid BFB cycles, although they could be generated by related chromosome BFB cycles. RESULTS: We have addressed this question using FISH with probes for the AMPD2 gene and other markers on the same chromosome. Our results are not consistent with the chromosome BFB cycle mechanism, in which two chromatids break simultaneously and fuse to generate, after replication, a dicentric chromosome. Rather, they suggest that dicentric chromosomes are generated by secondary events that occur during chromatid BFB cycles. Our results also suggest that DM chromosomes are generated by the 'looping-out' of a chromosomal region, generating a circular DNA molecule lacking a centromere; in this case, gene amplification would result from the unequal segregation of DM chromosomes at mitosis. CONCLUSION: We conclude that, at early stages of AMPD2 gene amplification, chromatid BFB cycles are a major source of both 'intrachromosomal' gene amplification and genomic rearrangement, which are first limited to a single chromosome but which can then potentially spread to any additional chromosome. It also seems that, occasionally, a DNA sequence including the AMPD2 gene can be excised, generating a DM chromosome and thus initiating an independent process of 'extrachromosomal' amplification.  相似文献   

7.
Histone phosphorylation is dynamically regulated during cell division, for example phosphorylation of histone H3 (H3)-Ser10, H3-Thr11 and H3-Ser28. Here we analyzed maize (Zea mays L) for Thr133-phosphorylated histone H2A, which is important for spindle checkpoint control and localization of the centromere cohesion protector Shugoshin in mammals and yeast. Immunostaining results indicate that phosphorylated H2A-Thr133 signals bridged those of the centromeric H3 histone variant CENH3 by using a plant displaying yellow fluorescent protein-CENH3 signals and H2A-Thr133 is phosphorylated in different cell types. During mitosis, H2A-Thr133 phosphorylation becomes strong in metaphase and is specific to centromere regions but drops during later anaphase and telophase. Immunostaining for several maize dicentric chromosomes revealed that the inactive centromeres have lost phosphorylation of H2A-Thr133. During meiosis in maize meiocytes, H2A phosphorylation becomes strong in the early pachytene stage and increases to a maximum at metaphase I. In the maize meiotic mutant afd1 (absence of first division), sister chromatids show equational separation at metaphase I, but there are no changes in H2A-Thr-133 phosphorylation during meiosis compared with the wild type. In sgo1 mutants, sister chromatids segregate randomly during meiosis II, and phosphorylation of H2A-Thr-133 is observed on the centromere regions during meiosis II. The availability of such mutants in maize that lack sister cohesion and Shugoshin indicate that the signals for phosphorylation are not dependent on cohesion but on centromere activity.  相似文献   

8.
In higher eukaryotic cells, the spindle forms along with chromosome condensation in mitotic prophase. In metaphase, chromosomes are aligned on the spindle with sister kinetochores facing toward the opposite poles. In anaphase A, sister chromatids separate from each other without spindle extension, whereas spindle elongation takes place during anaphase B. We have critically examined whether such mitotic stages also occur in a lower eukaryote, Schizosaccharomyces pombe. Using the green fluorescent protein tagging technique, early mitotic to late anaphase events were observed in living fission yeast cells. S. pombe has three phases in spindle dynamics, spindle formation (phase 1), constant spindle length (phase 2), and spindle extension (phase 3). Sister centromere separation (anaphase A) rapidly occurred at the end of phase 2. The centromere showed dynamic movements throughout phase 2 as it moved back and forth and was transiently split in two before its separation, suggesting that the centromere was positioned in a bioriented manner toward the poles at metaphase. Microtubule-associating Dis1 was required for the occurrence of constant spindle length and centromere movement in phase 2. Normal transition from phase 2 to 3 needed DNA topoisomerase II and Cut1 but not Cut14. The duration of each phase was highly dependent on temperature.  相似文献   

9.
Differential intensity of fluorescence corresponding to the banding patterns found in single metaphases can be obtained with isolated Chinese hamster chromosomes using the fluorochrome Hoechst 33258. Removal of histones from the chromosomes with 0.2 N HCl causes an approx. 50% increase in overall size, but does not abolish the gross metaphase morphology of the chromosomes or the ability to give their characteristic fluorescent banding patterns. In an attempt to study further the factors maintaining the characteristic metaphase structure, we have treated acid-extracted isolated chromosomes with DNase I, which was found to solubilize over 99% of the DNA content, while leaving stable ‘core’ structures which retain the basic features of metaphase chromosomes such as centromeric regions and defined chromatids. The cores appear to consist mainly of non-histone protein: they are destroyed by proteolytic action and unaffected by ribonuclease A. The structural implications of these findings are discussed.  相似文献   

10.
Megakaryocytes undergo a unique differentiation program, becoming polyploid through repeated cycles of DNA synthesis without concomitant cell division. However, the mechanism underlying this polyploidization remains totally unknown. It has been postulated that polyploidization is due to a skipping of mitosis after each round of DNA replication. We carried out immunohistochemical studies on mouse bone marrow megakaryocytes during thrombopoietin- induced polyploidization and found that during this process megakaryocytes indeed enter mitosis and progress through normal prophase, prometaphase, metaphase, and up to anaphase A, but not to anaphase B, telophase, or cytokinesis. It was clearly observed that multiple spindle poles were formed as the polyploid megakaryocytes entered mitosis; the nuclear membrane broke down during prophase; the sister chromatids were aligned on a multifaced plate, and the centrosomes were symmetrically located on either side of each face of the plate at metaphase; and a set of sister chromatids moved into the multiple centrosomes during anaphase A. We further noted that the pair of spindle poles in anaphase were located in close proximity to each other, probably because of the lack of outward movement of spindle poles during anaphase B. Thus, the reassembling nuclear envelope may enclose all the sister chromatids in a single nucleus at anaphase and then skip telophase and cytokinesis. These observations clearly indicate that polyploidization of megakaryocytes is not simply due to a skipping of mitosis, and that the megakaryocytes must have a unique regulatory mechanism in anaphase, e.g., factors regulating anaphase such as microtubule motor proteins might be involved in this polyploidization process.  相似文献   

11.
When chromosomes start to assemble in mitotic prophase, duplicated chromatids are not discernible within each chromosome. As condensation proceeds, they gradually show up, culminating in two rod-shaped structures apposed along their entire length within a metaphase chromosome. This process, known as sister chromatid resolution, is thought to be a prerequisite for rapid and synchronous separation of sister chromatids in anaphase. From a mechanistic point of view, the resolution process can be dissected into three distinct steps: (1) release of cohesin from chromosome arms; (2) formation of chromatid axes mediated by condensins; and (3) untanglement of inter-sister catenation catalyzed by topoisomerase II (topo II). In this review article, we summarize recent progress in our understanding the molecular mechanisms of sister chromatid resolution with a major focus on its first step, cohesin release. An emerging idea is that this seemingly simple step is regulated by an intricate network of positive and negative factors, including cohesin-binding proteins and mitotic kinases. Interestingly, some key factors responsible for cohesin release in early mitosis also play important roles in controlling cohesin functions during interphase. Finally, we discuss how the step of cohesin release might mechanistically be coordinated with the actions of condensins and topo II.  相似文献   

12.
Sister chromatids of human metaphase chromsomes from cells which have replicated twice in medium containing 5-bromodeoxyuridine exhibit unequal fluorescence when stained with the dye 33258 Hoechst. Sister chromatid exchanges occurring in these chromosomes are apparent as interchanges of brightly and dully fluorescing chromatids. A technique for detecting such exchanges by computer analysis of chromsome images has been developed and found to campare favorably with manual methods. The exchanges have been localized in the context of quinacrine banding patterns.  相似文献   

13.
Univalent sex chromosomes in crane-fly spermatocytes have kinetochore spindle fibres to each spindle pole (amphitelic orientation) from metaphase throughout anaphase. The univalents segregate in anaphase only after the autosomes approach the poles. As each univalent moves in anaphase, one spindle fibre shortens and the other spindle fibre elongates. To test whether the directionality of force production is fixed at anaphase, that is, whether one spindle fibre can only elongate and the other only shorten, we cut univalents in half with a laser microbeam, to create two chromatids. In both sex-chromosome metaphase and sex-chromosome anaphase, the two chromatids that were formed moved to opposite poles (to the poles to which their fibre was attached) at speeds about the same as autosomes, much faster than the usual speeds of univalent movements. Since the chromatids moved to the pole to which they were attached, independent of the direction to which the univalent as a whole was moving, the spindle fibre that normally elongates in anaphase still is able to shorten and produce force towards the pole when allowed (or caused) to do so.  相似文献   

14.
Stamen hair cells of Tradescantia exhibit remarkable precision in the timing of their mitotic events. This precision is altered dramatically with treatment in 50 microM to 1 mM LiCl, an inhibitor of the polyphosphoinositide cycle. Mitotic progression is altered as a function of the time of treatment with LiCl. If cells are treated during late prophase, greater than 80% fail to enter metaphase. Most of the cells that undergo nuclear envelope breakdown become arrested in metaphase. Treatment with LiCl earlier in prophase also results in metaphase arrest. Metaphase arrest can be reversed by the addition of 10 microM myo-inositol or 100 microM CaCl2 to the extracellular medium. The timing of reversal by myo-inositol takes 10 to 14 min while CaCl2 promotes anaphase onset in 2 to 5 min. The difference in kinetics for reversal between these two treatments suggests that myo-inositol addition overrides a biochemical pathway while Ca2+ addition supplants a phosphoinositide-mediated rise in the cation that may be necessary for anaphase onset. Buffer without myo-inositol or CaCl2 is insufficient for reversal. If the cells are treated with LiCl in mid-late-metaphase, at least 5 min prior to the expected time of anaphase onset, sister chromatids split at the normal time, 33 +/- 4 min after nuclear envelope breakdown, but further chromosome separation is arrested. Anaphase chromosome movement can be restored by treatment with either 10 microM myo-inositol or 100 microM CaCl2 in the medium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
We report the immunological differentiation of structures within the primary constriction. These include the kinetochore and the connecting strand, a structure which connects sister kinetochores. The location and temporal appearance of the connecting strand antigen suggest that it could play a role in the maintenance of sister chromatid pairing. In addition, we report the identification of a novel epitope that is localized to discrete patches along the entire length of the junction between sister chromatids at metaphase (the junction patch antigen). The patches on the inner surface of the euchromatic arms can be disrupted by Colcemid treatment while those found in the primary constriction remain intact. The apparent heterogeneity of the patches suggests that they may play different roles in the regulation of sister chromatid pairing. Because of their cytological localization and possible functional role, the junction patch and connecting strand antigens have provisionally been collectively termed CLiPs (Chromatid Linking Proteins'). All of these antigenic sites are shown to be distinct from centromeric heterochromatin, which can itself be immunologically differentiated from the euchromatic arms. The relationship between the antigenicity of the primary constriction and the unique manner in which chromatin is organized in this region is discussed.  相似文献   

16.
Nuclear reformation from chromatids following metaphase was visualized three-dimensionally for the first time in mammalian cells (HeLa S3) by scanning electron microscopy (SEM). Anaphase and telophase configurations free of mitotic apparatus, cytoskeletal elements and nuclear envelope were prepared using a slightly modified standard cytological procedure which permitted visualization of chromatid position and orientation. Mid-anaphase alignments were observed to be more complex than previously revealed by light and transmission electron microscopy (TEM). One pole consisted of chromatids joined along their lateral length, the other pole consisted of telomeres, apparently of the longest chromatids, aligned in a double concentric layer. As anaphase progressed, re-association of these chromatids appeared to occur progressively along their lateral length toward their telomeres. Morphological evidence is presented suggesting that this lateral re-association may involve interchromatid fibers. After complete joining, structures resembling a hollow half sphere had formed. Based on different preparative procedures for SEM and published TEM analysis, it is this shell-like configuration upon which the nuclear envelope is reestablished in early telophase. As telophase progressed there was loss in depth of the internal chamber resulting in a disc configuration. Following loss of chromatid outline from the surface of this structure, interphase nuclear shape was assumed. Morphometric determinations revealed relative dimensions of chromatid configurations and supported the conclusion that nuclear reformation proceeded by discrete steps. The complexity of such a process, as revealed by SEM analysis, is discussed.  相似文献   

17.
Condensins: organizing and segregating the genome   总被引:16,自引:0,他引:16  
Hirano T 《Current biology : CB》2005,15(7):R265-R275
Condensins are multi-subunit protein complexes that play a central role in mitotic chromosome assembly and segregation. The complexes contain 'structural maintenance of chromosomes' (SMC) ATPase subunits, and induce DNA supercoiling and looping in an ATP-hydrolysis-dependent manner in vitro. Vertebrate cells have two different condensin complexes, condensins I and II, each containing a unique set of regulatory subunits. Condensin II participates in an early stage of chromosome condensation within the prophase nucleus. Condensin I gains access to chromosomes only after the nuclear envelope breaks down, and collaborates with condensin II to assemble metaphase chromosomes with fully resolved sister chromatids. The complexes also play critical roles in meiotic chromosome segregation and in interphase processes such as gene repression and checkpoint responses. In bacterial cells, ancestral forms of condensins control chromosome dynamics. Dissecting the diverse functions of condensins is likely to be central to our understanding of genome organization, stability and evolution.  相似文献   

18.
In budding yeast, we have found that sister rDNA arrays marked with fluorescent probes can be visualized as two distinguishable strands during metaphase. Upon anaphase, these arm loci are drawn into the spindle, where they adopt a cruciform-like structure and stretch 2.5-fold as they migrate to the poles. Therefore, while sister rDNA arrays appear separated in metaphase, mechanical linkages between sister arm loci persist throughout anaphase in yeast, as shown in grasshopper spermatocytes (Paliulis and Nicklas 2004). These linkages are partially dependent on the protector of cohesin, SGO1. In anaphase, the spatially regulated dissolution of these mechanical linkages serves to prevent premature sister separation and restrain the rate of spindle elongation. Thus, sister separation is temporally controlled and linkages between sister chromatids contribute to the regulation of anaphase spindle elongation. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

19.
The nuclear lamins, proteins that reside on the inner face of the nuclear envelope, are thought to provide attachment sites for anchoring the chromatin to the nuclear envelope, thus facilitating the overall organization of the nucleus. The composition of the nuclear lamin proteins changes during differentiation and development in a variety of mammalian and nonmammalian tissues. Bovine and porcine oocytes and early embryos were prepared for immunocytochemical detection of nuclear lamins using three different antibodies (recognizing lamin B, lamins A/B/C, or lamins A/C). In both species, germinal vesicle nuclei and early cleavage stage nuclei react positively with the antibodies. However, on nuclei of bovine embryos, the A/C epitope was not detectable at the 16-cell stage, compact morula, spherical blastocyst, or the chorionic cell nuclei of a Day 35 conceptus, but was detectable on both amniotic and embryonic ectodermal cell nuclei of a Day 35 conceptus. All three antibodies reacted with nuclei from two bovine tissue culture cell lines (bovine embryonic cells and Madin-Darby bovine kidney cells) and one porcine kidney cell line. Nuclei in porcine embryos followed a similar pattern, except the loss of the A/C epitope occurred at the 8-cell stage and the epitope was absent from compact morula and spherical blastocyst stage nuclei. All interphase nuclei in both species reacted with both anti-lamin A/B/C and anti-lamin B antibodies, whereas metaphase chromosomes did not react with any of the lamin antibodies tested. The change in recognizing the lamin epitope occurred one cell cycle after the expected transition from maternal control to zygotic control of development. Nuclear transplantation showed that 16-cell stage porcine nuclei, which are lamin A/C negative, acquired the A/C epitope after transfer to an enucleated metaphase II oocyte. These results suggest that the A/C epitope is developmentally regulated.  相似文献   

20.
Little is known about what determines the nuclear matrix or how its reorganization is regulated during mitosis. In this study we report on a monoclonal antibody, mAb2A, which identifies a novel nuclear structure in Drosophila embryos which forms a diffuse meshwork at interphase but which undergoes a striking reorganization into a spindle-like structure during pro- and metaphase. Double labelings with α-tubulin and mAb2A antibodies demonstrate that the microtubules of the mitotic apparatus co-localize with this mAb2A labeled structure during metaphase, suggesting it may serve a role in microtubule spindle assembly and/or function during nuclear division. That the mAb2A-labeled nuclear structure is essential for cell division and/or maintenance of nuclear integrity was directly demonstrated by microinjection of mAb2A into early syncytial embryos which resulted in a disintegration of nuclear morphology and perturbation of mitosis. © 1996 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号