首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
In a variety of applications, inertial sensors are used to estimate spatial parameters by double integrating over time their coordinate acceleration components. In human movement applications, the drift inherent to the accelerometer signals is often reduced by exploiting the cyclical nature of gait and under the hypothesis that the velocity of the sensor is zero at some point in stance. In this study, the validity of the latter hypothesis was investigated by determining the minimum velocity of progression of selected points of the foot and shank during the stance phase of the gait cycle while walking at three different speeds on level ground. The errors affecting the accuracy of the stride length estimation resulting from assuming a zero velocity at the beginning of the integration interval were evaluated on twenty healthy subjects. Results showed that the minimum velocity of the selected points on the foot and shank increased as gait speed increased. Whereas the average minimum velocity of the foot locations was lower than 0.011 m/s, the velocity of the shank locations were up to 0.049 m/s corresponding to a percent error of the stride length equal to 3.3%. The preferable foot locations for an inertial sensor resulted to be the calcaneus and the lateral aspect of the rearfoot. In estimating the stride length, the hypothesis that the velocity of the sensor can be set to zero sometimes during stance is acceptable only if the sensor is attached to the foot.  相似文献   

2.
Primate stride lengths during quadrupedal locomotion are very long when compared to those of nonprimate quadrupedal mammals at the speed of trot/gallop transition. These exceptional lengths are a consequence of the relatively long limbs of primates and the large angular excursions of their limbs during quadrupedalism. When quadrupedal primates employ bipedal gaits they exhibit much lower angular excursions. Consequently their bipedal stride lengths do not appear to be exceptional in length when compared to other mammals. Angular excursions of the lower limbs of modern humans are not exceptionally large. However, when running, humans exhibit relatively long periods of flight (i.e., they have low duty factors) when compared to other mammals including primates. Because of these long periods of flight and their relative long lower limbs, humans have running stride lengths that are at the lower end of the range of stride lengths of quadrupedal primates. The stride length of the Laetoli hominid trails are evaluated in this context.  相似文献   

3.
Hemiplegic gait: a kinematic analysis using walking speed as a basis.   总被引:8,自引:0,他引:8  
The kinematics of treadmill ambulation of stroke patients (N = 9) and healthy subjects (N = 4) was studied at a wide range of different velocities (i.e. 0.25-1.5 m s-1), with a focus on the transverse rotations of the trunk. Video recordings revealed, for both stroke patients and healthy subjects, similar relations between walking speed and stride length as well as stride frequency. The phase difference between pelvic and thoracic rotations (i.e. trunk rotation) and the total range of trunk rotation were almost linearly related to the walking speed. Healthy subjects showed a marked increase in pelvic rotation from 1 to 1.5 m s-1. Using dimensional analysis in a comparison between stroke patients and healthy subjects, invariances in the coordination of gait were found for stride length, stride frequency, pelvic rotation, and trunk rotation. Constant relations were obtained between, on the one hand, dimensionless velocity and, on the other, dimensionless stride length as well as stride frequency. Transitions were found between the velocities 0.75 and 1 m s-1 for dimensionless pelvic rotation and trunk rotation, indicating that, from this velocity range onwards, pelvic swing lengthens the stride: rotations of pelvis, thorax and trunk become tightly coordinated. On the basis of the dimensionless stride length, stride frequency, pelvic rotation and trunk rotation, deficits in the gait of stroke patients could be quantified. It is concluded that walking speed is an important control parameter, which should be used as a basic variable in the evaluation of the gait of stroke patients.  相似文献   

4.
The use of Inertial Measurement Units (IMUs) for spatial gait analysis has opened the door to unconstrained measurements within the home and community. Bandwidth, cost limitations, and ease of use has historically restricted the number and location of sensors worn on the body. In this paper, we describe a four-sensor configuration of IMUs placed on the shanks and thighs that is sufficient to provide an accurate measure of temporal gait parameters, spatial gait parameters, and joint angle dynamics during ambulation. Estimating spatial gait parameters solely from gyroscope data is preferred because gyroscopes are less susceptible to sensor noise and a system comprised of only gyroscopes uses decreased bandwidth compared to a typical 9 degree-of-freedom IMU. The purpose of this study was to determine the validity of a novel method of step length estimation using gyroscopes attached to the shanks and thighs. An Inverted Pendulum Model algorithm (IPM) was proposed to calculate step length, stride length, and gait speed. The algorithm incorporates heel-strike events and average forward velocity per step to make these assessments. IMU algorithm accuracy was determined via concurrent validity with an instrumented walkway and results explained via the collision model of gait. The IPM produced accurate estimates of step length, stride length, and gait speed with a mean difference of 3 cm and an RMSE of 6.6 cm for step length, thus establishing a new approach for spatial gait parameter calculation. The lack of numerical integration in IPM makes it well suited for use in continuous monitoring applications where sensor sampling rates are restricted.  相似文献   

5.
This study describes the validation of a new wearable system for assessment of 3D spatial parameters of gait. The new method is based on the detection of temporal parameters, coupled to optimized fusion and de-drifted integration of inertial signals. Composed of two wirelesses inertial modules attached on feet, the system provides stride length, stride velocity, foot clearance, and turning angle parameters at each gait cycle, based on the computation of 3D foot kinematics. Accuracy and precision of the proposed system were compared to an optical motion capture system as reference. Its repeatability across measurements (test-retest reliability) was also evaluated. Measurements were performed in 10 young (mean age 26.1±2.8 years) and 10 elderly volunteers (mean age 71.6±4.6 years) who were asked to perform U-shaped and 8-shaped walking trials, and then a 6-min walking test (6 MWT). A total of 974 gait cycles were used to compare gait parameters with the reference system. Mean accuracy±precision was 1.5±6.8 cm for stride length, 1.4±5.6 cm/s for stride velocity, 1.9±2.0 cm for foot clearance, and 1.6±6.1° for turning angle. Difference in gait performance was observed between young and elderly volunteers during the 6 MWT particularly in foot clearance. The proposed method allows to analyze various aspects of gait, including turns, gait initiation and termination, or inter-cycle variability. The system is lightweight, easy to wear and use, and suitable for clinical application requiring objective evaluation of gait outside of the lab environment.  相似文献   

6.

Background

Parkinson's disease (PD) is a neurodegenerative disorder resulting in motor disturbances that can impact normal gait. Although PD initially responds well to pharmacological treatment, as the disease progresses efficacy often fluctuates over the course of the day, and clinical management would benefit from long-term objective measures of gait. We have previously described a small device worn on the shank that uses acceleration and angular velocity sensors to calculate stride length and identify freezing of gait in PD patients. In this study we extend validation of the gait monitor to 24-h using simultaneous video observation of PD patients.

Methods

A sleep laboratory was adapted to perform 24-hr video monitoring of patients while wearing the device. Continuous video monitoring of a sleep lab, hallway, kitchen and conference room was performed using a 4-camera security system and recorded to hard disk. Subjects (3) wore the gait monitor on the left shank (just above the ankle) for a 24-h period beginning around 5 pm in the evening. Accuracy of stride length measures were assessed at the beginning and end of the 24-h epoch. Two independent observers rated the video logs to identify when subjects were walking or lying down.

Results

The mean error in stride length at the start of recording was 0.05 m (SD 0) and at the conclusion of the 24 h epoch was 0.06 m (SD 0.026). There was full agreement between observer coding of the video logs and the output from the gait monitor software; that is, for every video observation of the subject walking there was a corresponding pulse in the monitor data that indicated gait.

Conclusions

The accuracy of ambulatory stride length measurement was maintained over the 24-h period, and there was 100% agreement between the autonomous detection of locomotion by the gait monitor and video observation.  相似文献   

7.
The Timed Up & Go test (TUG) is functional test and is a part of routine clinical examinations. The instrumented Timed Up & Go test enables its segmentation to sub-tasks: sit-to-stand, walking forward, turning, walking back, stand-to-sit, and consequently the computation of task-specific parameters and sub-tasks separately. However, there are no data on whether walking forward parameters differ from the walking back parameters. This study tested the differences between walking forward and walking back in the TUG extended to 10 m for 17 spatio-temporal gait parameters. All parameters were obtained from a GAITRite® pressure sensitive walkway (CIR Systems, Inc.). The differences were assessed for healthy controls and Parkinson's disease (PD) patients. None of investigated parameters exhibited a difference between both gait subtasks for healthy subjects group. Five parameters of interest, namely velocity, step length, stride length, stride velocity, and the proportion of the double support phase with respect to gait cycle duration, showed a statistically significant difference between gait for walking forward and walking back in PD patients. Therefore, we recommend a separate assessment for walking forward and walking back rather than averaging both gaits together.  相似文献   

8.
In this study, we investigated the effect of walker type on gait pattern characteristics comparing normal gait (NG), gait with a regular walker (RW), and gait with a newly developed walker with vertical moveable handlebars, the Crosswalker (CW).Partial weight bearing (PWB) of the feet, peak joint angles and largest Lyapunov exponent (λmax) of the lower extremities (hip, knee, ankle) in the sagittal plane, and gait parameters (gait velocity, stride length, cadence, stride duration) were determined for 18 healthy young adults performing 10 walking trials for each walking condition. Assistive gait with the CW improved local dynamic stability in the lower extremities (hip, knee, ankle) compared with RW and was not significantly different from NG. However, peak joint angles and stride characteristics in CW were different from NG. The PWB on the feet was lower with the RW (70.3%) compared to NG (82.8%) and CW (80.9%). This improved stability may be beneficial for the elderly and patients with impaired gait. However, increased PWB is not beneficial for patients during the early stages of rehabilitation.  相似文献   

9.
This study examines the effects of a radical bariatric surgery-induced weight loss on the gait of obese subjects. We performed a three-dimensional motion analysis of lower limbs, and collected force platform data in the gait laboratory to calculate knee and hip joint moments. Subjects (n=13) performed walking trials in the laboratory before and 8.8 months (SD 4.2) after the surgical procedure at two gait speeds (1.2m/s and 1.5m/s). The average weight loss was 26.7kg (SD 9.2kg), corresponding to 21.5% (SD 6.8%) of the initial weight. We observed a decrease in step width at both gait speeds, but no changes in relative double support or swing time or stride length. A significant decrease was noted in the absolute values of peak knee abductor, peak knee flexor and peak hip extensor moments. However, the moment values normalized by the body weight and height remained unchanged in most cases. Thus, we conclude that weight loss reduces hip and knee joint moments in proportion to the amount of weight lost.  相似文献   

10.

Objective

The control of gait requires executive and attentional functions. As preterm children show executive and attentional deficits compared to full-term children, performing concurrent tasks that impose additional cognitive load may lead to poorer walking performance in preterm compared to full-term children. Knowledge regarding gait in preterm children after early childhood is scarce. We examined straight walking and if it is more affected in very preterm than in full-term children in dual-task paradigms.

Study design

Twenty preterm children with very low birth-weight (≤ 1500 g), 24 preterm children with birth-weight > 1500 g, and 44 full-term children, born between 2001 and 2006, were investigated. Gait was assessed using an electronic walkway system (GAITRite) while walking without a concurrent task (single-task) and while performing one concurrent (dual-task) or two concurrent (triple-task) tasks. Spatio-temporal gait parameters (gait velocity, cadence, stride length, single support time, double support time), normalized gait parameters (normalized velocity, normalized cadence, normalized stride length) and gait variability parameters (stride velocity variability, stride length variability) were analyzed.

Results

In dual- and triple-task conditions children showed decreased gait velocity, cadence, stride length, as well as increased single support time, double support time and gait variability compared to single-task walking. Further, results showed systematic decreases in stride velocity variability from preterm children with very low birth weight (≤ 1500 g) to preterm children with birth weight > 1500 g to full-term children. There were no significant interactions between walking conditions and prematurity status.

Conclusions

Dual and triple tasking affects gait of preterm and full-term children, confirming previous results that walking requires executive and attentional functions. Birth-weight dependent systematic changes in stride velocity variability indicate poorer walking performance in preterm children who were less mature at birth.  相似文献   

11.
The duration of stance and swing phase and step and stride length are important parameters in human gait. In this technical note a low-cost ultrasonic motion analysis system is described that is capable of measuring these temporal and spatial parameters while subjects walk on the floor. By using the propagation delay of sound when transmitted in air, this system is able to record the position of the subjects' feet. A small ultrasonic receiver is attached to both shoes of the subject while a transmitter is placed stationary on the floor. Four healthy subjects were used to test the device. Subtracting positions of the foot with zero velocity yielded step and stride length. The duration of stance and swing phase was calculated from heel-strike and toe-off. Comparison with data obtained from foot contact switches showed that applying two relative thresholds to the speed graph of the foot could reliably generate heel-strike and toe-off. Although the device is tested on healthy subjects in this study, it promises to be extremely valuable in examining pathological gait. When gait is asymmetrical, walking speed is not constant or when patients do not completely lift their feet, most existing devices will fail to correctly assess the proper gait parameters. Our device does not have this shortcoming and it will accurately demonstrate asymmetries and variations in the patient's gait. As an example, the recording of a left hemiplegic patient is presented in the discussion.  相似文献   

12.
The possibility of using quantitative kinematic traits as indirect selection criteria for sport performance could be beneficial to perform an early genetic evaluation of the animals. The genetic parameters for objectively measured kinematic traits under field conditions have been estimated for the first time, in order to potentially use these traits as indicators of gait quality in future selection of the Lusitano breed. The repeatability within three different types of training (dressage, bullfighting and untrained) was also discussed. A total of 176 males (4 to 14 years old) were recorded at trot in hand using a 3D videographic system. The speed and 10 kinematic traits were studied (one temporal, two linear and seven angular variables). The genetic parameters of the kinematic variables were estimated using VCE software. The heritability estimates were moderate to high (0.18 to 0.53). The stride length and the forelimb angular variables presented the highest heritabilities (0.49 to 0.53), whereas the hindlimb angular variables revealed the lowest values (0.18 to 0.40). More than half of the genetic correlations were moderately to highly positive (mostly 0.20 to 0.70; up to 0.88 between hindlimb traits). The dressage and bullfighting groups presented the highest repeatabilities (over 0.6) in the majority of the traits, maybe because of the acquired gait regularity expected in animals subjected to specific training, and suggesting a greater influence of the individuals over the kinematic traits studied in these two subpopulations than in the untrained subpopulation. The longer swing phase duration and the larger range of motion of the elbow, hock and pelvis joints observed in the dressage group may indicate a better gait quality of this group, according to FEI (International Equestrian Federation) standards. The bullfighting and untrained groups were more similar to each other in terms of kinematic traits. Selection of young horses for characteristics such as stride length and the hindlimbs traits can apparently contribute to further genetic improvement of the performance of Lusitano breed.  相似文献   

13.
Previous studies have differed in expectations about whether long limbs should increase or decrease the energetic cost of locomotion. It has recently been shown that relatively longer lower limbs (relative to body mass) reduce the energetic cost of human walking. Here we report on whether a relationship exists between limb length and cost of human running. Subjects whose measured lower-limb lengths were relatively long or short for their mass (as judged by deviations from predicted values based on a regression of lower-limb length on body mass) were selected. Eighteen human subjects rested in a seated position and ran on a treadmill at 2.68 ms(-1) while their expired gases were collected and analyzed; stride length was determined from videotapes. We found significant negative relationships between relative lower-limb length and two measures of cost. The partial correlation between net cost of transport and lower-limb length controlling for body mass was r=-0.69 (p=0.002). The partial correlation between the gross cost of locomotion at 2.68 ms(-1) and lower-limb length controlling for body mass was r=-0.61 (p=0.009). Thus, subjects with relatively longer lower limbs tend to have lower locomotor costs than those with relatively shorter lower limbs, similar to the results found for human walking. Contrary to general expectation, a linear relationship between stride length and lower-limb length was not found.  相似文献   

14.
We quantified gait and stride characteristics (velocity, frequency, stride length, stance and swing duration, and duty factor) in the bursts of locomotion of two small, intermittently moving, closely related South American gymnophthalmid lizards: Vanzosaura rubricauda and Procellosaurinus tetradactylus. They occur in different environments: V. rubricauda is widely distributed in open areas with various habitats and substrates, while P. tetradactylus is endemic to dunes in the semi-arid Brazilian Caatinga. Both use trot or walking trot characterised by a lateral sequence. For various substrates in a gradient of roughness (perspex, cardboard, sand, gravel), both species have low relative velocities in comparison with those reported for larger continuously moving lizards. To generate velocity, these animals increase stride frequency but decrease relative stride length. For these parameters, P. tetradactylus showed lower values than V. rubricauda. In their relative range of velocities, no significant differences in stride length and frequency were recorded for gravel. However, the slopes of a correlation between velocity and its components were lower in P. tetradactylus on cardboard, whereas on sand this was only observed for velocity and stride length. The data showed that the difference in rhythmic parameters between both species increased with the smoothness of the substrates. Moreover, P. tetradactylus shows a highly specialised locomotor strategy involving lower stride length and frequency for generating lower velocities than in V. rubricauda. This suggests the evolution of a central motor pattern generator to control slower limb movements and to produce fewer and longer pauses in intermittent locomotion.  相似文献   

15.
To investigate what sampling frequency is adequate for gait, the correlation of spatiotemporal parameters and the kinematic differences, between normal and CP spastic gait, for three sampling frequencies (100 Hz, 50 Hz, 25 Hz) were assessed. Spatiotemporal, angular, and linear displacement variables in the sagittal plane along with their 1st and 2nd derivatives were analyzed. Spatiotemporal stride parameters were highly correlated among the three sampling frequencies. The statistical model (2 × 3 ANOVA) gave no interactions between the factors group and frequency, indicating that group differences were invariant of sampling frequency. Lower frequencies led to smoother curves for all the variables, with a loss of information though, especially for the 2nd derivatives, having a homologous effect as the one of oversmoothing. It is proposed that in the circumstance that only spatiotemporal stride parameters, as well as angular and linear displacements are to be used, in gait reports, then commercial video camera speeds (25/30 Hz, 50/60 Hz when deinterlaced) can be considered as a low-cost solution to produce acceptable results.  相似文献   

16.
In this study, we examined Spatial–temporal gait stride parameters, lower extremity joint angles, ground reaction forces (GRF) components, and electromyographic activation patterns of 10 healthy elderly individuals (70 ± 6 years) walking in water and on land and compared them to a reference group of 10 younger adults (29 ± 6 years). They all walked at self-selected comfortable speeds both on land and while immersed in water at the Xiphoid process level. Concerning the elderly individuals, the main significant differences observed were that they presented shorter stride length, slower speed, lower GRF values, higher horizontal impulses, smaller knee range of motion, lower ankle dorsiflexion, and more knee flexion at the stride’s initial contact in water than on land. Concerning the comparison between elderly individuals and adults, elderly individuals walked significantly slower on land than adults but both groups presented the same speed walking in water. In water, elderly individuals presented significantly shorter stride length, lower stride duration, and higher stance period duration than younger adults. That is, elderly individuals’ adaptations to walking in water differ from those in the younger age group. This fact should be considered when prescribing rehabilitation or fitness programs for these populations.  相似文献   

17.
Modern three-dimensional gait analysis systems give information on joint angles and moments in the sagittal and coronal planes, for which normal ranges may not be readily available in the literature. Since patients with joint disease tend to walk slowly and with a short stride, it is essential that normal ranges for gait parameters should be defined with reference to speed of walking. This we have done using a population of 10 normal male subjects agea from 18 to 63 years, walking at speeds which range from very slow to very fast. The ranges of knee angle and moment are given, together with the changes in these parameters with walking speed. Peak knee flexion moment is strongly related to walking speed, whereas coronal plane knee angle is virtually independent of it. The stride length is probably the best basis for deciding the normal range for a particular measurement.  相似文献   

18.
The relationships between ground reaction forces, electromyographic activity (EMG), elasticity and running velocity were investigated at five speeds from submaximal to supramaximal levels in 11 male and 8 female sprinters. Supramaximal running was performed by a towing system. Reaction forces were measured on a force platform. EMGs were recorded telemetrically with surface electrodes from the vastus lateralis and gastrocnemius muscles, and elasticity of the contact leg was evaluated with spring constant values measured by film analysis. Data showed increases in most of the parameters studied with increasing running speed. At supramaximal velocity (10.36 +/- 0.31 m X s-1; 108.4 +/- 3.8%) the relative increase in running velocity correlated significantly (P less than 0.01) with the relative increase in stride rate of all subjects. In male subjects the relative change in stride rate correlated with the relative change of IEMG in the eccentric phase (P less than 0.05) between maximal and supramaximal runs. Running with the towing system caused a decrease in elasticity during the impact phase but this was significant (P less than 0.05) only in the female sprinters. The average net resultant force in the eccentric and concentric phases correlated significantly (P less than 0.05-0.001) with running velocity and stride length in the maximal run. It is concluded that increased neural activation in supramaximal effort positively affects stride rate and that average net resultant force as a specific force indicator is primarily related to stride length and that the values in this indicator may explain the difference in running velocity between men and women.  相似文献   

19.
The ground reaction force which acts on the foot during normal walking consists of the sum of two components: the support of the weight of the body and the acceleration of the body. The relationships between the initial loading rate of the lower limb (ignoring the contribution of the heelstrike transient) and the general gait parameters — cadence, stride length, and velocity — have been examined. Plots of the resultant ground reaction force were used to calculate the loading rate of the limb. A sample of 13 normal male subjects, aged from 18 to 63 years, walked at five different self-selected speeds. Velocity showed the highest correlation with loading rate (r = 0.95) and stride length the lowest (r = 0.85). The relationship between cadence and loading rate was non-linear.  相似文献   

20.
Different studies have analyzed the potential of the off-the-shelf Microsoft Kinect, in its different versions, to estimate spatiotemporal gait parameters as a portable markerless low-cost alternative to laboratory grade systems. However, variability in populations, measures, and methodologies prevents accurate comparison of the results. The objective of this study was to determine and compare the reliability of the existing Kinect-based methods to estimate spatiotemporal gait parameters in healthy and post-stroke adults. Forty-five healthy individuals and thirty-eight stroke survivors participated in this study. Participants walked five meters at a comfortable speed and their spatiotemporal gait parameters were estimated from the data retrieved by a Kinect v2, using the most common methods in the literature, and by visual inspection of the videotaped performance. Errors between both estimations were computed. For both healthy and post-stroke participants, highest accuracy was obtained when using the speed of the ankles to estimate gait speed (3.6–5.5 cm/s), stride length (2.5–5.5 cm), and stride time (about 45 ms), and when using the distance between the sacrum and the ankles and toes to estimate double support time (about 65 ms) and swing time (60–90 ms). Although the accuracy of these methods is limited, these measures could occasionally complement traditional tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号