首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous studies demonstrated that Ca2+ ionophores augment the pancreatic enzyme secretion caused by phorbol esters. The present study was performed to determine the nature of the cellular Ca2+ effects responsible for the augmentation. Relatively low concentrations (0.3-1.0 microM) of the nonfluorescent Ca2+ ionophore, 4-bromo-A23187 (Br-A23187), did not measurably increase free cytosolic Ca2+ ([Ca2+]i) and caused little or no enzyme release from guinea pig pancreatic acini. However, these concentrations of Br-A23187 augmented the amylase release caused by the phorbol ester, 4 beta-phorbol 12-myristate 13-acetate (PMA). This augmentation occurred in the absence of extracellular Ca2+ as long as the intracellular agonist-sensitive pool contained Ca2+. Greater concentrations of Br-A23187 (3-10 microM) alone caused transient increases in [Ca2+]i and transient increases in amylase release. Although not resulting in an increase in [Ca2+]i, the low concentrations of Br-A23187 caused release of Ca2+ from the intracellular agonist-sensitive pool. These results suggest that Ca2+ mediates enzyme release by two distinct mechanisms in the pancreatic acinar cell. First, an increase in [Ca2+]i alone mediates enzyme release. Second, Ca2+ release from the agonist-sensitive pool not resulting in a measurable increase in [Ca2+]i augments enzyme release stimulated by a phorbol ester. The second effect of Ca2+ may be due to a small localized change in cell Ca2+ or an induction of cytosolic Ca2+ oscillations.  相似文献   

2.
This study investigates the effects of dephostatin, a new tyrosine phosphatase inhibitor, on intracellular free calcium concentration ([Ca2+]i) and amylase secretion in collagenase dispersed rat pancreatic acinar cells. Dephostatin evoked a sustained elevation in [Ca2+]i by mobilizing calcium from intracellular calcium stores in either the absence of extracellular calcium or the presence of lanthanium chloride (LaCl3). Pretreatment of acinar cells with dephostatin prevented cholecystokinin-octapeptide (CCK-8)-induced signal of [Ca2+]i and inhibited the oscillatory pattern initiated by aluminium fluoride (AlF- 4), whereas co-incubation with CCK-8 enhances the plateau phase of calcium response to CCK-8 without modifying the transient calcium spike. The effects of dephostatin on calcium mobilization were reversed by the presence of the sulfhydryl reducing agent, dithiothreitol. Stimulation of acinar cells with thapsigargin in the absence of extracellular Ca2+ resulted in a transient rise in [Ca2+]i . Application of dephostatin in the continuous presence of thapsigargin caused a small but sustained elevation in [Ca2+]i . These results suggest that dephostatin can mobilize Ca2+ from both a thapsigargin-sensitive and thapsigargin-insensitive intracellular stores in pancreatic acinar cells. In addition, dephostatin can stimulate the release of amylase from pancreatic acinar cells and moreover, reduce the secretory response to CCK-8. The results indicate that dephostatin can release calcium from intracellular calcium pools and consequently induces amylase secretion in pancreatic acinar cells. These effects are likely due to the oxidizing effects of this compound.  相似文献   

3.
The aliphatic alcohol octanol is thought to modulate enzyme secretion from the exocrine pancreas by the inhibition of gap junction permeability. We have now investigated the effects of octanol on salivary secretion and intracellular calcium concentration ([Ca2+]i), measured in isolated perfused rat mandibular glands and in isolated mandibular acinar cells respectively. Stimulation of perfused glands with 10 microM carbachol (CCh) evoked a rapid increase in fluid secretion followed by a decrease to a sustained elevated level. Application of 1 mM octanol during CCh stimulation inhibited fluid secretion reversibly. In isolated acini, the CCh-induced [Ca2+]i increase was reversibly inhibited by the same concentration of octanol. However, octanol also inhibited the increase in [Ca2+]i in single acinar cells where gap junctions were no longer functional, indicating that octanol directly affected the intracellular Ca2+ signalling pathway. The initial increase in [Ca2+]i induced by 0.5-10 microM CCh, which is due to Ca2+ release from IP3-sensitive Ca2+ stores, was not affected by pretreatment with octanol. In contrast, CCh-, phenylephrine- or thapsigargin-induced Ca2+ entry was almost completely and reversibly inhibited by octanol. Octanol also blocked agonist-evoked Ca2+ entry in pancreatic acinar cells, and thapsigargin-evoked Ca2+ entry in fibroblasts. These data strongly suggest that octanol blocks salivary secretion from mandibular gland by the inhibition of capacitative Ca2+ entry, and raise the possibility that octanol may be a useful tool for inhibiting agonist-evoked Ca2+ entry pathways.  相似文献   

4.
Carbachol (CCh), a muscarinic-cholinergic agonist, increased both cytosolic free calcium concentration ([Ca2+]i) and amylase release in rat parotid acinar cells or acini in a dose-dependent manner. Treatment of acinar cells with the intracellular Ca2+ antagonist, 8-(N,N-diethylamino)octyl-3,4,5-trimethoxybenzoate (TMB-8), or the intracellular Ca2+ chelator, 1,2-bis(O-aminophenoxy)ethane-N,N,N'N'-tetraacetic acid (BAPTA), strongly attenuated the increases in [Ca2+]i evoked by CCh, but amylase release from acini was not significantly suppressed by the treatment with TMB-8 or BAPTA. Low concentrations (0.02-0.5 microM) of ionomycin, a Ca2+ ionophore, caused increases in [Ca2+]i comparable to those induced by CCh, but the same concentrations had only a little effect on amylase release. The protein kinase C activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), stimulated amylase release in quantities similar to those induced by CCh, although TPA alone did not cause any change in [Ca2+]i. Combined addition of TPA and ionomycin potentiated only modestly amylase release stimulated by TPA alone. Staurosporine, a protein kinase C-inhibitor, similarly inhibited both the CCh- and TPA-induced amylase release. These results suggest that an increase in [Ca2+]i elicited by CCh does not play an essential role for inducing amylase release in rat parotid acini. Amylase release by muscarinic stimulation may be mediated mainly by activation of protein kinase C.  相似文献   

5.
This study investigates the effects of the islet hormones insulin (Ins), glucagon (Glu), and somatostatin (Som) with nerve stimulation (EFS) acetylcholine (ACh) and cholecytokinin-octapeptide (CCK-8) on amylase secretion and intracellular free calcium concentration [Ca(2+)](i) in the pancreas of age-matched control and diabetic rats. Either Ins, Glu or Som elicited small increases in amylase secretion from the pancreas of age-matched control animals compared to a much larger increase in amylase secretion with either EFS, ACh or CCK-8. Combining the islet hormones with either EFS, ACh or CCK-8 resulted in marked potentiation of amylase output. In the diabetic pancreas, the islet hormones had no effect on amylase secretion compared to diabetic control. Moreover, either EFS, ACh or CCK-8 evoked a much smaller increase in amylase output compared to age-matched control. In addition, the islet hormones failed to potentiate the secretory effects of either EFS, ACh or CCK-8. In fura-2 loaded acinar cells from age-matched control pancreas either Ins or Glu elicited a small increase in [Ca(2+)](i) whereas Som had no effect. Both ACh and CCK-8 evoked large increases in [Ca(2+)](i) compared to control. Combining either Ins, Glu or Som with either ACh or CCK-8 resulted in a marked elevation in [Ca(2+)](i) compared to the responses obtained with either the islet hormones, ACh or CCK-8 alone. In diabetic fura-2 loaded pancreatic acinar cells, the islet hormones had no effect on [Ca(2+)](i) compared to control and moreover, the responses were much smaller than those obtained in acinar cells from age-matched control. Both ACh and CCK-8 induced large increases in [Ca(2+)]( i) in diabetic acinar cells. However, combining the islet hormones with either ACh or CCK-8 failed to enhance [Ca(2+)](i) compared to the reponses obtained in acinar cells from age-matched control. The results suggests that [Ca(2+)](i) homeostasis is deranged during diabetes mellitus and this in turn is probably associated with reduced pancreatic amylase secretion.  相似文献   

6.
Isolated pancreatic acini were loaded with the calcium selective fluorescent indicator, quin-2. Measurements of cellular K+ content and lactic dehydrogenase release indicated that cell viability was not affected by quin-2 loading. The concentration of intracellular free calcium of unstimulated acinar cells was calculated to be 180 +/- 4 nM. When cells suspended in media containing millimolar calcium were exposed to the secretagogues carbachol and cholecystokinin a rapid increase in [Ca2+]i occurred. Both the amplitude and rate of rise of the concentration increase were dose dependent with [Ca2+]i reaching a maximum of 860 +/- 41 nM. The dose-response relationship coincides with the known concentration dependence of the stimulation of amylase release by these agents. In the absence of extracellular calcium, carbachol was still able to elicit a rise in [Ca2+]i. These studies indicate that pancreatic secretagogues induce an increase in [Ca2+]i of acinar cells, both in the presence or absence of extracellular calcium.  相似文献   

7.
Digital imaging fluorescence microscopy was used to study the effect of two antioxidants, N-acetyl-cysteine (NAC) and glutathione, on the cytosolic free calcium concentration ([Ca2+]i) induced by cholecystokinin-octapeptide (CCK-8) of mouse pancreatic acinar cells. When acinar cells were preincubated with either NAC or glutathione, subsequent stimulation with CCK-8 in the presence of each antioxidant had no significant effect on the typical pattern of [Ca2+]i transient evoked by the gastrointestinal hormone. However, application of NAC to acinar cells pretreated for 60 min with the same antioxidant, strongly blocked the oscillatory pattern initiated by CCK-8, inhibiting both amplitude and frequency of calcium oscillations. By contrast, glutathione had no effect on the oscillatory pattern evoked by CCK-8. The present results allow us to speculate that during [Ca2+]i oscillation there is a production of oxidants that facilitate oscillations by enhancing release of calcium from internal stores.  相似文献   

8.
We have employed confocal laser scanning microscopy to investigate how intracellular free calcium concentration ([Ca2+]i) is influenced by hydrogen peroxide (H2O2) in collagenase-dispersed mouse pancreatic acinar cells. In the absence of extracellular calcium, treatment of cells with increasing concentrations of H2O2 resulted in an increase in [Ca2+]i, indicating the release of calcium from intracellular stores. Micromolar concentrations of H2O2 induced an oscillatory pattern, whereas 1 mmol H2O2/L caused a slow and sustained increase in [Ca2+]i. H2O2 abolished the typical calcium release stimulated by thapsigargin or by the physiological agonist cholecystokinin octapeptide (CCK-8). Depletion of either agonist-sensitive or mitochondrial calcium pools was unable to prevent calcium release induced by 1 mmol H2O2/L, but depletion of both stores abolished it. Additionally, lower H2O2 concentrations were able to release calcium only after depletion of mitochondrial calcium stores. Treatment with either the phospholipase C inhibitor U-73122 or the inhibitor of the inositol 1,4,5-trisphosphate (IP3) receptor xestospongin C did not modify calcium release from the agonist-sensitive pool induced by 100 micromol H2O2/L, suggesting the involvement of a mechanism independent of IP3 generation. In addition, H2O2 reduced amylase release stimulated by CCK-8. Finally, either the H2O2-induced calcium mobilization or the inhibitory effect of H2O2 on CCK-8-induced amylase secretion was abolished by dithiothreitol, a sulphydryl reducing agent. We conclude that H2O2 at micromolar concentrations induces calcium release from agonist-sensitive stores, and at millimolar concentrations H2O2 can also evoke calcium release from the mitochondria. The action of H2O2 is mediated by oxidation of sulphydryl groups of calcium ATPases independently of IP3 generation.  相似文献   

9.
An increase in cytosolic Ca2+ often begins as a Ca2+ wave, and this wave is thought to result from sequential activation of Ca(2+)-sensitive Ca2+ stores across the cell. We tested that hypothesis in pancreatic acinar cells, and since Ca2+ waves may regulate acinar Cl- secretion, we examined whether such waves also are important for amylase secretion. Ca2+ wave speed and direction was determined in individual cells within rat pancreatic acini using confocal line scanning microscopy. Both acetylcholine (ACh) and cholecystokinin-8 induced rapid Ca2+ waves which usually travelled in an apical-to-basal direction. Both caffeine and ryanodine, at concentrations that inhibit Ca(2+)-induced Ca2+ release (CICR), markedly slowed the speed of these waves. Amylase secretion was increased over 3-fold in response to ACh stimulation, and this increase was preserved in the presence of ryanodine. These results indicate that 1) stimulation of either muscarinic or cholecystokinin-8 receptors induces apical-to-basal Ca2+ waves in pancreatic acinar cells, 2) the speed of such waves is dependent upon mobilization of caffeine- and ryanodine-sensitive Ca2+ stores, and 3) ACh-induced amylase secretion is not inhibited by ryanodine. These observations provide direct evidence that Ca(2+)-induced Ca2+ release is important for propagation of cytosolic Ca2+ waves in pancreatic acinar cells.  相似文献   

10.
The effects of the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA) on amylase secretion and cytoplasmic free calcium concentration ([Ca2+]i) were investigated in dispersed guinea pig pancreatic acini. Carbachol evoked dose-dependent increases in amylase secretion and [Ca2+]i with half-maximal responses at 2.5 and 5 microM, respectively. Carbachol-induced calcium transients could be blocked by atropine. In the presence of a maximal effective dose of carbachol, cholecystokinin octapeptide caused no further increase in [Ca2+]i, suggesting that both agonists act on the same pool of trigger calcium. TPA (10(-9)-10(-6) M) stimulated amylase secretion with no change in [Ca2+]i. Maximum amylase secretion occurred at 0.5 microM TPA. Preincubation of acini in the presence of TPA resulted in a time- and dose-dependent inhibition (IC50 = 30 nM) of the carbachol-induced rise in [Ca2+]i, the maximal effect being observed within 3 min. The inactive phorbol ester, 4 alpha-phorbol 12,13-didecanoate was ineffective in inhibiting the carbachol-stimulated rise in [Ca2+]i. These findings suggest that, in addition to stimulating amylase secretion, probably through protein kinase C, TPA may also exert a negative feedback control over secretagogue-induced calcium transients.  相似文献   

11.
The role of intracellular calcium stores in stimulus-secretion coupling in the pancreatic beta-cell is largely unknown. We report here that tetracaine stimulates insulin secretion from collagenase-isolated mouse islets of Langerhans in the absence of glucose or extracellular calcium. We also found that the anesthetic evokes a dose-dependent rise of the intracellular free-calcium concentration ([Ca2+]i) in cultured rat and mouse beta-cells. The tetracaine-specific [Ca2+]i rise also occurs in the absence of glucose, or in beta-cells depolarized by exposure to a Ca(2+)-deficient medium (< 1 microM) or elevated [K+]o. Furthermore, tetracaine (> or = 300 microM) depolarized the beta-cell membrane in mouse pancreatic islets, but inhibited Ca2+ entry through voltage-gated Ca2+ channels in HIT cells, an insulin-secreting cell line. From these data we conclude that tetracaine-enhancement of insulin release occurs by mechanisms that are independent of Ca2+ entry across the cell membrane. The tetracaine-induced [Ca2+]i rise in cultured rat beta-cells and insulin secretion from mouse islets is insensitive to dantrolene (20 microM), a drug that inhibits Ca2+ release evoked by cholinergic agonists in the pancreatic beta-cell, and thapsigargin (3 microM), a blocker of the endoplasmic reticulum (ER) Ca2+ pump. We conclude that the Ca2+ required for tetracaine-potentiated insulin secretion is released from intracellular Ca2+ stores other than the ER. Furthermore, tetracaine-induced Ca2+ release was unaffected by the mitochondrial electron transfer inhibitors NaN3 and rotenone. Taken together, these data show that a calcium source other than the ER and mitochondria can affect beta-cell insulin secretion.  相似文献   

12.
At concentrations greater than 0.01 microM, thapsigargin (ThG) dose-dependently caused an increase in cytosolic free Ca2+ concentration ([Ca2+]i) in rat parotid acinar cells, as measured by the fluorescent Ca(2+)-indicator fura-2. In the absence of extracellular Ca2+, a transient increase in [Ca2+]i by ThG was observed, and subsequent addition of carbachol (CCh) did not produce a further [Ca2+]i response, suggesting that ThG released Ca2+ from the CCh-sensitive intracellular Ca2+ pool. Since ThG did not stimulate formation of inositol phosphates, the ThG-induced Ca2+ mobilization is independent of phosphoinositide breakdown. High concentrations (greater than 0.1 microM) of ThG induced amylase release from rat parotide acini, but the effect was very poor as compared with that of CCh or the protein kinase C activator, PMA (phorbol 12-myristate 13-acetate). Combined addition of ThG and PMA modestly potentiated amylase release induced by PMA alone. These results support the view that amylase release by muscarinic stimulation is mediated mainly by activation of protein kinase C rather than a rise in [Ca2+]i, although Ca2+ may modulate the secretory response.  相似文献   

13.
A new hepatapeptide cholecystokinin (CCK) analog, JMV-180 (Boc-Tyr(SO3-)-Nle-Gly-Trp-Nle-Asp-2-phenylethylester), acts as an agonist at high affinity CCK receptors on rat pancreatic acini to stimulate amylase release but unlike cholecystokinin octapeptide (CCK8) does not act on low affinity CCK receptors to inhibit amylase release (Galas, M. D., Lignon, M. F., Rodriguez, M., Mendre, C., Fulcrand, P., Laur, J., and Martinez, J. (1988) Am. J. Physiol. 254, G176-G188). To investigate the biochemical mechanisms initiated by CCK acting on each class of CCK receptor, the effects of JMV-180 and CCK8 on amylase release, Ca2+ mobilization, and phospholipid hydrolysis were studied in isolated rat pancreatic acini. When acini were loaded with the intracellular Ca2+ chelator BAPTA, amylase release stimulated by both JMV-180 and CCK8 was reduced. Measurement of 45Ca2+ efflux and cytosolic free calcium concentration ([Ca2+]i) by the fluorescence of fura-2-loaded acini in a stirred cuvette showed that JMV-180 induced a concentration-dependent increase but with a maximal response only two-thirds that induced by CCK8. When [Ca2+]i of individual fura-2-loaded acinar cells was measured by microspectrofluorometry, all concentrations of JMV-180 (1 nM-10 microM) induced repetitive transient [Ca2+]i spikes (Ca2+ oscillations). By contrast, stimulation with a high concentration of CCK8 (1 nM) caused a large increase in [CA2+]i followed by a small sustained elevation of [Ca2+]i. The measurement of inositol trisphosphate (IP3) production by both [3H]inositol labeling and 1,4,5-IP3 radioreceptor assay showed that JMV-180 had only minimal effects at 10 microM in contrast to the large increase induced by high concentrations of CCK8 (more than 1 nM). JMV-180 blocked the effect of a high concentration of CCK8 on both [Ca2+]i and 1,4,5-IP3 productions but did not affect the response to carbamylcholine. JMV-180 caused a delayed monophasic stimulation of 1,2-diacylglycerol (DAG) sustained to 60 min without the early increase in DAG observed in response to CCK8. Furthermore, JMV-180 stimulated the release of [3H]choline metabolites, primarily phosphorylated choline, from [3H]choline-labeled acini at low concentrations and to the same extent as CCK8. Since JMV-180 interacts not only with high affinity CCK receptors as an agonist but also with low affinity CCK receptors as a functional antagonist, the present results indicate that the occupancy of high affinity state receptors by CCK induces Ca2+ oscillations, DAG formation from phosphatidylcholine hydrolysis, and amylase release with minimal phosphatidylinositol 4,5-bisphosphate hydrolysis.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
This study investigated the effects of cholecystokinin-octapeptide (CCK-8) on pancreatic juice flow and its contents, and on cytosolic calcium (Ca2+) and magnesium (Mg2+) levels in streptozotocin (STZ)-induced diabetic rats compared to healthy age-matched controls. Animals were rendered diabetic by a single injection of STZ (60 mg kg(-1), I.P.). Age-matched control rats obtained an equivalent volume of citrate buffer. Seven weeks later, animals were either anaesthetised (1 g kg(-1) urethane; IP) for the measurement of pancreatic juice flow or humanely killed and the pancreas isolated for the measurements of cytosolic Ca2+ and Mg2+ levels. Non-fasting blood glucose levels in control and diabetic rats were 92.40 +/- 2.42 mg dl(-1) (n = 44) and >500 mg dl(-1) (n = 27), respectively. Resting (basal) pancreatic juice flow in control and diabetic anaesthetised rats was 0.56 +/- 0.05 ul min(-1) (n = 10) and 1.28 +/- 0.16 ul min(-1) (n = 8). CCK-8 infusion resulted in a significant (p < 0.05) increase in pancreatic juice flow in control animals compared to a much larger increase in diabetic rats. In contrast, CCK-8 evoked significant (p < 0.05) increases in protein output and amylase secretion in control rats compared to much reduced responses in diabetic animals. Basal [Ca2+]i in control and diabetic fura-2-loaded acinar cells was 109.40 +/- 15.41 nM (n = 15) and 130.62 +/- 17.66 nM (n = 8), respectively. CCK-8 (10(-8)M) induced a peak response of 436.55 +/- 36.54 nM (n = 15) and 409.31 +/- 34.64 nM (n = 8) in control and diabetic cells, respectively. Basal [Mg2+]i in control and diabetic magfura-2-loaded acinar cells was 0.96 +/- 0.06 nM (n = 18) and 0.86 +/- 0.04 nM (n = 10). In the presence of CCK-8 (10(-8)) [Mg2+]i in control and diabetic cells was 0.80 +/- 0.05 nM (n = 18) and 0.60 +/- 0.02 nM (n = 10), respectively. The results indicate that diabetes-induced pancreatic insufficiency may be associated with derangements in cellular Ca2+ and Mg2+ homeostasis.  相似文献   

15.
Ca(2+)/calmodulin-dependent protein (CaM) kinases play an important role in Ca(2+)-mediated secretory mechanisms. Previously, we demonstrated that a CaM kinase II inhibitor KN-62 had a small inhibitory effect on amylase secretion stimulated by CCK. In the present study, we investigated the effects of a myosin light chain kinase (MLCK) inhibitor on amylase secretion and Ca(2+) signaling in rat pancreatic acini. A specific inhibitor of MLCK, wortmannin, inhibited amylase secretion stimulated by CCK-8 (30 pM) in a concentration-dependent manner. Wortmannin (10 microM) had no effects on basal secretion but reduced amylase secretion stimulated by CCK-8 (30 pM) by 67 +/- 3%. Wortmannin inhibited amylase secretion stimulated by calcium ionophore (A23187) and phorbol ester (TPA). Wortmannin also inhibited amylase response to thapsigargin by 76 +/- 8% and to both thapsigargin and TPA by 52 +/- 10%. Ca(2+) oscillations evoked by CCK-8 (10 pM) were inhibited by wortmannin (10 microM). Wortmannin had a little inhibitory effect on an initial rise in [Ca(2+)](i), and abolished a subsequent sustained elevation of [Ca(2+)](i) evoked by 1 nM CCK-8. In conclusion, MLCK plays a crucial role in amylase secretion from pancreatic acini and regulates Ca(2+) entry from the extracellular space.  相似文献   

16.
Parotid acinar cells exhibit rapid cytosolic calcium signals ([Ca2+]i) that initiate in the apical region but rapidly become global in nature. These characteristic [Ca2+]i signals are important for effective fluid secretion, which critically depends on a synchronized activation of spatially separated ion fluxes. Apically restricted [Ca2+]i signals were never observed in parotid acinar cells. This is in marked contrast to the related pancreatic acinar cells, where the distribution of mitochondria has been suggested to contribute to restricting [Ca2+]i signals to the apical region. Therefore, the aim of this study was to determine the mitochondrial distribution and the role of mitochondrial Ca2+ uptake in shaping the spatial and temporal properties of [Ca2+]i signaling in parotid acinar cells. Confocal imaging of cells stained with MitoTracker dyes (MitoTracker Green FM or MitoTracker CMXRos) and SYTO dyes (SYTO-16 and SYTO-61) revealed that a majority of mitochondria is localized around the nucleus. Carbachol (CCh) and caged inositol 1,4,5-trisphosphate-evoked [Ca2+]i signals were delayed as they propagated through the nucleus. This delay in the CCh-evoked nuclear [Ca2+]i signal was abolished by inhibition of mitochondrial Ca2+ uptake with ruthenium red and Ru360. Likewise, simultaneous measurement of [Ca2+]i with mitochondrial [Ca2+] ([Ca2+]m), using fura-2 and rhod-FF, respectively, revealed that mitochondrial Ca2+ uptake was also inhibited by ruthenium red and Ru360. Finally, at concentrations of agonist that evoke[Ca2+]i oscillations, mitochondrial Ca2+ uptake, and a nuclear [Ca2+] delay, CCh also evoked a substantial increase in NADH autofluorescence. This autofluorescence exhibited a predominant perinuclear localization that was also sensitive to mitochondrial inhibitors. These data provide evidence that perinuclear mitochondria and mitochondrial Ca2+ uptake may differentially shape nuclear [Ca2+] signals but more importantly drive mitochondrial metabolism to generate ATP close to the nucleus. These effects may profoundly affect a variety of nuclear processes in parotid acinar cells while facilitating efficient fluid secretion.  相似文献   

17.
Receptor-activated cytoplasmic calcium (Ca2+) oscillations have been investigated in single pancreatic acinar cells by microfluorimetry (Fura-2 as indicator). At submaximal concentrations of the agonists acetylcholine (ACh) and cholecystokinin octapeptide (CCK-8), both give rise to oscillatory changes in the cytosolic free calcium concentration ([Ca2+]i). The patterns of oscillations are markedly and consistently different for each of these two agonists. The ACh induced oscillations are superimposed upon a median elevation in background [Ca2+]i. The CCK-8 induced oscillations are of longer duration with [Ca2+]i returning to prestimulus levels between the discrete spikes. The ACh induced oscillations are rapidly abolished upon removal of extracellular Ca2+ while the CCK-8 induced oscillations persist for many minutes in the absence of external Ca2+. The CCK-8, but not the ACh, induced oscillations are increased in duration by the protein kinase C (PKC) inhibitor staurosporine and abolished by the PKC activating phorbol ester PMA. It is clear that CCK-8 and ACh do not activate receptor transduction mechanisms in an identical manner to generate oscillating [Ca2+]i signals.  相似文献   

18.
The effects of ryanodine, a selective inhibitor of the Ca(2+)-induced Ca2+ release mechanism, on caffeine-evoked changes in cytosolic Ca2+ concentration ([Ca2+]i) and catecholamine secretion were investigated using cultured bovine adrenal chromaffin cells. Caffeine (5-40 mM) caused a concentration-dependent transient rise in [Ca2+]i and catecholamine secretion in Ca2+/Mg(2+)-free medium containing 0.2 mM EGTA. Ryanodine (5 x 10(-5) M) alone had no effect on either [Ca2+]i or catecholamine secretion. Although the application of ryanodine plus caffeine caused the same increase in both [Ca2+]i and catecholamine secretion as those induced by caffeine alone, ryanodine (4 x 10(-7) - 5 x 10(-5) M) irreversibly prevented the increase in both [Ca2+]i and catecholamine secretion resulting from subsequent caffeine application over a range of concentrations. The secretory response to caffeine was markedly enhanced by replacement of Na+ with sucrose in Ca2+/Mg(2+)-free medium, and this enhanced response was also blocked by ryanodine. Caffeine was found to decrease the susceptibility of the secretory apparatus to Ca2+ in digitonin-permeabilized cells. These results indicate that caffeine mobilizes Ca2+ from intracellular stores, the function of which is irreversibly blocked by ryanodine, resulting in the increase in catecholamine secretion in the bovine adrenal chromaffin cell.  相似文献   

19.
The putative intracellular calcium antagonist 3,4,5-trimethoxybenzoate 8-(diethylamino)-octyl ester (TMB-8) affects carbachol-induced enzyme secretion from rabbit pancreatic acini in a different way than it does that induced by either the C-terminal octapeptide of cholecystokinin (CCK-8), the phorbol ester, 12-O-tetradecanoylphorbol 13-acetate (TPA) or the calcium ionophore, A23187. In the presence of TMB-8 the dose-response curve for carbachol-induced amylase release shifts to the right, suggesting competitive antagonism at the muscarinic receptor. The hypothesis that TMB-8 acts as a muscarinic receptor antagonist is supported by the observation that TMB-8 dose-dependently inhibits the carbachol-, but not CCK-8-induced increases in cytosolic free calcium, measured in acinar cells by means of the fluorescent calcium indicator quin2. At a concentration of 100 microM, TMB-8 maximally potentiates the secretory response to suboptimal, but not (supra)optimal, concentrations of CCK-8. At the same concentration the drug also potentiates TPA- and A23187-induced enzyme secretion. Cytosolic free calcium levels and CCK-8-induced increases in cytosolic free calcium remain unaffected by 100 microM TMB-8. The above results strongly suggest that potentiation occurs at or beyond the site of interaction between the diacylglycerol- and the Ca2+-activated pathways. At concentrations beyond 100 microM the potentiating effect of TMB-8 declines and, finally, at a concentration of 500 microM the drug completely abolishes the secretory response to CCK-8 and TPA. Basal enzyme secretion, however, remains unaffected. At 500 microM severe side effects are observed as is shown by Trypan blue uptake, lactic dehydrogenase release and release of trapped quin2. It is concluded that at lower concentrations TMB-8 does not act as a specific intracellular calcium antagonist in pancreatic enzyme secretion and that inhibitory effects obtained with rather high concentrations of this drug should be treated with caution.  相似文献   

20.
Thrombin is a serine protease activated during injury and inflammation. Thrombin and other proteases generated by periodontal pathogens affect the behavior of periodontal cells via activation of protease-activated receptors (PARs). We noted that thrombin and PAR-1 agonist peptide stimulated intracellular calcium levels ([Ca2+]i) of gingival fibroblasts (GF). This increase of [Ca2+]i was inhibited by EGTA and verapamil. U73122 and neomycin inhibited thrombin- and PAR-1-induced [Ca2+]i. Furthermore, 2-APB (75-100 microM, inositol triphosphate [IP3] receptor antagonist), thapsigargin (1 microM), SKF-96365 (200 microM) and W7 (50 and 100 microM) also suppressed the PAR-1- and thrombin-induced [Ca2+]i. However, H7 (100, 200 microM) and ryanodine showed little effects. Blocking Ca2+ efflux from mitochondria by CGP37157 (50, 100 microM) inhibited both thrombin- and PAR-1-induced [Ca2+]i. Thrombin induced the IP3 production of GF within 30-seconds of exposure, which was inhibited by U73122. These results indicate that mitochondrial calcium efflux and calcium-calmodulin pathways are related to thrombin and PAR-1 induced [Ca2+]i in GF. Thrombin-induced [Ca2+]i of GF is mainly due to PAR-1 activation, extracellular calcium influx via L-type calcium channel, PLC activation, then IP3 binding to IP3 receptor in sarcoplasmic reticulum, which leads to intracellular calcium release and subsequently alters cell membrane capacitative calcium entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号