首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Emulsions of the fatty acids linoleic (C18:2 n-6), alpha-linolenic (C18:3 n-3) and arachidonic acid (C20:4 n-6) were incubated for 4 h under anaerobic conditions with human faecal suspensions. Linoleic acid was significantly decreased (P < 0.001) and there was a significant rise (P < 0.05) in its hydrogenation product, stearic acid. Linolenic acid was also significantly decreased (P < 0.01), and significant increases in C18:3 cis-trans isomers (P < 0.01) and linoleic acid (P < 0.05) were seen. With each acid, there were non-significant increases in acids considered to be intermediates in biohydrogenation. The study provides evidence that bacteria from the human colon can hydrogenate C18 essential polyunsaturated fatty acids. However, with arachidonic acid there was no evidence of hydrogenation.  相似文献   

2.
The composition of fatty acids in human milk lipids was determined in 41 women on the 3rd, 4th, 5th and 6th days after labour by the method of gas chromatography. In these investigations no significant differences were demonstrated in the fatty acids in the lipid fractions between these consecutive days. The level of polyunsaturated fatty acids of the n-6 and n-3 groups was about 11.9-13.6%, including linoleic acid (18:2, n-6) about 7.7-9.8%, and alpha-linolenic acid (18:3, n-3) about 0.7-1%. In the analysis group of n-6 fatty acids the determined acids were: linoleic acid (18:2, n-6), gamma-linolenic acid (18:3, n-6), eicosadienoic acid (20:2, n-6), eicosatrienoic acid (20:3, n-6), arachidonic acid (20:4, n-6), docosahexaenoic acid (22:6, n-6). From the group of n-3 acids the identified ones were: alpha-linolenic acid (18:3, n-3), eicosapentaenoic acid (20:5, n-3), docosapentaenoic acid (22:5, n-3) and docosahexaenoic acid (22:6, n-3). The obtained quotients of fatty acids n-6 through n-3 on the consecutive days were: 7.2:1-7.8:1, indicating a too low level of the n-3 acids in the investigated milk. The acids prevailing in human milk lipids were: oleic (18:1, n-9) and palmitic (16:0) which accounted for 37-39% and 25-26% respectively. The polyunsaturated to saturated fatty acid ratio (P:S) ranged from 0.28 to 0.33.  相似文献   

3.
The ability of derivatives of the essential fatty acids linoleic acid (C18:2, omega 6) and alpha-linolenic acid (C18:3, omega 3) to stimulate rates of protein synthesis and degradation was investigated in isolated intact muscles from fasted rabbits. Both omega 6 derivatives examined, arachidonic acid (C20:4, omega 6) and dihomo-gamma-linolenic acid (C20:3, omega 6), when added at concentrations up to 1 microM, stimulated the rate of protein synthesis and the release of prostaglandin F2 alpha (PGF2 alpha). Metabolites of the omega 6 series, namely eicosapentaenoic acid (C20:5, omega 3) and docosahexaenoic acid (C22:6, omega 3), were without effect on the rate of protein synthesis and resulted in a decrease in the release of PGF2 alpha. None of the fatty acids had a significant effect on the rate of protein degradation. Although insulin (100 mu units/ml) also stimulated rates of protein synthesis when added alone, none of the omega 3 or omega 6 fatty acids, when added with insulin at concentrations of 0.2 microM, potentiated the effect of the hormone.  相似文献   

4.
In order to study the effects of saturated fatty acids on delta6-desaturase activity, rat hepatocytes in primary culture were incubated with lauric (C12:0), myristic (C14:0) or palmitic (C16:0) acids. After optimization, the standard in vitro conditions for the measurement of delta6-desaturase activity were as follows: 60 micromol x L(-1) alpha-linolenic acid (C18:3n-3), reaction time of 20 min and protein content of 0.4 mg. Data showed that cell treatment with 0.5 mmol x L(-1) myristic acid during 43 h specifically increased delta6-desaturase activity. This improvement, reproducible for three substrates of delta6-desaturase, i.e. oleic acid (C18:1n-9), linoleic acid (C18:2n-6) and alpha-linoleic acid (C18:3n-3) was dose-dependent in the range 0.1-0.5 mmol x L(-1) myristic acid concentration.  相似文献   

5.
In the present study, the lipid raft composition of a canine mastocytoma cell line (C2) was analyzed. Lipid rafts were well separated from non-raft plasma membranes using a detergent-free isolation technique. To study the influence of n-3 and n-6 polyunsaturated fatty acids (PUFA) on raft fatty acid composition in comparison to non-raft cell membrane, C2 were supplemented with one of the following: α-linolenic acid, eicosapentaenoic acid, docosahexaenoic acid, linoleic acid or arachidonic acid. Enrichment of the culture medium with a specific PUFA resulted in an increase in the content of this fatty acid both in rafts and non-raft membranes. Contents of cholesterol and protein were found not to be affected by the changes in the fatty acid profiles. In conclusion, our data provide strong evidence that PUFA modulate lipid composition and physiological properties of membrane micro domains of mast cells which in turn may have effects on mast cell function.  相似文献   

6.
The phospholipids, particularly phosphatidylethanolamine, of brain gray matter are enriched with docosahexaenoic acid (22:6n-3). The importance of uptake of preformed 22:6n-3 from plasma compared with synthesis from the alpha-linolenic acid (18:3n-3) precursor in brain is not known. Deficiency of 18:3n-3 results in a compensatory increase in the n-6 docosapentaenoic acid (22:5n-6) in brain, which could be formed from the precursor linoleic acid (18:2n-6) in liver or brain. We studied n-3 and n-6 fatty acid incorporation in brain astrocytes cultured in chemically defined medium using delipidated serum supplemented with specific fatty acids. High performance liquid chromatography with evaporative light scattering detection and gas liquid chromatography were used to separate and quantify cell and media lipids and fatty acids. Although astrocytes are able to form 22:6n-3, incubation with 18:3n-3 or eicosapentaenoic acid (20:5n-3) resulted in a time and concentration dependent accumulation of 22:5n-3 and decrease in 22:6n-3 g/g cell fatty acids. Astrocytes cultured with 18:2n-6 failed to accumulate 22:5n-6. Astrocytes secreted cholesterol esters (CE) and phosphatidylethanolamine containing saturated and monounsaturated fatty acids, and arachidonic acid (20:4n-6) and 22:6n-3. These studies suggest conversion of 22:5n-3 limits 22:6n-3 synthesis, and show astrocytes release fatty acids in CE.  相似文献   

7.
PURPOSE OF REVIEW: There has been much debate over the practical utility of the dietary ratio of n-6 to n-3 polyunsaturated fatty acids in optimizing the benefits of n-3 fatty acids (C18-C22) on cardiovascular health. This review examines the supporting evidence from the OPTILIP study within the context of the emerging consensus on the value of this dietary metric. RECENT FINDINGS: The question of whether the ratio of n-6/n-3 polyunsaturated fatty acids or total amounts of dietary polyunsaturated fatty acids is of more importance to cardiovascular health has been addressed recently in a randomly controlled trial (OPTILIP) and in a stable isotope tracer study. These two studies were independently unanimous in concluding that the ratio of n-6/n-3 polyunsaturated fatty acids is of no value in modifying cardiovascular disease risk. The latter study also showed that the absolute amounts of dietary linoleic acid and alpha-linolenic acid are of relevance to the efficiency of conversion of alpha-linolenic acid to eicosapentaenoic acid and docosahexaenoic acid. SUMMARY: This review should help to settle any outstanding controversy over the dietary ratio of n-6/n-3 polyunsaturated fatty acids. It reinforces current recommendations to increase the consumption of preformed eicosapentaenoic acid/docosahexaenoic acid in fish, and supports dietary measures to increase and decrease intakes alpha-linolenic acid and linoleic acid, respectively, to promote the endogenous synthesis of these longer chain n-3 polyunsaturated fatty acids.  相似文献   

8.
Human lipid intake contains various amounts of trans fatty acids. Refined vegetable and frying oils, rich in linoleic acid and/or alpha-linolenic acid, are the main dietary sources of trans-18:2 and trans-18:3 fatty acids. The aim of the present study was to compare the oxidation of linoleic acid, alpha-linolenic acid, and their major trans isomers in human volunteers. For that purpose, TG, each containing two molecules of [1-(13)C]linoleic acid, alpha-[1-(13)C]linolenic acid, [1-(13)C]-9cis,12trans-18:2, or [1-(13)C]-9cis,12cis,15trans-18:3, were synthesized. Eight healthy young men ingested labeled TG mixed with 30 g of olive oil. Total CO(2) production and (13)CO(2) excretion were determined over 48 h. The pattern of oxidation was similar for the four fatty acids, with a peak at 8 h and a return to baseline at 24 h. Cumulative oxidation over 8 h of linoleic acid, 9cis,12trans-18:2, alpha-linolenic acid, and 9cis,12cis,15trans-18:3 were, respectively, 14.0 +/- 4.1%, 24.7 +/- 6.7%, 23.6 +/- 3.3%, and 23.4 +/- 3.7% of the oral load, showing that isomerization increases the postprandial oxidation of linoleic acid but not alpha-linolenic acid in men.  相似文献   

9.
A cDNA isolated from the prymnesiophyte micro-alga Isochrysis galbana, designated IgASE1, encodes a fatty acid elongating component that is specific for linoleic acid (C18:2n-6) and alpha-linolenic acid (C18:3n-3). Constitutive expression of IgASE1 in Arabidopsis resulted in the accumulation of eicosadienoic acid (EDA; C20:2n-6) and eicosatrienoic acid (ETrA; C20:3n-3) in all tissues examined, with no visible effects on plant morphology. Positional analysis of the various lipid classes indicated that these novel fatty acids were largely excluded from the sn-2 position of chloroplast galactolipids and seed triacylglycerol, whereas they were enriched in the same position in phosphatidylcholine. EDA and ETrA are precursors of arachidonic acid (C20:4n-6), eicosapentaenoic acid (C20:5n-3), and docosahexaenoic acid (C22:6n-3) synthesized via the so-called omega6 Delta8 desaturase and omega3 Delta8 desaturase biosynthetic pathways, respectively. The synthesis of significant quantities of EDA and ETrA in a higher plant is therefore a key step in the production of very long chain polyunsaturated fatty acid in oil-seed species. The results are further discussed in terms of prokaryotic and eukaryotic pathways of lipid synthesis in plants.  相似文献   

10.
The linoleic C18:2 (n-6) and linolenic C18:3 (n-3) are recognized as essential components of the diet. Free radical peroxidation of essential fatty acids (EFAs) present in lipoproteins produces oxidized low-density lipoproteins which play a critical role in the development of atherosclerosis. The accumulation of EFAs in the vascular wall and correlations between their content in the adipose tissue and atherosclerotic plaque have been confirmed. The present study was undertaken to determine the usefulness of a neural network for studying the exchange between tissues of linoleic, alpha-linolenic, and arachidonic acids-three fatty acids with a well-understood metabolism. Atheromatous plaques, adipose tissue, and serum were obtained from 31 patients who underwent surgery due to atherosclerotic stenosis of the abdominal aorta, iliac or femoral arteries. Fatty acids were extracted and separated as methyl esters using gas chromatography. Statistical analysis was done with STATISTICA neural networks package. Several correlations reported previously were corroborated and factors modifying the content of individual EFAs in adipose tissue and atherosclerotic plaque were revealed. Artificial neural networks (ANNs) were used to determine factors modifying the content of linoleic, alpha-linolenic, and arachidonic acids in human atheromatous plaques. The mechanism of exchange of some fatty acids between the adipose tissue, atheromatous plaque, and plasma is discussed. The results provide evidence for an effective mechanism of tissue uptake and turnover of linoleic acid. Reduced plasma levels of this acid are compensated by release from adipose tissue and atheromatous plaque. While alpha-linolenic acid is continuously taken up by the plaque, adipose tissue absorbs this acid to a certain level only. The dynamics of exchange of arachidonic acid between adipose tissue and atheromatous plaque reflects a minor role for adipose tissue in determining plaque content of this acid, suggesting that "de novo" synthesis is the chief source of arachidonic acid in plaques.  相似文献   

11.
An important question for mammalian nutrition is the relative efficiency of C18 versus C20 essential fatty acids (EFAs) for supporting the tissue composition of n-3 and n-6 pathway end products. One specific question is whether C22 EFAs are made available to tissues more effectively by dietary alpha-linolenic acid (18:3n-3) and linoleic acid (18:2n-6) or by dietary eicosapentaenoic acid (20:5n-3) and dihomo-gamma-linolenic acid (20:3n-6). To address this question in a direct manner, four stable isotope compounds were given simultaneously in a novel paradigm. A single oral dose of a mixture of 2H5-18:3n-3, 13C-U-20:5n-3, 13C-U-18:2n-6, and 2H5-20:3n-6 was administered to rats given a defined diet. There was a preferential in vivo conversion of arachidonic acid (20:4n-6) to docosatetraenoic acid (22:4n-6) and of 22:4n-6 to n-6 docosapentaenoic acid (22:5n-6) when the substrates originated from the C18 precursors. However, when the end products docosahexaenoic acid (22:6n-3) or 22:5n-6 were expressed as the total amount in the plasma compartment divided by the dosage, this parameter was 11-fold greater for 20:5n-3 than for 18:3n-3 and 14-fold greater for 20:3n-6 than for 18:2n-6. Thus, on a per dosage basis, the total amounts of n-3 and n-6 end products accreted in plasma were considerably greater for C20 EFA precursors relative to C18.  相似文献   

12.
This study reports methods for the quantitative determination of stable isotope-labeled essential fatty acids (EFAs) as well as an experiment in which deuterium-labeled linoleic acid (18:2n-6) and alpha-linolenic acid (18:3n-3) were compared with those labeled with carbon-13 in rat plasma in vivo. Standard curves were constructed to compensate for concentration and plasma matrix effects. It was observed that endogenous pools of fatty acids had a greater suppressing effect on the measurements of 13C-U-labeled EFAs relative to those labeled with 2H5. Using these methods, the in vivo metabolism of orally administered deuterated-linolenate, 13C-U-labeled linolenate, deuterated-linoleate, and 13C-U-labeled linoleate was compared in adult rats (n = 11). There were no significant differences in the concentrations of the 2H versus 13C isotopomers of 18:2n-6, 18:3n-3, arachidonic acid (20:4n-6), and docosahexaenoic acid (22:6n-3) in rat plasma samples at 24 h after dosing. Thus, there appears to be little isotope effect for 2H5- versus 13C-U-labeled EFAs when the data are calculated using the conventional standard curves and corrected for endogenous fatty acid pool size and matrix effects.  相似文献   

13.
Enzymes that lengthen the carbon chain of polyunsaturated fatty acids are key to the biosynthesis of the highly unsaturated fatty acids, arachidonic, eicosapentaenoic and docosahexaenoic acids from linoleic and alpha-linolenic acids. A Mortierella alpina cDNA polyunsaturated fatty acid elongase sequence identified mammalian, amphibian, zebrafish and insect expressed sequence tags (ESTs) in GenBank. Consensus primers were designed in conserved motifs and used to isolate full length cDNA from livers of several fish species by Rapid Amplification of cDNA Ends (RACE). The amplified cDNAs encoded putative open reading frames (ORFs) of 288-294 amino acids that were highly conserved among the fish species. Heterologous expression in yeast, Saccharomyces cerevisiae, demonstrated that all of the ORFs encoded elongases with the ability to lengthen polyunsaturated fatty acid substrates with chain lengths from C18 to C22 and also monounsaturated fatty acids, but not saturated fatty acids. There were differences in the functional competence of the elongases from different fish species. Most of the fish elongases showed a pattern of activity towards different fatty acid substrates in the rank order C18>C20>C22, although the tilapia and turbot elongases had similar activity towards 18:4n-3 and 20:5n-3. The fish elongases generally showed greater activity or similar activities with n-3 than with n-6 homologues, with the exception of the cod enzyme which was more active towards n-6 fatty acids.  相似文献   

14.
The effects of dietary supplementation of either alpha-linolenic acid (18:3(n-3)) or stearidonic acid (18:4(n-3)) in combination with either linoleic acid (18:2(n-6)) or gamma-linolenic acid (18:3(n-6)) on liver fatty acid composition in mice were examined. Essential fatty acid deficient male C57BL/6 mice were separated into four groups of seven each and were fed a fat-free semi-purified diet supplemented with 1% (w/w) fatty acid methyl ester mixture (1:1), 18:2(n-6)/18:3(n-3), 18:2(n-6)/18:4(n-3), 18:3(n-6)/18:3(n-3), or 18:3(n-6)/18:4(n-3). After 7 days on the diets, fatty acid compositions in liver phosphatidylcholine and phosphatidylethanolamine fractions were analyzed. In groups fed 18:4(n-3) (18:2(n-6)/18:4(n-3) or 18:3(n-6)/18:4(n-3)) as compared to those fed 18:3(n-3) (18:2(n-6)/18:3(n-3) or 18:3(n-6)/18:3(n-3)), the levels of 20:4(n-3), 20:5(n-3) and 22:5(n-3) were increased, whereas those of 20:3(n-6) and 20:4(n-6) were decreased. When 18:3(n-6) replaced 18:2(n-6) as the source of n-6 acids, the levels of 18:3(n-6), 20:3(n-6), 20:4(n-6) and 22:5(n-6) were increased, whereas those of 20:4(n-3) and 20:5(n-3) were reduced. Replacing 18:3(n-3) by 18:4(n-3) reduced the (n-6)/(n-3) ratio by approx. 30%, whereas replacing 18:2(n-6) by 18:3(n-6) increased the (n-6)/(n-3) ratio by approx. 2-fold. These findings indicated that delta 6-desaturase products were metabolized more readily than their precursors. Both products also competed for the subsequent metabolic enzymes. However, the n-6 fatty acids derived from 18:3(n-6) were incorporated more favourably into liver phospholipids than n-3 fatty acids derived from 18:4(n-3).  相似文献   

15.
Several polyunsaturated fatty acids (C18-C22 acids) have been compared in their uptake by human platelets and their acylation into glycerophospholipid subclasses. This was also studied in the presence of linoleic and/or arachidonic acids, the main fatty acids of plasma free fatty acid pool. Amongst C20 fatty acids, dihomogamma linolenic acid (20:3(n-6)), 5,8,11-icosatrienoic acid (20:3(n-9)) and arachidonic acid (20:4(n-6)) were better incorporated. The uptake of 5,8,11,14,17-icosapentaenoic acid (20:5(n-3)) was significantly lower and comparable to that of C22 fatty acids (7,10,13,16-docosatetraenoic acid (22:4(n-6)) and 4,7,10,13,16,19-docosahexaenoic acid (22:6(n-3)) and linoleic acid (18:2(n-6)). In this respect, linolenic acid (18:3(n-3)) appeared the poorest substrate. The bulk of each acid was acylated into glycerophospholipids although the presence of linoleic and/or arachidonic acids diverted a part towards neutral lipids. This was prominent for 18:3(n-3) and C22 fatty acids. The glycerophospholipid distribution of each acid differed substantially and was not affected by the presence of linoleic and or arachidonic acids, except for 18:3(n-3) and 22:6(n-3) that were strongly diverted towards phosphatidylethanolamine (PE) at the expense of phosphatidylcholine (PC). The main features were an efficient acylation of 20:3(n-9) into phosphatidylinositol (PI) followed by 20:3(n-6) and 20:4(n-6), then by 20:5(n-3) and 22:4(n-6), and finally 22:6(n-3) and C18 fatty acids. This was reciprocal to the acylation into PE and to a lesser extent into PC which remained the main storage species in all cases. We conclude that human platelets may exhibit a certain specificity for taking up polyunsaturated fatty acids both in terms of total uptake and glycerophospholipid subclass distribution. Also the presence of polyunsaturated fatty acids of normal plasma, like linoleic and arachidonic acids, may interact specifically with such an uptake and distribution.  相似文献   

16.
Primary culture is a suitable system to study lipid metabolism and polyunsaturated fatty acid biosynthesis. Sertoli cell-enriched preparations were used to determine the fatty acid composition after 5 and 7 days in culture (serum free) as well as the uptake and metabolism of [1-14C]eicosa-8,11,14-trienoic acid. The addition of unlabeled linoleic acid (0.2 and 2.0 microg/ml) was also evaluated. Fatty acid methyl esters derived from cellular lipids were analyzed by gas liquid chromatography and radiochromatography. After 5 days in culture, cells had significantly less 18:2, 20:4, 22:5 and 24:5 and more 18:3, 20:3, 22:4 and 24:4 n-6 fatty acids than non-cultured cells. On day 7, an additional increment in 22:4 n-6 and a decrease in linoleic, gamma-linoleic and 24:4 n-6 fatty acids were observed. The presence of linoleic acid (low dose) produced a significant decrease in saturated and monounsaturated acids and an increase in 18:2, 20:4 and 22:5 n-6 fatty acids. At a high concentration almost all fatty acids belonging to 18:2 n-6 increased significantly. The drop in 20:4 n-6/20:3 n-6 ratio was considered as an indirect evidence of a Delta 5 desaturase activity depression. This assumption was corroborated by studying the transformation of [1-14C]eicosa-8,11,14-trienoic acid into 20:4, 22:4, 22:5, 24:4 and 24:5 n-6 fatty acids. We conclude that Sertoli cells after 7 days in culture evidenced changes in the fatty acid profile similar to those described under fat deprivation. The addition of linoleic acid reverted this pattern and indicated that the Delta 5 desaturase activity is a limiting step in the polyunsaturated fatty acid biosynthesis.  相似文献   

17.
Statins are highly effective cholesterol-lowering drugs but may have broader effects on metabolism. This investigation examined effects of simvastatin on serum levels of n-6 and n-3 polyunsaturated fatty acids (PUFAs). Subjects were 106 healthy adults with hypercholesterolemia randomly assigned to receive placebo or 40 mg simvastatin daily for 24 weeks. Serum fatty acids were analyzed by gas chromatography. Total fatty acid concentration fell 22% in subjects receiving simvastatin (P<.001), with similar declines across most fatty acids. However, concentrations of arachidonic acid (AA, 20:4n-6), eicosapentanoic acid (EPA, 20:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) were unchanged. Relative percentages of linoleic acid (LA, 18:2n-6) and alpha-linolenic acid (LNA, 18:3n-3), decreased while AA and DHA increased (P's < or = .007). In addition, simvastatin increased the AA:EPA ratio from 15.5 to 18.8 (P<.01), and tended to increase the AA:DHA ratio (P=.053). Thus, simvastatin lowered serum fatty acid concentrations while also altering the relative percentages of important PUFAs.  相似文献   

18.
In this study, we have examined the effects of n-3 fatty acid deficient diets on the phospholipids (PL) molecular species composition in the hippocampus. Female rats were raised for two generations on diets containing linoleic acid (18:2n-6), with or without supplementation of alpha-linolenic acid (18:3n-3) or 18:3n-3 plus docosahexaenoic acid (22:6n-3). At 84 days of age, the hippocampal phospholipids were analyzed by reversed phase HPLC-electrospray ionization mass spectrometry. Depleting n-3 fatty acids from the diet led to a reduction of 22:6n-3 molecular species in phosphatidylcholine (PC), phosphatidylethanolamine (PE), PE-plasmalogens (PLE), and phosphatidylserine (PS) by 70-80%. In general, 22:6n-3 was replaced with 22:5n-6 but the replacement at the molecular species level did not always occur in a reciprocal manner, especially in PC and PLE. In PC, the 16:0,22:6n-3 species was replaced by 16:0,22:5n-6 and 18:0,22:5n-6. In PLE, substantial increases of both 22:5n-6 and 22:4n-6 species compensated for the decreases in 22:6n-3 species in n-3 fatty acid deficient groups. While the total PL content was not affected by n-3 deficiency, the relative distribution of PS decreased by 28% with a concomitant increase in PC.The observed decrease of 22:6n-3 species along with PS reduction may represent key biochemical changes underlying losses in brain-hippocampal function associated with n-3 deficiency.  相似文献   

19.
This study examined the effects of dietary alpha-linolenic acid deficiency followed or not by supplementation with phospholipids rich in n;-3 polyunsaturated fatty acid (PUFA) on the fatty acid composition of total phospholipids in 11 brain regions. Three weeks before mating, mice were fed a semisynthetic diet containing both linoleic and alpha-linolenic acid or deficient in alpha-linolenic acid. Pups were fed the same diet as their dams. At the age of 7 weeks, a part of the deficient group were supplemented with n;-3 polyunsaturated fatty acids (PUFA) from either egg yolk or pig brain phospholipids for 2 months. Saturated and monounsaturated fatty acid levels varied among brain regions and were not significantly affected by the diet. In control mice, the level of 22:6 n-3 was significantly higher in the frontal cortex compared to all regions. alpha-Linolenic acid deficiency decreased the level of 22:6 n-3 and was compensated by an increase in 22:5 n-6 in all regions. However, the brain regions were affected differently. After the pituitary gland, the frontal cortex, and the striatum were the most markedly affected with 40% reduction of 22:6 n-3. Supplementation with egg yolk or cerebral phospholipids in deficient mice restored a normal fatty acid composition in brain regions except for the frontal cortex. There was a regional distribution of the fatty acids in the brain and the impact of deficiency in alpha-linolenic acid was region-specific. Dietary egg yolk or cerebral phospholipids are an effective source of n-3 PUFA for the recovery of altered fatty acid composition induced by a diet deficient in n-3 PUFA.  相似文献   

20.
The biosynthesis of polyunsaturated fatty acids by rat sertoli cells.   总被引:1,自引:0,他引:1  
1. The biosynthesis of polyunsaturated fatty acids (PUFA) of the n-6 and n-3 series was investigated in cultured Sertoli cells. 18:2n-6, 18:3n-6, 20:2n-6, 18:3n-3 and 20:3n-3 were added individually at a concentration of 20 mumol to culture media. 2. Maximum incorporation of 20- and 22-carbon PUFA into membrane lipids was observed after 72 hr of incubation with all the exogenous substrates used. 3. As reported in other cell systems, the delta 6 desaturation was the first rate-limiting step; the major factor regulating this activity was the concentration of linoleic acid or alpha-linolenic acid in the medium. 4. Our data show that the delta 5-desaturation represents a second regulatory step in PUFA biosynthesis. 5. The sum of n-6 and n-3 PUFA of the 22 carbon chain length constantly represented between 11 and 12% of total fatty acids, regardless of the exogenous substrate used. 6. Our kinetic studies of the incorporation of PUFA of the n-6 and n-3 series did not permit detection of a delta 8 desaturase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号