首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Summary Rhizobium and Bradyrhizobium bacteria gain intercellular entry into roots of the non-legume Parasponia andersonii by stimulating localized sites of cell division which disrupt the epidermis. Infection threads are then initiated from intercellular colonies within the cortex. Infection via the information of infection threads within curled root hairs, which commonly occurs in legumes, was not observed in Parasponia. The conserved nodulation genes nodABC, necded for the curling of legume root hairs, were not essential for the initiation of infection, however, these genes were required for Parasponia prenodule development. In contrast, the nodD gene of Rhizobium strain NGR234 was essential for the initiation of infection. In addition, successful infection required not only nodD but a region of the NGR234 symbiotic plasmid which is not needed for the nodulation of legumes. Agrobacterium tumefaciens carrying this Parasponia specific region, as well as legume nod genes, was able to form nodules on Parasponia which reached an advanced stage of development.  相似文献   

2.
    
Nodule formation on alfalfa (Medicago sativa L.) roots was determined at different inoculum dosages for wild-typeRhizobium meliloti strain RCR2011 and for various mutant derivatives with altered nodulation behavior. The number of nodules formed on the whole length of the primary roots was essentially constant regardless of initial inoculum dosage or subsequent bacterial multiplication, indicative of homeostatic regulation of total nodule number. In contrast, the number of nodules formed in just the initially susceptible region of these roots was sigmoidally dependent on the number of wild-type bacteria added, increasing rapidly at dosages above 5·103 bacteria/plant. This behavior indicates the possible existence of a threshold barrier to nodule initiation in the host which the bacteria must overcome. When low dosages of the parent (103 cells/plant) were co-inoculated with 106 cells/plant of mutants lacking functionalnodA, nodC, nodE, nodF ornodH genes, nodule initiation was increased 10- to 30-fold. Analysis of nodule occupancy indicated that these mutants were able to help the parent (wild-type) strain initiate nodules without themselves occupying the nodules. Co-inoculation withR. trifolii orAgrobacterium tumefaciens cured of its Ti plasmid also markedly stimulated nodule initiation by theR. meliloti parent strain. Introduction of a segment of the symbiotic megaplasmid fromR. meliloti intoA. tumefaciens abolished this stimulation.Bradyrhizobium japonicum and a chromosomal Tn5 nod- mutant ofR. meliloti did not significantly stimulate nodule initiation when co-inoculated with wild-typeR. meliloti. These results indicate that certainnod gene mutants and members of theRhizobiaceae may produce extracellular signals that supplement the ability of wild-typeR. meliloti cells to induce crucial responses in the host.Abbreviations EH emergent root hairs - kb kilobase - RDU relative distance unit - RT root tipThis is journal article No. 188-87 of the Ohio Agricultural Research and Development Center  相似文献   

3.
Summary Combined inoculation ofRhizobium trifolii withSaccharomyces cerevisiae and other yeasts generally enhanced the number of nodules, length of plants and dry weight of Egyptian clover (Trifolium alexandrinum) seedlings grown on agar slopes. Similar effects were observed when seedlings were inoculated withR. trifolii in the presence of dialyzed culture filtrate ofS. cerevisiae.  相似文献   

4.
T. L. Wang  E. A. Wood  N. J. Brewin 《Planta》1982,155(4):350-355
The cytokinin content of roots and nodules of pea and the culture supernatants from two strains of Rhizobium leguminosarum has been examined. Roots, nodules and wild-type Rhizobium culture medium contained very little cytokinin as indicated by bioassay. Chemical ionisation gas chromatography-mass spectrometric analysis of the isopentenyladenine content of the culture medium from the Rhizobium strains confirmed that the content of the wild-type was low (approx. 1 ng dm-3) but that it was increased by the introduction of the Agrobacterium Ti plasmid into the Rhizobium strain.Abbreviations CI chemical ionisation - GCMS gas chromatography-mass spectrometry - HPLC high performance liquid chromatography - iPAde isopentenyladenine - MIM multiple ion monitoring  相似文献   

5.
    
Pairs of Rhizobium meliloti nod mutants were co-inoculated onto alfalfa (Medicago saliva L.) roots to determine whether one nod mutant could correct, in situ, for defects in nodule initiation of another nod mutant. None of the Tn5 or nod deletion mutants were able to help each other form nodules when co-inoculated together in the absence of the wild-type. However, as previously observed, individual nod mutants significantly increased nodule initiation by low dosages of co-inoculated wild-type cells. Thus, nod mutants do produce certain signal substances or other factors which overcome limits to nodule initiation by the wild-type. When pairs of nod mutants were co-inoculated together with the wild-type, the stimulation of nodulation provided by individual nodABC mutants was not additive. However, clearly additive or synergistic stimulation was observed between pairs of mutants with a defective host-specificity gene (nodE, nodF, or nodH). Each pair of host-specificity mutants stimulated first nodule formation to nearly the maximum levels obtainable with high dosages of the wild-type. Mutant bacteria were recovered from only about 10% of these nodules, whereas the co-inoculated wild-type was present in all these nodules and substantially outnumbered mutant bacteria in nodules occupied by both. Thus, these mutant co-inoculants appeared to help their parent in situ even though they could not help each other. Sterile culture filtrates from wild-type cells stimulated nodule initiation by low dosages of the wild-type, but only when a host-specificity mutant was also present. The results from our studies seem consistent with the possibility that pairs of host-specificity mutants are able to help the wild-type initiate nodule formation by sustained production of complementary signals required for induction of symbiotic host responses.  相似文献   

6.
B. G. Turgeon  W. D. Bauer 《Planta》1985,163(3):328-349
The location and topography of infection sites in soybean (Glycine max (L.) Merr.) root hairs spot-inoculated with Rhizobium japonicum have been studied at the ultrastructural level. Infections commonly developed at sites created when the induced deformation of an emerging root hair caused a portion of the root-hair cell wall to press against an adjacent epidermal cell, entrapping rhizobia within the pocket between the two host cells. Infections were initiated by bacteria which became embedded in the mucigel in the enclosed groove. Infection-thread formation in soybean appears to involve degradation of mucigel material and localized disruption of the outer layer of the folded hair cell wall by one or more entrapped rhizobia. Rhizobia at the site of penetration are separated from the host cytoplasm by the host plasmalemma and by a layer of wall material that appears similar or identical to the normal inner layer of the hair cell wall. Proliferation of the bacteria results in an irregular, wall-bound sac near the site of penetration. Tubular infection threads, bounded by wall material of the same appearance as that surrounding the sac, emerge from the sac to carry rhizobia roughly single-file into the hair cell. Growing regions of the infection sac or thread are surrounded by host cytoplasm with high concentrations of organelles associated with synthesis and deposition of membrane and cell-wall material. The threads follow a highly irregular path toward the base of the hair cell. Threads commonly run along the base of the hair cell for some distance, and may branch and penetrate into subjacent cortical cells at several points in a manner analagous to the initial penetration of the root hair.  相似文献   

7.
  总被引:2,自引:0,他引:2  
Similar ranges of gibberellins (GAs) were detected by high-performance liquid chromatography (HPLC)-immunoassay procedures in ten cultures of wild-type and mutant strains of Rhizobium phaseoli. The major GAs excreted into the culture medium were GA1 and GA4. These identifications were confirmed by combined gas chromatographymass spectrometry. The HPLC-immunoassays also detected smaller amounts of GA9- as well as GA20-like compounds, the latter being present in some but not all cultures. In addition to GAs, all strains excreted indole-3-acetic acid (IAA) but there was no obvious relationship between the amounts of GA and IAA that accumulated. The Rhizobium strains studied included nod and fix mutants, making it unlikely that the IAA- and GA-biosynthesis genes are closely linked to the genes for nodulation and nitrogen fixation.The HPLC-immunoassay analyses showed also that nodules and non-nodulated roots of Phaseolus vulgaris L. contained similar spectra of GAs to R. phaseoli culture media. The GA pools in roots and nodules were of similar size, indicating that Rhizobium does not make a major contribution to the GA content of the infected tissue.Abbreviations EIA enzyme immunoassay - GAn gibberellin An - GC-MS gas chromatography-mass spectrometry - HPLC high-performance liquid chromatography - IAA indole-3-acetic acid - Me methyl ester - RIA radioimmunoassay - TLC thin-layer chromatography  相似文献   

8.
W. D. Sutton  A. D. Paterson 《Planta》1980,148(3):287-292
Bacteroids prepared from different legume species showed large differences in detergent sensitivity as judged by changes in turbidity and the release of cytochrome c oxidase activity after detergent treatments. There was a strong correlation between the detergent sensitivity and non-viability of bacteroids. Differences in the detergent sensitivity of bacteroids were determined by the plant host rather than the Rhizobium strain or the effectiveness of the symbiosis. The most common level of detergent sensitivity observed amongst bacteroids from 34 legume species was intermediate between lupin bacteroids and brothcultured bacteria.  相似文献   

9.
Summary The pat gene, coding for phosphinothricin acetyltransferase (PAT) from Streptomyces viridochromogenes, was cloned behind the par promoter of the hemoglobin gene from Parasponia andersonii, Introduction into tobacco (Nicotiana tabacum) resulted in predominantly root specific PAT expression. Application of 5 l/ha BASTA® (herbicidal component: phosphinothricin) did not effect growth morphology and vigor of the plants. After application of 20 l/ha BASTA® the plants showed herbicide damage. Nevertheless, they all recovered by forming new undamaged leaves and resumed full growth despite virtually non-detectable expression of the PAT enzyme in the leaves.Abbreviations BAP 6-benzylaminopurine - CaMV Cauliflower Mosaic Virus - IAA indole-3-acetic acid - kb kilobases - LB Luria-Bertani - MS Murashige and Skoog - par Parasponia andersonii - PAT phosphinothricin acetyltransferase - ppt phosphinothricin - TCA trichloric acid  相似文献   

10.
    
Summary The cultivar specific interaction ofTrifolium subterranean cv. Woogenellup andRhizobium leguminosarum bv.trifolii strain ANU 794 was examined to establish the basis for nodulation failure on this cultivar. Infections were initiated by strain ANU 794 on cv. Woogenellup. Root hair curling, the initiation of infection threads, and cortical cell divisions were evident on the tap root and appeared normal after microscopic observation. However, in most cases, the infection threads stayed confined to the root hairs. No evidence was found for a hypersensitive response by the plant. The progress of infections on the tap roots was different from that on the lateral roots. This was confirmed by the differential tap and lateral root nodulation patterns of the mutants derived from strain ANU 794, which show enhanced nodulation on cv. Woogenellup. On the lateral roots, cortical cell divisions progressed further than those on the tap root and formed macroscopically visible swellings, which could be divided into two morphological classes. In some cases infection threads developed into these primordia but successful nodules were not established. The inhibition of infection appeared to be manifested at two levels: first, on the tap roots in the root hairs, where many of the infection threads are contained and secondly, in the primordia induced on the lateral roots, where the infection threads sometimes penetrate further than the root hair cell but stop in the primordial cells. It appears that an essential factor or trigger in the communication between plant and bacteria is missing or altered, resulting in an array of primordia-structures, which cease to develop.Abbreviations bv biovar - cv cultivar - Fix+ nitrogen fixing - GUS -glucuronidase - Nod+ nodulating - HR hypersensitive response - Km kanamycin - LOSs lipo-oligosaccharides - Sm streptomycin - Sp spectinomycin - X-Gluc 5-bromo-4-chloro-3-indonyl--glucuronic acid  相似文献   

11.
Staining of infected legume roots with 0.01% methylene blue facilitated the observation of the initial steps of the Rhizobium—legume symbiosis. It allowed particularly the visualization by bright-field microscopy of infection threads in the root hairs and the root cortex of the host plant.  相似文献   

12.
13.
Summary Transposon Tn7 was inserted into wide host range plasmid pSUP202 and used as a suicide plasmid vehicle for transposon mutagenesis in Rhizobium leguminosarum. Tn7 is transposed with high frequency into the self-transmissible plasmid pJB5JI without affecting the transfer, nodulation and nitrogen fixation functions. Tn7 transposition provides a useful tool for marking symbiotic plasmids.  相似文献   

14.
Plant and bacterial antigens contributing to nodule development and symbiosis in pea (Pisum sativum L.) roots were identified after isolation of a set of monoclonal antibody (McAb)-producing hybridoma lines. Rats were immunised with the peribacteriod material released by mild osmotic shock treatment from membrane-enclosed bacteroids of Rhizobium leguminosarum bv. viceae. In order to diversify the range of McAb specificities, this material was either used as immunogen directly (method 1), or after immunodepletion of a set of glycoprotein and lipopolysaccharide antigens (method 2), or after deglycosylation (method 3). After fusion and screening of cloned hybridoma lines, these three immunisation methods gave respectively 4, 2 and 1 classes of McAb with unique antigen specificities. Ultrastructural immunogold localisation studies showed four different antigens to be present on peribacteriod and plasma membranes (identified by MAC 64, 202, 206 or 209); in addition, a glycoprotein of plant origin but present in the infection-thread matrix was identified by MAC 204. Although none of the epitopes recognised by these McAb was nodule-specific, several were found to be more abundant in extracts of nodule tissue than in uninfected roots (MAC 64, 202, 204, 206). Two McAb reacted with new bacterial antigens: MAC 203 identified a bacterial antigen expressed upon infection but not in free-living cultures of Rhizobium, and MAC 115 identified a bacterial polypeptide (55 kdaltons) that was present in both free-living and bacteroid forms. There were also some McAb of broader specificity that react with antigens present in both plant and bacterial cytoplasms.Abbreviations ELISA enzyme-linked immunosorbent assay - Ig inmunoglobulin - kDa kilodalton - LPS lipopolysaccharide - McAb monoclonal antibody - PBM peribacteroid membrane - SDS-PAGE sodium dodecyl sulfate-polyacryl-amide gel electrophoresis - TFMS trifluoromethane sulfonic acid  相似文献   

15.
Among 35 Rhizobium isolates of Acacia nilotica, from different agro-climatic zones, two, ANG4 and ANG5, tolerated up to 850 mm NaCl and one, ANG3, was sensitive to NaCl above 250 mm. Nodulation and nitrogenase activity of the three isolates decreased with increasing concentration of salt up to 150 mm. Nodulation by ANG3 was 15% at 75 mm NaCl and nil at 100 mm. With ANG4 and ANG5, nodulation was only slightly decreased at 150 mm NaCl. Nitrogenase activity associated with plants inoculated with ANG3 was halved at 25 mm NaCl compared with salt-free controls, whereas isolates ANG4 and ANG5 retained 25% and 15% activity, respectively, even at 100 mm NaCl. Salt-tolerant Rhizobium isolates can therefore nodulate and fix N2 in saline soils.  相似文献   

16.
John G. Streeter 《Planta》1982,155(2):112-115
Crude, Sephadex-filtered extracts of soybean (Glycine max (L.) Merr.) root nodules contained invertase (E.C. 3.2.1.26) activity with pH optima at 5.4 and 7.8, ,-trehalase (E.C. 3.2.1.28) activity with pH optima at 3.8 and 6.6, and maltase (E.C. 3.2.1.20) activity with a broad pH optimum between 4.5 and 5.0. Bacteroids and cytosol were separated using Percoll density gradients. Cellulase and pectinase were employed to separate protoplasts from the infected region from the nodule cortex, which remained intract. Assays of disaccharidases from these nodule fractions indicated the following localization of enzymes: (1) Bacteroids lack invertase activity (pH 5.4 and 7.8). (2) Much, if not most, of the invertase activity may be localized in the nodule cortex; this is especially likely for acid invertase. However, there was substantial invertase activity in cytosol from the infected region. (3) Most of the maltase activity (pH 5.0) and trehalase activity (pH 3.8 and 6.6) were localized in the cytosol. It is likely that most of these disaccharidase activities are in the cytosol of the infected region, in contrast to invertase. (4) Bacteroids contain maltase (pH 5.0) and trehalase (pH 3.8 and 6.6), but the amount of these enzyme activities was less than 15% of total activity in nodules. Bacteroids and nodule cortex were capable of in-vivo hydrolysis of [14C]trehalose and [14C]maltose. These disaccharides were also hydrolyzed by soybean roots and hypocotyls. Therefore, while ,-trehalose in soybean nodules is probably synthesized by the bacteroids, the capability for utilization of trehalose was not restricted to the bacteroids.Approved for publication as Journal Article 74–81 of the Ohio Agricultural Research and Development Center  相似文献   

17.
We have used spot-inoculation and new cytological procedures to observe the earliest events stimulated in alfalfa (Medicago sativa L.) roots by Rhizobium meliloti. Roots were inoculated with 1–10 nl of concentrated bacteria, fixed in paraformaldehyde, and after embedding and sectioning stained with a combination of acridine orange and DAPI (4-6-diamidino-2-phenylindole hydrochloride). Normal R. meliloti provoke cell dedifferentiation and mitosis in the inner cortex of the root within 21–24 h after inoculation. This activation of root cells spreads progressively, leading to nodule formation. In contrast, the R. meliloti nodA and nodC mutants do not stimulate any activation or mitosis. Thus the primary and earliest effect of Rhizobium nod gene action is plant cellular activation. A rapid, whole-mount visualization by lactic acid shows that the pattern of nodule form varies widely. Some R. meliloti strains were found to be capable of stimulating on alfalfa roots both normal nodules and a hybrid structure intermediate between a nodule and a lateral root.  相似文献   

18.
    
Successful nodulation of legumes by rhizobia is a complex process that, in the open field, depends on many different environmental factors. Generally, legume productivity in an agricultural field may be improved by inoculation with selected highly effective N2-fixing root nodule bacteria. However, field legume inoculation with Rhizobium and Bradyrhizobium spp. has often been unsuccessful because of the presence in the soil of native strains that compete with the introduced strain in nodule formation on the host plants. This ability to dominate nodulation is termed competitiveness and is critical for the successful use of inoculants.The author is with the Departmentode Microbiologia del Suelo y Sistemas Simbioticos, Estation Experimental del Zaidin, Consejo Superior de Investigaciones Cientificas, C/Professor Albareda 1, 18008 Granada, Spain  相似文献   

19.
Previous evidence has indicated that the 16S rRNA genes in certain species of Aeromonas may have a history of lateral transfer and recombination. A comparative analysis of patterns of 16S nucleotide sequence polymorphism among species of Rhizobium and Agrobacterium was conducted to determine if there is similar evidence for chimeric 16S genes in members of the Rhizobiaceae. Results from phylogenetic analyses and comparison of patterns of nucleotide sequence polymorphism in portions of rhizobial 16S genes revealed the same type of segment-dependent polymorphic site partitioning that was previously reported for Aeromonas. These results support the hypothesis that certain 16S segments in rhizobia may have a history of lateral transfer and recombination.Abbreviations 16S rRNA 16S ribosomal ribonucleic acid - 16S the 16S rRNA gene  相似文献   

20.
  总被引:3,自引:0,他引:3  
Recent developments inRhizobium taxonomy are presented from a molecular and evolutionary point of view. Analyses of ribosomal RNA gene sequences provide a solid basis to infer phylogenies in the Rhizobiaceae family. These studies confirmed thatRhizobium andBradyrhizobium are only distantly related and showed thatRhizobium andBradyrhizobium are related to other groups of bacteria that are not plant symbionts.Rhizobium andAgrobacterium species are intermixed. Differences in plasmid content may explain to a good extent the different behavior ofRhizobium andAgrobacterium as symbionts or pathogens. Other approaches to identify and classify bacteria such as DNA-DNA hybridization, fatty acid analysis, RFLP and RPD-PCR techniques and phylogenies derived from other genes are in general agreement to the groupings derived by ribosomal sequences. Only a small proportion of nodulated legumes have been sampled for their symbionts and more knowledge is required on the systematics and taxonomy ofRhizobium andBradyrhizobium species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号