首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Arabidopsis cDNAs encoding ATJ11, the smallest known J-domain protein, have been isolated and characterized. The precursor protein of 161 amino acid residues was synthesized in vitro and imported by isolated pea chloroplasts where it was localized to the stroma and cleaved to a mature protein of 125 amino acid residues. The mature protein consists of an 80 amino acid J-domain, and N- and C-terminal extensions of 24 and 21 amino acid residues, respectively, which show no similarity to regions in other DnaJ-related proteins. ATJ11 produced in Escherichia coli stimulated the weak ATPase activity of E. coli DnaK, but was unable to stimulate refolding of firefly luciferase by DnaK, and inhibited refolding by DnaK, DnaJ and GrpE. ATJ11 is encoded by a single-copy gene on chromosome 4, and is expressed in all plant organs examined. A paralogue of ATJ11, showing 72% identity, is encoded in a 4.5 Mb duplication of chromosome 4 on chromosome 2. These proteins represent a novel class of J-domain proteins.  相似文献   

2.
beta-Amylase is one of the most abundant starch degrading activities found in leaves and other plant organs. Despite its abundance, most if not all of this activity has been reported to be extrachloroplastic and for this reason, it has been assumed that beta-amylases are not involved in the metabolism of chloroplast-localized transitory leaf starch. However, we have identified a novel beta-amylase gene, designated ct-Bmy, which is located on chromosome IV of Arabidopsis thaliana. Ct-Bmy encodes a precursor protein which contains a typical N-terminal chloroplast import signal and is highly similar at the amino acid level to extrachloroplastic beta-amylases of higher plants. Expression of the ct-Bmy cDNA in E. coli confirmed that the encoded protein possesses beta-amylase activity. CT-BMY protein, synthesized in vitro, was efficiently imported by isolated pea chloroplasts and shown to be located in the stroma. In addition, fusions between the predicted CT-BMY transit peptide and jellyfish green fluorescent protein (GFP) or the entire CT-BMY protein and GFP showed accumulation in vivo in chloroplasts of Arabidopsis. Expression of the GUS gene fused to ct-Bmy promoter sequences was investigated in transgenic tobacco plants. GUS activity was most strongly expressed in the palisade cell layer in the leaf blade and in chlorenchyma cells associated with the vascular strands in petioles and stems. Histochemical staining of whole seedlings showed that GUS activity was largely confined to the cotyledons during the first 2 weeks of growth and appeared in the first true leaves at approximately 4 weeks.  相似文献   

3.
Entus R  Poling M  Herrmann KM 《Plant physiology》2002,129(4):1866-1871
The cDNA for 3-deoxy-D-arabino-heptulosonate 7-phosphate synthase of Arabidopsis encodes a polypeptide with an amino-terminal signal sequence for plastid import. A cDNA fragment encoding the processed form of the enzyme was expressed in Escherichia coli. The resulting protein was purified to electrophoretic homogeneity. The enzyme requires Mn(2+) and reduced thioredoxin (TRX) for activity. Spinach (Spinacia oleracea) TRX f has an apparent dissociation constant for the enzyme of about 0.2 microM. The corresponding constant for TRX m is orders of magnitude higher. In the absence of TRX, dithiothreitol partially activates the enzyme. Upon alkylation of the enzyme with iodoacetamide, the dependence on a reducing agent is lost. These results indicate that the first enzyme in the shikimate pathway of Arabidopsis appears to be regulated by the ferredoxin/TRX redox control of the chloroplast.  相似文献   

4.
Abiotic stresses induce oxidative stress, which modifies the level of several metabolites including amino acids. The redox control of free amino acid profile was monitored in wild‐type and ascorbate or glutathione deficient mutant Arabidopsis thaliana plants before and after hydroponic treatment with various redox agents. Both mutations and treatments modified the size and redox state of the ascorbate (AsA) and/or glutathione (GSH) pools. The total free amino acid content was increased by AsA, GSH and H2O2 in all three genotypes and a very large (threefold) increase was observed in the GSH‐deficient pad2‐1 mutant after GSH treatment compared with the untreated wild‐type plants. Addition of GSH reduced the ratio of amino acids belonging to the glutamate family on a large scale and increased the relative amount of non‐proteinogenic amino acids. The latter change was because of the large increase in the content of alpha‐aminoadipate, an inhibitor of glutamatic acid (Glu) transport. Most of the treatments increased the proline (Pro) content, which effect was due to the activation of genes involved in Pro synthesis. Although all studied redox compounds influenced the amount of free amino acids and a mostly positive, very close (r > 0.9) correlation exists between these parameters, a special regulatory role of GSH could be presumed due to its more powerful effect. This may originate from the thiol/disulphide conversion or (de)glutathionylation of enzymes participating in the amino acid metabolism.  相似文献   

5.
Thioredoxin (NTR/TRX) and glutathione (GSH/GRX) are the two major systems that play a key role in the maintenance of cellular redox homeostasis. They are essential for plant development, cell division or the response to environmental stresses. In a recent article,1 we studied the interplay between the NADP-linked thioredoxin and glutathione systems in auxin signaling genetically, by associating TRX reductase (ntra ntrb) and glutathione biosynthesis (cad2) mutations. We show that these two thiol reduction pathways interfere with developmental processes. This occurs through modulation of auxin activity as shown by genetic analyses of loss of function mutations in a triple ntra ntrb cad2 mutant. The triple mutant develops almost normally at the rosette stage but fails to generate lateral organs from the inflorescence meristem, producing almost naked stems that are reminiscent of mutants affected in PAT (polar auxin transport) or biosynthesis. The triple mutant exhibits other defects in processes regulated by auxin, including a loss of apical dominance, vasculature defects and reduced secondary root production. Furthermore, it has lower auxin (IAA) levels and decreased capacity for PAT, suggesting that the NTR and glutathione pathways influence inflorescence meristem development through regulation of auxin transport and metabolism.Key words: arabidopsis, NTS pathway, NGS pathway, thioredoxin (TRX), glutaredoxine (GRX), polar auxin transport (PAT), auxin biosynthesis, pin-like phenotype, apical dominance, meristematic activityExposure of living organisms to environmental stresses triggers various defense and developmental responses. Redox signaling is involved in many aspects of these responses.26 The key players in these responses are the NADPH-dependent glutathione/glutaredoxin system (NGS) and the NADPH-dependent thioredoxin system (NTS). TRX and GRX play key roles in the maintenance of cellular redox homeostasis.710 Genetic approaches aiming to identify functions of TRX and GRX in knock-out plants have largely been limited by the absence of phenotypes of single mutants, presumably due to functional redundancies among members of the multigene families of TRX and GRX.11 Interplay between NTS and NGS pathways have been studied in different organisms1217 and association of mutants involved in these two pathways have recently revealed new functions in several aspects of plant development.46  相似文献   

6.
Glutaredoxins (GRXs) are small, ubiquitous oxidoreductases that have been intensively studied in E. COLI, yeast and humans. They are involved in a large variety of cellular processes and exert a crucial function in the response to oxidative stress. GRXs can reduce disulfides by way of conserved cysteines, located in conserved active site motifs. As in E. COLI, yeast, and humans, GRXs with active sites of the CPYC and CGFS type are also found in lower and higher plants, however, little has been known about their function. Surprisingly, 21 GRXs from ARABIDOPSIS THALIANA contain a novel, plant-specific CC type motif. Lately, information on the function of CC type GRXs and redox regulation, in general, is accumulating. This review focuses on recent findings indicating that GRXs, glutathione and redox regulation, in general, seem to be involved in different processes of development, so far, namely in the formation of the flower. Recent advances in EST and genome sequencing projects allowed searching for the presence of the three different types of the GRX subclasses in other evolutionary informative plant species. A comparison of the GRX subclass composition from PHYSCOMITRELLA, PINUS, ORYZA, POPULUS, and ARABIDOPSIS is presented. This analysis revealed that only two CC type GRXs exist in the bryophyte PHYSCOMITRELLA and that the CC type GRXs group expanded during the evolution of land plants. The existence of a large CC type subclass in angiosperms supports the assumption that their capability to modify target protein activity posttranslationally has been integrated into crucial plant specific processes involved in higher plant development.  相似文献   

7.
In Arabidopsis thaliana the PALE CRESS (PAC) gene product is required for both chloroplast and cell differentiation. Transgenic Arabidopsis plants expressing a translational fusion of the N-terminal part of the PAC protein harboring the complete plastid-targeting sequence and the green fluorescent protein (GFP) exhibit high GFP fluorescence. Detailed analyses based on confocal imaging of various tissues and cell types revealed that the PAC-GFP fusion protein accumulates in chloroplasts of mature stomatal guard cells. The GFP fluorescence within the guard cell chloroplasts is not evenly distributed and appears to be concentrated in suborganellar regions. GFP localization studies demonstrate that thin tubular projections emanating from chloroplasts and etioplasts often connect the organelles with each other. Furthermore, imaging of non-green and etiolated tissue further revealed that GFP fluorescence is present in proplastids, etioplasts, chromoplasts, and amyloplasts. Even photobleaching of carotenoid-free plastids does not affect PAC-GFP accumulation in the organelles of the guard cells indicating that the protein translocation machinery is functional in all types of plastids. The specific accumulation of GFP in guard cell chloroplasts, their tubular connections, the translocation of the precursor polypeptide into the different types of organelles, as well as the use of a plastid-targeted GFP protein as a versatile marker is discussed in the context of previously described observations.  相似文献   

8.
The levels of beta-amylase activity and of the mRNA for beta-amylase in rosette leaves of Arabidopsis thaliana (L.) Heynh. increased significantly, with the concomitant accumulation of starch, when whole plants or excised mature leaves were supplied with sucrose. A supply of glucose or fructose, but not of mannitol or sorbitol, to plants also induced the expression of the gene for beta-amylase, and the induction occurred not only in rosette leaves but also in roots, stems, and bracts. These results suggest that the gene for beta-amylase of Arabidopsis is subject to regulation by a carbohydrate metabolic signal, and expression of the gene in various tissues may be regulated by the carbon partitioning and sink-source interactions in the whole plant. The sugar-inducible expression of the gene in Arabidopsis was severely repressed in the absence of light. The sugar-inducible expression in the light was not inhibited by 3(3,4-dichlorophenyl)-1,1-dimethylurea or by chloramphenicol, but it was inhibited by cycloheximide. These results suggest that a light-induced signal and de novo synthesis of proteins in the cytoplasm are involved in the regulation. A fusion gene composed of the 5' upstream region of the gene for beta-amylase from Arabidopsis and the coding sequence of beta-glucuronidase showed the sugar-inducible expression in a light-dependent manner in rosette leaves of transgenic Arabidopsis.  相似文献   

9.
10.
11.
AtTDX is an enzyme present in Arabidopsis thaliana which is composed of two domains, a thioredoxin (Trx)-motif containing domain and a tetratricopeptide (TPR)-repeat domain. This enzyme has been shown to function as both a thioredoxin and a chaperone. The midpoint potential (Em) of AtTDX was determined by redox titrations using the thiol-specific modifiers, monobromobimane (mBBr) and mal-PEG. A NADPH/Trx reductase (NTR) system was used both to validate these Em determination methods and to demonstrate that AtTDX is an electron-accepting substrate for NTR. Titrations of full-length AtTDX revealed the presence of a single two-electron couple with an Em value of approximately ?260 mV at pH 7.0. The two cysteines present in a typical, conserved Trx active site (WCGPC), which are likely to play a role in the electron transfer processes catalyzed by AtTDX, have been replaced by serines by site-directed mutagenesis. These replacements (i.e., C304S, C307S, and C304S/C307S) resulted in a complete loss of the redox process detected using either the mBBr or mal-PEG method to monitor disulfide/dithiol redox couples. This result supports the conclusion that the couple with an Em value of ?260 mV is a disulfide/dithiol couple involving Cys304 and Cys307. Redox titrations for the separately-expressed Trx-motif containing C-domain also revealed the presence of a single two-electron couple with an Em value of approximately ?260 mV at 20 °C. The fact that these two Em values are identical, provides additional support for assignment of the redox couple to a disulfide/dithiol involving C304 and C307. It was found that, while the disulfide/dithiol redox chemistry of AtTDX was not affected by increasing the temperature to 40 °C, no redox transitions were observed at 50 °C and higher temperatures. In contrast, Escherichia coli thioredoxin was shown to remain redox-active at temperatures as high as 60 °C. The temperature-dependence of the AtTDX redox titration is similar to that observed for the redox activity of the protein in enzymatic assays.  相似文献   

12.
13.
S Mita  H Hirano    K Nakamura 《Plant physiology》1997,114(2):575-582
Expression of a beta-amylase gene of Arabidopsis thaliana (AT beta-Amy) is regulated by sugars. We identified a mutant, hba1, in which the level of expression of AT beta-Amy in leaves of plants that had been grown in a medium with 2% sucrose was significantly higher than that in wild-type plants. Higher that wild-type levels of beta-amylase in hba1 plants depended on the presence of 1 to 2% sucrose or 1% glucose in the medium, whereas leaves of mutant plants grown with higher levels of sugars had beta-amylase activities similar to those in leaves of wild-type plants. The hba1 phenotype was recessive and did not affect levels of sugars and starch in leaves. It is proposed that expression of AT beta-Amy is regulated by a combination of both positive and negative factors, dependent on the level of sugars, and that HBA1 might function to maintain low-level expression of AT beta-Amy until the level of sugars reaches some high level. Results of crosses of hba1 plants with transgenic plants that harbored an AT beta-Amy:GUS transgene with 1587 bp of the 5'-upstream region suggested that HBA1 affects expressions of AT beta-Amy in trans. The hba1 plants also had growth defects and elevated levels of anthocyanin in their petioles. However, sugar-related changes in levels of several mRNAs other than beta-amylase mRNA were unaffected in hba1 plants, suggesting that only a subset of sugar-regulated genes is under the control HBA1.  相似文献   

14.
Copper (Cu) is an essential element whose localization within cells must be carefully controlled to avoid Cu-dependent redox cycling. Metallothioneins (MTs) are cysteine-rich metal-binding proteins that exert cytoprotective effects during metal exposure and oxidative stress. The specific role of MTs, however, in modulating Cu-dependent redox cycling remains unresolved. Our studies utilized a chemically defined model system to study MT modulation of Cu-dependent redox cycling under reducing (Cu/ascorbate) and mild oxidizing (Cu/ascorbate + H2O2) conditions. In the presence of Cu and ascorbate, MT blocked Cu-dependent lipid oxidation and ascorbyl radical formation with a stoichiometry corresponding to Cu/MT ratios 相似文献   

15.
Heo J  Raines KW  Mocanu V  Campbell SL 《Biochemistry》2006,45(48):14481-14489
We have previously shown that redox agents including superoxide anion radical and nitrogen dioxide can react with GXXXXGK(S/T)C motif-containing GTPases (i.e., Rac1, Cdc42, and RhoA) to stimulate guanine nucleotide release. We now show that the reaction of RhoA with redox agents leads to different functional consequences from that of Rac1 and Cdc42 due to the presence of an additional cysteine (GXXXCGK(S/T)C) in the RhoA redox-active motif. While reaction of redox agents with RhoA stimulates guanine nucleotide dissociation, RhoA is subsequently inactivated through formation of an intramolecular disulfide that prevents guanine nucleotide binding thereby causing RhoA inactivation. Thus, redox agents may function to downregulate RhoA activity under conditions that stimulate Rac1 and Cdc42 activity. The opposing functions of these GTPases may be due in part to their differential redox regulation. In addition, the results presented herein suggest that the platinated-chemotherapeutic agent, cisplatin, which is known for targeting nucleic acids, reacts with RhoA to produce a RhoA thiol-cisplatin-thiol adduct, leading to inactivation of RhoA. Similarly, certain arsenic complexes (i.e., arsenate and arsenic trioxide) may inactivate RhoA by bridging the cysteine residues in the GXXXCGK(S/T)C motif. Thus, in addition to redox agents, platinated-chemotherapeutic agents and arsenic complexes may modulate the activity of GTPases containing the GXXXCGK(S/T)C motif (i.e., RhoA and RhoB).  相似文献   

16.
Plant protein tyrosine phosphatases (PTPs) are important in regulating cellular responses to redox change through their reversible inactivation under oxidative conditions. Studies on the soybean (Glycine max) GmPTP have shown that, compared with its mammalian counterparts, the plant enzyme is relatively insensitive to inactivation by H2O2 but hypersensitive (k(inact) = 559 M(-1) s(-1)) to S-glutathionylation (thiolation) promoted by the presence of oxidized glutathione (GSSG). Through a combination of chemical and mutational modification studies, three of the seven cysteine residues of GmPTP have been identified by mass spectrometry as being able to inactivate the enzyme when thiolated by GSSG or alkylated with iodoacetamide. Conserved Cys 266 was shown to be essential for catalysis but surprisingly resistant to S-modification, whereas the regulatory Cys 78 and Cys 176 were readily thiolated and/or alkylated. Mutagenesis of these cysteines showed that all three residues were in proximity of each other, regulating each's reactivity to S-modifying agents. Through a combination of protein modification and kinetic experiments, we conclude that the inactivation of GmPTP by GSSG is regulated at two levels. Cys 176 appears to be required to promote the formation of the reduced form of Cys 266, which is otherwise unreactive. When thiolated, Cys 176 immediately inactivates the enzyme, and this is followed by the thiolation of Cys 78, which undergoes a slow disulfide exchange with Cys 266 giving rise to a Cys 78-Cys 266 disulfide. We speculate that this two-tiered protection is required for regulation of GmPTP under highly oxidizing conditions.  相似文献   

17.
Chloroplasts are a significant site for reactive oxygen species production under illumination and, thus, possess a well-organized antioxidant system involving ascorbate. Ascorbate recycling occurs in different manners in this system, including a dehydroascorbate reductase (DHAR) reaction. We herein investigated the physiological significance of DHAR3 in photo-oxidative stress tolerance in Arabidopsis. GFP-fused DHAR3 protein was targeted to chloroplasts in Arabidopsis leaves. A DHAR3 knockout mutant exhibited sensitivity to high light (HL). Under HL, the ascorbate redox states were similar in mutant and wild-type plants, while total ascorbate content was significantly lower in the mutant, suggesting that DHAR3 contributes, at least to some extent, to ascorbate recycling. Activation of monodehydroascorbate reductase occurred in dhar3 mutant, which might compensate for the lack of DHAR3. Interestingly, glutathione oxidation was consistently inhibited in dhar3 mutant. These findings indicate that DHAR3 regulates both ascorbate and glutathione redox states to acclimate to HL.  相似文献   

18.
Regulation of enzyme activity based on thiol-disulfide exchange is a regulatory mechanism in which the protein disulfide reductase activity of thioredoxins (TRXs) plays a central role. Plant chloroplasts are equipped with a complex set of up to 20 TRXs and TRX-like proteins, the activity of which is supported by reducing power provided by photosynthetically reduced ferredoxin (FDX) with the participation of a FDX-dependent TRX reductase (FTR). Therefore, the FDX–FTR–TRXs pathway allows the regulation of redox-sensitive chloroplast enzymes in response to light. In addition, chloroplasts contain an NADPH-dependent redox system, termed NTRC, which allows the use of NADPH in the redox network of these organelles. Genetic approaches using mutants of Arabidopsis (Arabidopsis thaliana) in combination with biochemical and physiological studies have shown that both redox systems, NTRC and FDX-FTR-TRXs, participate in fine-tuning chloroplast performance in response to changes in light intensity. Moreover, these studies revealed the participation of 2-Cys peroxiredoxin (2-Cys PRX), a thiol-dependent peroxidase, in the control of the reducing activity of chloroplast TRXs as well as in the rapid oxidation of stromal enzymes upon darkness. In this review, we provide an update on recent findings regarding the redox regulatory network of plant chloroplasts, focusing on the functional relationship of 2-Cys PRXs with NTRC and the FDX–FTR–TRXs redox systems for fine-tuning chloroplast performance in response to changes in light intensity and darkness. Finally, we consider redox regulation as an additional layer of control of the signaling function of the chloroplast.

Thiol-dependent redox regulatory and antioxidant systems act concertedly to modulate chloroplast metabolism and signaling function.

Advances
  • Plant chloroplasts harbor a complex redox network composed of the FDX–FTR–TRXs pathway, linking redox regulation to light, and NTRC, an NADPH-dependent system required for the activity of TRXs. Both systems adjust chloroplast performance to environmental cues.
  • A relevant function of NTRC is redox control of 2-Cys PRXs, which maintains the reductive activity of chloroplast TRXs in the light. The NTRC–2-Cys PRXs redox system helps fine-tune the redox state of chloroplast enzymes thereby adjusting photosynthetic performance to changes in light.
  • 2-Cys PRXs participate in the rapid oxidative inactivation of chloroplast enzymes in the dark, mediating the transfer of reducing equivalents from reduced enzymes, via TRXs, to hydrogen peroxide.
  • Involvement of redox regulation in chloroplast retrograde signaling modulates early stages of plant development and response to environmental stress.
  相似文献   

19.
Ran, a small Ras-like GTP-binding nuclear protein, plays a key role in modulation of various cellular signaling events including the cell cycle. This study shows that a cellular redox agent (nitrogen dioxide) facilitates Ran guanine nucleotide dissociation, and identifies a unique Ran redox architecture involved in that process. Sequence analysis suggests that Dexras1 and Rhes GTPases also possess the Ran redox architecture. As Ran releases an intact nucleotide, the redox regulation mechanism of Ran is likely to differ from the radical-based guanine nucleotide modification mechanism suggested for Ras and Rho GTPases. These results provide a mechanistic reason for the previously observed oxidative stress-induced perturbation of the Ran-mediated nuclear import, and suggest that oxidative stress could be a factor in the regulation of cell signal transduction pathways associated with Ran.  相似文献   

20.
The protein-tyrosine phosphatases (PTPs) form a large family of signaling proteins with essential functions in embryonic development and adult physiology. The PTPs are characterized by an absolutely conserved catalytic site cysteine with a low pKa due to its microenvironment, making it vulnerable to oxidation. PTPs are differentially oxidized and inactivated in vitro and in living cells. Many cellular stimuli induce a shift in the cellular redox state towards oxidation and evidence is accumulating that at least part of the cellular responses to these stimuli are due to specific, transient inactivation of PTPs, indicating that PTPs are important sensors of the cellular redox state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号