首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adenylate cyclase was solubilized from washed particulate fraction of rabbit cerebral cortex with the nonionic detergent Lubrol 12A9 and subjected to either gel filtration on Ultrogel AcA 34 or chromatography on DEAE Bio-Gel A. By both procedures the enzyme was resolved into two components, one insensitive to guanyl 5'-yl imidodiphosphate [Gpp(NH)p] and NaF but stimulated by Ca2+ and calmodulin, and another that was sensitive to Gpp(NH)p and NaF but relatively insensitive to Ca2+ and calmodulin. The data support the possibility that two independent forms of adenylate cyclase exist in cerebral cortex, one regulated by guanine nucleotide regulatory protein and another by Ca2+-calmodulin. Fractions containing the guanylnucleotide-sensitive activity were found to contain a factor that inhibited basal and Ca2+-stimulated adenylate cyclase in the Ca2+-sensitive fraction. The inhibitor was inactivated by heating at 60 degrees C and by incubation with trypsin. Inhibition was not time-dependent, and it was not due to destruction of cAMP by phosphodiesterase or of ATP by ATPase. Inhibitory action was not reversed by calmodulin and therefore it does not appear to be a calmodulin binding protein. Sucrose density gradient sedimentation indicated a sedimentation coefficient of 4S for the inhibitor; by this technique it co-sedimented with the adenylate cyclase sensitive to Gpp(NH)p and NaF.  相似文献   

2.
Abstract: Cholinergic synaptosomes isolated from the electric organ of Torpedo contain membrane-bound adenylate cyclase activity (∼6 pmol/mg proteidmin), which is dependent on the presence of guanine nucleotides. The activity is strongly dependent on temperature and only slightly affected by NaCl. The Torpedo adenylate cyclase is completely inhibited by low levels of free Ca2+ (K0∼ 0.5 μ M ). This effect is not altered by either trifluoperazine or addition of exogenous calmodulin. Ca3+ has no effect on the activation step of the adenylate cyclase by guanyl-5'-yl imidodiphosphate (GppNHp), and Mn2+ abolishes the Ca2+-dependent inhibition of cyclic AMP synthesis. These findings suggest that Ca2+ exerts its effect by direct interaction with a site located on the catalytic subunit. Torpedo synaptosomes contain presynaptic inhibitory muscarinic receptors. The binding of muscarinic agonists to the receptors is modulated (to lower affinity) by GTP. However, muscarinic ligands, examined under a variety of assay conditions, have no effect on adenylate cyclase activity. These results suggest that although both the muscarinic receptor and the adenylate cyclase are coupled to G proteins, they either interact with different G proteins or are situated in different regions of the presynaptic membrane.  相似文献   

3.
Epinephrine, histamine and prostaglandin E1 stimulated adenylate cyclase activity in lung membranes and their stimulation of the enzyme activity was completely blocked by propranolol, metiamide and indomethacin, respectively. A partially-purified activator from the adult rat lung also enhanced adenylate cyclase activity in membranes. However, stimulation of adenylate cyclase by the rat lung activator was not abolished by the above receptor antagonists. Further, epinephrine, NaF and Gpp(NH)p stimulated adenylate cyclase activity rather readily, whereas stimulation of the enzyme activity by the lung activator was evident after an initial lag phase of 10 min. Also, the lung activator produced additive activation of adenylate cyclase with epinephrine, NaF and Gpp(NH)p. These results indicate that the lung activator potentiates adenylate cyclase activity in membranes by a mechanism independent from those known for epinephrine, NaF and Gpp(NH)p. Incubation of lung membranes for 30 min at 40°C resulted in a loss of adenylate cyclase activation by NaF and Gpp(NH)p. Addition of the released proteins to the heat-treated membranes did not restore the enzyme response to these agonists. However, heat treatment of lung membranes in the presence of 2-mercaptoethanol or dithiothreitol prevented the loss of adenylate cyclase response to NaF and Gpp (NH)p. N-ethylmaleimide abolished adenylate cyclase activation by epinephrine, NaF, Gpp(NH)p and the lung activator. These results indicate that the sulfhydryl groups are important for adenylate cyclase function in rat lung membranes.Abbreviations Gpp(NH)p 5-Guanylimidodiphosphate  相似文献   

4.
The mechanism of calmodulin dependent regulation of adenylate cyclase has been studied in human platelet membranes. Calmodulin activated adenylate cyclase exhibited a biphasic response to both Mg2+ and Ca2+. A stimulatory effect of Mg2 on adenylate cyclase was observed at all Mg2+ concentrations employed, although the degree of activation by calmodulin was progressively decreased with increasing concentrations of Mg2+. These results demonstrate that the Vmax of calmodulin dependent platelet adenylate cyclase can be manipulated by varying the relative concentrations of Mg2+ and Ca2+. The activity of calmodulin stimulated adenylate cyclase was always increased 2-fold above respective levels of activity induced by GTP, Gpp(NH)p and/or PGE. The stimulatory influence of calmodulin was not additive but synergistic to the effects of PGE1, GTP and Gpp(NH)p. GDP beta S inhibited GTP-and Gpp(NH)p stimulation of adenylate cyclase but was without effect on calmodulin stimulation. Since the inhibitory effects of GDP beta S have been ascribed to apparent reduction of active N-protein-catalytic unit (C) complex formation, these results suggest that the magnitude of calmodulin dependent adenylate cyclase activity is proportional to the number of N-protein-C complexes, and that calmodulin interacts with preformed N-protein-C complex to increase its catalytic turnover. Our data do not support existence of two isoenzymes of adenylate cyclase (calmodulin sensitive and calmodulin insensitive) in human platelets.  相似文献   

5.
Abstract: Ca2+/calmodulin-sensitive adenylyl cyclase plays a role in several forms of synaptic plasticity and learning. To understand how cellular signals from neuronal activity during behavioral stimuli might be integrated by adenylyl cyclase, we have characterized the response of type I adenylyl cyclase to transient Ca2+ stimuli. Stimulation by a several second Ca2+ stimulus is delayed, rising to a peak after the Ca2+ stimulus has ended. We attempted to identify the site of the persistent Ca2+ signal that enabled adenylyl cyclase stimulation to increase after free Ca2+ had declined. Free calmodulin itself displayed no persistent activation by Ca2+ and was unable to activate adenylyl cyclase if exposed to low Ca2+ solution <1 s before reaching adenylyl cyclase. In contrast, activation of the calmodulin-adenylyl cyclase complex persisted for seconds after Ca2+ stimulus. Activation decayed with a time constant of 6 or 13 s depending on assay conditions. These results suggest that the calmodulin-adenylyl cyclase complex can serve as a site of cellular memory for a Ca2+ transient that has ended even before adenylyl cyclase is fully activated.  相似文献   

6.
Abstract: The adenylate cyclase activity of rat hippocampal plasma membranes can be stimulated by vaso-active intestinal polypeptide (VIP). Low concentrations (10−9 to 10−7M) of 5'-guanylyl-imido diphosphate (GppNHp) evoke a transient inhibition of the enzyme, which is followed by stimulation with increasing GppNHp concentrations (10−6 to 10−4M). Inclusion of ethyleneglycol - bis - (β - aminoethylether) - N,N' - tetraacetic acid (EGTA) during incubation abolishes the GppNHp inhibition while preserving GppNHp activation. The stimulation induced by GppNHp is amplified by VIP, but the inhibition is unaffected. Adenosine analogs and opiates are inhibitory ligands in the presence of GTP, and their effects can be reversed by the appropiate receptor antagonists, 3-isobutyl-1-methylxanthine and naloxone. Treatment of membranes with trypsin abolishes the GppNHp-induced inhibition without affecting the GppNHp stimulation. The inhibition induced by GppNHp is also abolished by EGTA treatment followed by washing, which coincides wtih a reduction in the adenosine- and opiate-mediated, GTP-dependent inhibition. The GppNHp inhibition can be restored in EGTA-treated but not in trypsin-treated membranes by addition of calcium-calmodulin but not by Ca2+ or Mg2+. Calcium-calmodulindepleted membranes lack calcium stimulation as well as GppNHp-induced inhibition, whereas untreated membranes and calcium-calmodulin-depleted membranes plus exogenous calcium-calmodulin showed calcium stimulation and GppNHp inhibition. These results suggest that calmodulin is involved in both Ca2+ stimulation and guanine nucleotide-mediated inhibition of rat hippocampal adenylate cyclase.  相似文献   

7.
Continuous treatment (1-10 days) of rats with desipramine (10 mg/kg, twice per day) caused desensitization of the beta-adrenergic receptor-coupled adenylate cyclase system of cerebral cortical membranes. The decrease in the isoproterenol-stimulated adenylate cyclase activity was more rapid and greater than the decrease in the number of beta-adrenergic receptors in membranes during treatment of the membrane donor rats with desipramine, indicating that the desensitization occurring at an early stage of the treatment was not accounted for solely by the decrease in the receptor number. Neither the guanine nucleotide regulatory protein (N) nor the adenylate cyclase catalyst was impaired by the drug treatment, since there was no decrease in the cyclase activity measured in the presence or absence of GTP, guanyl-5'-yl-beta-gamma-imidodiphosphate [Gpp(NH)p], NaF, or forskolin. Gpp(NH)p-induced activation of membrane adenylate cyclase developed with a lag time of a few minutes in membranes from control or drug-treated rats. The lag was shortened by the addition of isoproterenol, indicating that beta-receptors were coupled to N in such a manner as to facilitate the exchange of added Gpp(NH)p with endogenous GDP on N. This effect of isoproterenol rapidly decreased during the drug treatment of rats. Thus, functional uncoupling of the N protein from receptors was responsible for early development of desensitization of beta-adrenergic receptor-mediated adenylate cyclase in the cerebral cortex during desipramine therapy.  相似文献   

8.
Abstract Bordetella calmodulin-like protein was purified from culture supernatant fluid of B. pertussis, B. parapertussis and B. bronchiseptica by successive chromatography on hydroxyapatite, Toyopearl HW-50F and QAE-Toyopearl 550C columns. The purified calmodulin-like protein appeared to be homogeneous by SDS-polyacrylamide gel electrophoresis. The apparent molecular mass of calmodulin-like protein on SDS-polyacrylamide gel electrophoresis was 10 kDa, which was smaller than bovine brain calmodulin (17 kDa). The purified calmodulin-like protein activated both Bordetella adenylate cyclase and mammalian phosphodiesterase in a Ca2+-dependent manner. This activation was inhibited by calmodulin antagonists. The calmodulin-like protein, like calmodulin, was retained by a hydrophobic resin in the presence of Ca2+ and eluted by the addition of EDTA. These results indicated that the Bordetella calmodulin-like protein is closely related to calmodulin. As a putative calmodulin the extracellular calmodulin may be involved in Bordetella pathogenesis.  相似文献   

9.
Adenylate Cyclase Activity in the Superior Cervical Ganglion of the Rat   总被引:2,自引:2,他引:0  
Abstract: Adenylate cyclase activity in cell-free homogenates of the rat superior cervical ganglion (SCG) was assayed under a variety of experimental conditions. Adenylate cyclase activity was decreased by approximately one-half when 1 m M EGTA was included in the homogenization buffer and assay mixture, indicating the presence of a Ca2+-sensitive adenylate cyclase in the ganglion. In the presence of EGTA, basal adenylate cyclase activity in homogenates of the SCG was 12.9 ± 0.6 pmol cyclic AMP/ganglion/10 min. Enzyme activity was stimulated three- to fourfold by 10 m M NaF or 10 m M MnCl2, Both GTP and its nonhydrolyzable analog guanylylimidodiphosphate (GppNHp) stimulated adenylate cyclase in a concentration-dependent manner over the range of 0.1–10.0 μ M . Stimulation by GppNHp was five to six times greater than that produced by GTP at all concentrations tested. Decentralization of the ganglion had no effect on basal or stimulated adenylate cyclase activity. Receptor-linked stimulation of adenylate cyclase was not obtained with any of the following: isoproterenol, epi-nephrine, histamine, dopamine, prostaglandin E2, or va-soactive intestinal peptide. Thus the receptor-linked regulation of adenylate cyclase activity appears to be lost in homogenates of the ganglion.  相似文献   

10.
The inhibition of adenylate cyclase from rat striatal plasma membranes by guanyl-5'-yl-imidodiphosphate [Gpp(NH)p] and morphine was compared to determine whether Gpp(NH)p-mediated inhibition accurately reflected hormone-mediated inhibition in this system. Inhibition of adenylate cyclase activity by Gpp(NH)p and morphine was examined with respect to temperature, divalent cation concentration, and the presence of Ca2+/calmodulin (Ca2+/CaM). Gpp(NH)p-mediated inhibition was dependent on the presence of Ca2+/CaM at 24 degrees C; the inhibition was independent of Ca2+/CaM at 18 degrees C; and inhibition could not be detected in the presence, or absence, of Ca2+/CaM at 30 degrees C. In contrast, naloxone-reversible, morphine-induced inhibition of adenylate cyclase was independent of both temperature and the presence of Ca2+/CaM. Mg2+ dose-response curves also reinforced the differences in the Ca2+/CaM requirement for Gpp(NH)p- and morphine-induced inhibition. Because Gpp(NH)p-mediated inhibition was independent of Ca2+/CaM at low basal activities (i.e., 18 degrees C, or below 1 mM Mg2+) and dependent on the presence of Ca2+/CaM at higher basal activities (24 degrees C, or above 1 mM Mg2+), the inhibitory effects of Gpp(NH)p were examined at 1 mM Mg2+ in the presence of 100 nM forskolin. Under these conditions, both Gpp(NH)p- and morphine-induced inhibition of adenylate cyclase were independent of Ca2+/CaM. The results demonstrate that the requirement for Ca2+/CaM to observe Gpp(NH)p-mediated inhibition depends on the basal activity of adenylate cyclase, whereas hormone-mediated inhibition is Ca2+/CaM independent under all conditions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Abstract: Forskolin has been used to stimulate adenylyl cyclase. However, we found that forskolin inhibited voltage-sensitive Ca2+ channels (VSCCs) in a cyclic AMP (cAMP)-independent manner in PC12 cells. Ca2+ influx induced by membrane depolarization with 70 m M K+ was inhibited when cells were preincubated with 10 µ M forskolin. Almost maximum inhibitory effect on Ca2+ influx without any significant increase in cellular cAMP level was observed in PC12 cells exposed to forskolin for 1 min. In addition, the forskolin effect on Ca2+ influx was not affected by the presence of 2',5'-dideoxyadenosine, an inhibitor of adenylyl cyclase that reduces dramatically forskolin-induced cAMP production. 1,9-Dideoxyforskolin, an inactive analogue of forskolin, also inhibited ∼80% of Ca2+ influx induced by 70 m M K+ without any increase in cAMP. The data suggest that forskolin and its analogue inhibit VSCCs in PC12 cells and that the inhibition is independent of cAMP generation.  相似文献   

12.
Adenylate cyclase activity in bovine cerebellar membranes is regulated by calmodulin, forskolin, and both stimulatory (Ns) and inhibitory (Ni) guanine nucleotide-binding components. The susceptibility of the enzyme to chymotrypsin proteolysis was used as a probe of structure-function relationships for these different regulatory pathways. Pretreatment of membranes with low concentrations of chymotrypsin (1-2 micrograms/ml) caused a three- to fourfold increase in basal adenylate cyclase activity and abolished the Ca2+-dependent activation of the enzyme by calmodulin. In contrast, the stimulation of the enzyme by GTP plus isoproterenol was strongly potentiated after protease treatment, an effect that mimics the synergistic activation of adenylate cyclase by Ns and calmodulin in unproteolyzed membranes. Limited proteolysis revealed low- and high-affinity components in the activation of adenylate cyclase by forskolin. The low-affinity component was readily lost on proteolysis, together with calmodulin stimulation of the enzyme. The activation via the high-affinity component was resistant to proteolysis and nonadditive with the Ns-mediated activation of the enzyme, suggesting that both effectors utilize a common pathway. The inhibitory effect of low concentrations (10(-7) M) of guanyl-5'-yl imidodiphosphate [Gpp(NH)p] on forskolin-activated adenylate cyclase was retained after limited proteolysis of the membranes, indicating that the proteolytic activation does not result from an impairment of the Ni subunit. Moreover, in the rat cerebellum, proteolysis as well as calmodulin was found to enhance strongly the inhibitory effect of Gpp(NH)p on basal adenylate cyclase activity. Our results suggest that calmodulin and Ns/Ni interact with two structurally distinct but allosterically linked domains of the enzyme. Both domains appear to be involved in the mode of action of forskolin.  相似文献   

13.
Abstract: The nervous tissue-specific protein B-50 (GAP-43), which has been implicated in the regulation of neurotransmitter release, is a member of a family of atypical calmodulin-binding proteins. To investigate to what extent calmodulin and the interaction between B-50 and calmodulin are involved in the mechanism of Ca2+-induced noradrenaline release, we introduced polyclonal anti-calmodulin antibodies, calmodulin, and the calmodulin antagonists trifluoperazine, W-7, calmidazolium, and polymyxin B into streptolysin-O-permeated synaptosomes prepared from rat cerebral cortex. Anti-calmodulin antibodies, which inhibited Ca2+/calmodulin-dependent protein kinase II autophosphorylation and calcineurin phosphatase activity, decreased Ca2+-induced noradrenaline release from permeated synaptosomes. Exogenous calmodulin failed to modulate release, indicating that if calmodulin is required for vesicle fusion it is still present in sufficient amounts in permeated synaptosomes. Although trifluoperazine, W-7, and calmidazolium inhibited Ca2+-induced release, they also strongly increased basal release. Polymyxin B potently inhibited Ca2+-induced noradrenaline release without affecting basal release. It is interesting that polymyxin B was also the only antagonist affecting the interaction between B-50 and calmodulin, thus lending further support to the hypothesis that B-50 serves as a local Ca2+-sensitive calmodulin store underneath the plasma membrane in the mechanism of neurotransmitter release. We conclude that calmodulin plays an important role in vesicular noradrenaline release, probably by activating Ca2+/calmodulin-dependent enzymes involved in the regulation of one or more steps in the release mechanism.  相似文献   

14.
Adenylate cyclase in the membrane fractions of bovine and rat brains, but not in rat liver plasma membranes, was solubilized by treatment with Fe2+ (10 μM) plus dithiothreitol (5 mM). Solubilization of the enzyme by these agents was completely prevented by simultaneous addition of N,N′-diphenyl-p-phenylenediamine (DPPD), an inhibitor of lipid peroxidation. Ascorbic acid also solubilized the enzyme from the brain membranes. Lipid peroxidation of the brain membranes was characterized by a selective loss of phosphatidylethanolamine. Solubilization of membrane-bound enzymes by Fe2+ plus dithiothreitol was not specific for adenylate cyclase, because phosphodiesterase, thiaminediphosphatase and many other proteins were also solubilized. Solubilized adenylate cyclase had a high specific activity and was not activated by either NaF, 5′-guanylyl imidodiphosphate (Gpp[NH]p) or calmodulin. These results suggested that lipid peroxidation of the brain membranes significantly solubilized adenylate cyclase of high specific activity.  相似文献   

15.
Activation of adenylate cyclase by forskolin in rat brain and testis   总被引:2,自引:0,他引:2  
Detergent-dispersed adenylate cyclase from rat cerebrum was detected in two components, one sensitive to Ca2+ and calmodulin and another sensitive to fluoride or guanyl-5'-yl imidodiphosphate (Gpp(NH)p). The enzyme activity of both components was markedly augmented by forskolin assayed in the presence or absence of other enzyme activators (e.g., NaF, Gpp(NH)p, calmodulin). The catalytic subunit fraction in which G/F protein was totally lacking was also activated by forskolin. During 1-35 days of postnatal development, the basal adenylate cyclase activities in either cerebrum and cerebellum particulate preparations progressively increased. While the fluoride sensitivity of the cerebrum and cerebellum enzyme increased during postnatal development, the responsiveness to forskolin remained unaltered. There was no enhancement of soluble adenylate cyclase (from rat testis) by forskolin under the assay conditions in which there was a marked stimulatory action on the particulate enzyme. The results seen with the solubilized enzyme, with either Lubrol PX or cholate, indicate that the effects of forskolin on the cyclase do not require either G/F protein or calmodulin and the results of our study of brain enzymes support this view. Data on soluble testis cyclase (a poor or absent response to forskolin by this enzyme) imply that it lacks a protein (other than the catalytic unit) which could confer greater stimulation. The present results do not rule out an alternative explanation that forskolin stimulates adenylate cyclase by a direct interaction with the catalytic subunit, if the catalytic proteins do differ widely in various species of cells and their response to this diterpene.  相似文献   

16.
Functional interaction of the inhibitory GTP regulatory component (Ni) with the adenylate cyclase catalytic subunit has not previously been demonstrated after detergent solubilization. The present report describes a sodium cholate-solubilized preparation of rat cerebral cortical membrane adenylate cyclase that retains guanine nucleotide-mediated inhibition of activity. Methods of membrane preparation, cholate extraction, and assay conditions were manipulated such that guanosine-5'-(beta-gamma-imido)triphosphate [Gpp(NH)p] inhibited basal activity 40-60%. The rank order of potency among various GTP analogs was similar in cholate extracts and in membranes: guanosine-5'-0-(3-thiotriphosphate) greater than Gpp(NH)p greater than GTP. Inclusion of 0.1 mM EGTA reduced basal activity 70-90% and abolished Gpp(NH)p inhibition of basal activity in both membranes and cholate extracts. Forskolin-stimulated activity was also inhibited by Gpp(NH)p. Treatment of either membranes or cholate extracts with N-ethylmaleimide abolished Gpp(NH)p inhibition. Gel filtration of the cholate extract over a Sepharose 6B column in 0.1% Lubrol PX partially resolved the adenylate cyclase components. However, Gpp(NH)p inhibition of basal activity (60% of the control) was maintained in select column fractions. Sucrose gradient centrifugation totally resolved the catalytic subunit from both functional Ni and stimulatory GTP regulatory component (Ns) activities. The sedimentation of functional Ni activity was detected by assaying the ability of sucrose gradient fractions to confer Gpp(NH)p inhibition of the resolved catalytic activity. Labeling of gradient or column fractions with pertussis toxin and [32P]NAD revealed that both the 39,000- and 41,000-dalton substrates comigrated with the functional Ni activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Rod and cone cells of the mammalian retina harbor two types of a membrane bound guanylate cyclase (GC), rod outer segment guanylate cyclase type 1 (ROS-GC1) and ROS-GC2. Both enzymes are regulated by small Ca2+-binding proteins named GC-activating proteins that operate as Ca2+ sensors and enable cyclases to respond to changes of intracellular Ca2+after illumination. We determined the expression level of ROS-GC2 in bovine ROS preparations and compared it with the level of ROS-GC1 in ROSs. The molar ratio of a ROS-GC2 dimer to rhodopsin was 1 : 13 200. The amount of ROS-GC1 was 25-fold higher than the amount of ROS-GC2. Heterologously expressed ROS-GC2 was differentially activated by GC-activating protein 1 and 2 at low free Ca2+ concentrations. Mutants of GC-activating protein 2 modulated ROS-GC2 in a manner different from their action on ROS-GC1 indicating that the Ca2+ sensitivity of the Ca2+ sensor is controlled by the mode of target–sensor interaction.  相似文献   

18.
The diterpene forskolin stimulated rat cardiac adenylate cyclase activity at least 20-fold and potentiated the effect of NaF. The stimulatory effect of forskolin was reduced in the presence of Gpp(NH)p. Ethanol markedly reduced the stimulation of adenylate cyclase by forskolin while potentiating NaF and Gpp(NH)p stimulation. The inhibitory effect of ethanol on forskolin stimulation appeared to be of a mixed type with both a competitive and a non-competitive component. Three other short-chain linear alcohols (methanol, propanol, butanol) also inhibited forskolin-stimulation, this effect being proportional to the number of carbon atoms.  相似文献   

19.
The effect of halothane, ketamine and ethanol on β-adrenergic receptor adenylate cyclase system was studied in the brain of rats. An anesthetic concentration of halothane and ketamine added in vitro decreased the stimulatory effect of norepinephrine on cyclic AMP formation in slices from the cerebral cortex. On the other hand, ethanol increased the basal activity of cerebral adenylate cyclase without affecting on the norepinephrine-stimulated activity. The increase of the basal activity induced by ethanol was not antagonized by propranolol, a β-adrenergic antagonist. In the crude synaptosomal (P2) fraction, these drugs had no significant effect on the basal adenylate cyclase activity, binding of [3H]dihydroalprenolol to β-receptor, and binding of [3H]guanylylimido diphosphate ([3H]Gpp(NH)p) to guanyl nucleotide binding site. In contrast, the adenylate cyclase activity stimulated by Gpp(NH)p or NaF was significantly inhibited by an anesthetic concentration of these drugs. An anesthetic concentration of these drugs increased the membrane fluidity of P2 fraction monitored by the fluorescence polarization technique. The addition of linoleic acid (more than 500 μM) also induced not only the increase of fluidity, but also the decrease of Gpp(NH)p- or NaF-stimulated adenylate cyclase activity in the cerebral P2 fraction. The present results suggest that general anesthetics may interfere with the guanyl nucleotide binding regulatory protein-mediated activation of cerebral adenylate cyclase by disturbing the lipid region of synaptic membrane.  相似文献   

20.
The adenylate cyclase activity of a participate preparation of rat cerebral cortex is composed of at least two contributing components, one of which requires a Ca2+-dependent regulator protein (CDR) for activity (Brostrom, C. O., Brostrom, M. A., and Wolff, D. J. (1977) J. Biol. Chem.252, 5677–5685). Each of these components of the activity was activated by GTP and its synthetic analog, 5-guanylylimidodiphosphate (Gpp(NH)p). The component of the adenylate cyclase activity which did not respond to CDR (CDR-independent activity) was stimulated approximately 60% by 100 μm GTP and 3.5-fold by 100 μm Gpp(NH)p. Concentrations of GTP required for maximal activation of the CDR-dependent adenylate cyclase component decreased as CDR concentrations in the assay were increased. Similarly, GTP pr Gpp(NH)p lowered the concentration of CDR required to produce half-maximal activation of this enzyme form. At saturating CDR concentrations, however, increases in activity were not observed with the addition of these nucleotides. The CDR-dependent component responded biphasically (activation followed by inhibition) to increasing free Ca2+ concentrations; both phases of this response occurred at lower free Ca2+ concentrations with GTP present in the assay. The concentration of chlorpromazine which inhibited activation of adenylate cyclase by CDR was elevated when GTP was present. The CDR-dependent form of activity, which is stabilized by CDR to thermal inactivation, was also stabilized by Gpp(NH)p. The increase in stability produced by Gpp(NH)p did not require the presence of CDR, and stabilization with both Gpp(NH)p and CDR was greater than that obtained with either Gpp(NH)p or CDR alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号