首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Nitric oxide synthase I (NOS I) has been localized to the skeletal muscle sarcolemma in a variety of vertebrate species including man. It is particularly enriched at neuromuscular junctions. Recently, the N-methyl-d-aspartate (NMDA) receptor subunit 1 (NMDAR-1) has been detected in the postjunctional sarcolemma of rat diaphragm, providing a clue as to the possible source of Ca2+ ions that are necessary for NOS I activation. To address this possibility, we studied the distribution of NMDAR-1 and NOS I in mouse and rat skeletal muscles by immunohistochemistry and enzyme histochemistry. NMDAR-1 and NOS I were closely associated at neuromuscular junctions primarily of type II muscle fibers. NOS I was also present in the extrajunctional sarcolemma of this fiber type. Dystrophin, β-dystroglycan, α-sarcoglycan, and spectrin were found normally expressed in both the junctional and extrajunctional sarcolemma of both fiber types. By contrast, in the muscle sarcolemma of MDX mice, dystrophin and dystrophin-associated proteins were reduced or absent. NOS I immunoreactivity was lost from the extrajunctional sarcolemma and barely detectable in the junctional sarcolemma. NOS I activity was clearly demonstrable in the junctional sarcolemma by NADPH diaphorase histochemistry, especially when the two-step method was used. NMDAR-1 was not altered. These data suggest that different mechanisms act to attach NOS I to the junctional versus extrajunctional sarcolemma. It may further be postulated that NMDA receptors are involved not only in the regulation but also sarcolemmal targeting of NOS I at neuromuscular junctions of type II fibers. The evidence that glutamate may function as a messenger molecule at vertebrate neuromuscular junction is discussed.  相似文献   

2.
The subcellular distribution of phospholamban in adult canine ventricular myocardial cells was determined by the indirect immunogold-labeling technique. The results presented suggest that phospholamban, like the Ca2+-ATPase, is uniformly distributed in the network sarcoplasmic reticulum but absent from the junctional portion of the junctional sarcoplasmic reticulum. Unlike the Ca2+-ATPase, but like cardiac calsequestrin, phospholamban also appears to be present in the corbular sarcoplasmic reticulum. Comparison of the relative distribution of phospholamban immunolabeling in the sarcoplasmic reticulum with that of the sarcolemma showed that the density of phospholamban in the network sarcoplasmic reticulum was approximately 35-fold higher than that of the cytoplasmic side of the sarcolemma, which in turn was found to be three- to fourfold higher than the density of the background labeling. However, a majority of the specific phospholamban labeling within 30 nm of the cytoplasmic side of the sarcolemma was clustered and present over the sarcoplasmic reticulum in the subsarcolemmal region of the myocardial cells, suggesting that phospholamban is confined to the junctional regions between the sarcolemma and the sarcoplasmic reticulum, but absent from the nonjunctional portion of the sarcolemma. Although the resolution of the immunogold-labeling technique used (60 nm) does not permit one to determine whether the specific labeling within 30 nm of the cytoplasmic side of the sarcolemma is associated with the sarcolemma and/or the junctional sarcoplasmic reticulum, it is likely that the low amount of labeling in this region represents phospholamban associated with sarcoplasmic reticulum. These results suggest that phospholamban is absent from the sarcolemma and confined to the sarcoplasmic reticulum in cardiac muscle.  相似文献   

3.
The sarcoplasmic reticulum (SR) of skeletal muscle controls the contraction-relaxation cycle by raising and lowering the myoplasmic free-Ca2+ concentration. The coupling between excitation, i.e., depolarization of sarcolemma and transvers tubule (TT) and Ca2+ release from the terminal cisternae (TC) of SR takes place at the triad. The triad junction is formed by a specialized region of the TC, the junctional SR, and the TT. The molecular architecture and protein composition of the junctional SR are under active investigation. Since the junctional SR plays a central role in excitation-contraction coupling and Ca2+ release, some of its protein constituents are directly involved in these processes. The biochemical evidence supporting this contention is reviewed in this article.  相似文献   

4.
Myotonic dystrophy (DM) is one of the most prevalent muscular diseases in adults. The molecular basis of this autosomal disorder has been identified as the expansion of a CTG repeat in the 3' untranslated region of a gene encoding a protein kinase (DMPK). The pathophysiology of the disease and the role of DMPK are still obscure. It has been previously demonstrated that DMPK is localized at neuromuscular junctions, myotendinous junctions, and terminal cisternae of the sarcoplasmic reticulum (SR), in the skeletal muscle, and at intercalated discs in the cardiac muscle. We report here new findings about specific localization of DMPK in the heart. Polyclonal antibodies raised against a peptide sequence of the human DMPK were used to analyze the subcellular distribution of the protein in rat papillary muscles. Confocal laser microscopy revealed a strong although discontinuous reactivity at intercalated discs, together with transverse banding on the sarcoplasm. At higher resolution with immunogold electron microscopy, we observed that DMPK is localized at the cytoplasmic surface of junctional and extended junctional sarcoplasmic reticulum, suggesting that DMPK is involved in the regulation of excitation-contraction coupling. Along the intercalated disc, DMPK was found associated with gap junctions, whereas it was absent in the two other kinds of junctional complexes (fasciae adherentes and desmosomes). Immunogold labeling of gap junction purified fractions showed that DMPK co-localized with connexin 43, the major component of this type of intercellular junctions, suggesting that DMPK plays a regulatory role in the transmission of signals between myocytes.  相似文献   

5.
Vinculin is a ubiquitously expressed multiliganded protein that links the actin cytoskeleton to the cell membrane. In myocytes, it is localized in protein complexes which anchor the contractile apparatus to the sarcolemma. Its function in the myocardium remains poorly understood. Therefore, we developed a mouse model with cardiac-myocyte-specific inactivation of the vinculin (Vcl) gene by using Cre-loxP technology. Sudden death was found in 49% of the knockout (cVclKO) mice younger than 3 months of age despite preservation of contractile function. Conscious telemetry documented ventricular tachycardia as the cause of sudden death, while defective myocardial conduction was detected by optical mapping. cVclKO mice that survived through the vulnerable period of sudden death developed dilated cardiomyopathy and died before 6 months of age. Prior to the onset of cardiac dysfunction, ultrastructural analysis of cVclKO heart tissue showed abnormal adherens junctions with dissolution of the intercalated disc structure, expression of the junctional proteins cadherin and beta1D integrin were reduced, and the gap junction protein connexin 43 was mislocalized to the lateral myocyte border. This is the first report of tissue-specific inactivation of the Vcl gene and shows that it is required for preservation of normal cell-cell and cell-matrix adhesive structures.  相似文献   

6.
Sarcolemmal fractions of vascular smooth muscles were prepared from porcine thoracic aortae by differential and sucrose density gradient centrifugation. In these fractions, there was a high activity of 5'-nucleotidase, a putative marker enzyme of plasma membrane, and a low activity of rotenone insensitive NADH-cytochrome c reductase a marker of sarcoplasmic reticulum. In these fractions, the Ca2+ uptake was ATP-dependent. A low concentration of saponin which inhibited Ca2+ uptake by the plasma membrane but not by the sarcoplasmic reticulum, inhibited 65% of the Ca2+ uptake of this fraction. The Ca2+ uptake of this fraction was enhanced by cAMP- and cGMP-dependent protein kinases, and by calmodulin. The cAMP-dependent protein kinase enhanced the phosphorylation of 28 and 22 kDa proteins, while the cGMP-dependent protein kinase phosphorylated the 35 kDa protein. The phosphorylation of 100, 75, 65, 41 and 22 kDa proteins was enhanced by Ca2+ and calmodulin. These results indicate that cAMP- and cGMP-dependent protein kinases as well as calmodulin play important roles in Ca2+ transport in the sarcolemma, and that the phosphorylated proteins may be associated with an enhancement of Ca2+ transport in the sarcolemma.  相似文献   

7.
Simulation of Electrical Interaction of Cardiac Cells   总被引:4,自引:1,他引:3       下载免费PDF全文
A model of the electrical activity of excitable membrane was used to simulate action potential propagation in cardiac cells. Using an implicit method for solving finite difference equations, propagation through the intercalated disc region between two abutting cells was studied. A model of interaction was constructed and parameters of the cellular junction determined. Estimates of the intercalated disc resistance were then made from these junction parameters using a field analysis of the junction. Values of approximately 4 Ω-cm2 were found and correlate well with experimentally measured values.  相似文献   

8.
Preparation of sarcolemma from whole rabbit heart using the method of Jones et al. (Jones,L.R., Besch, H.R., Fleming, J.W., McConnaughey, M.M. and Watanabe, A.M. (1979) J. Biol. Chem. 254, 530-539) results in a 46-fold purification of the endothelial plasmalemma-specific marker angiotensin converting enzyme. This implies contamination of the sarcolemma with vascular endothelial plasmalemma. During preparation of sarcolemma from sheep heart, using the same method, angiotensin converting enzyme copurified with the general plasma membrane marker (Na+ + K+)-ATPase. The ratio of myocyte to endothelial plasma membrane in the final preparation is therefore similar to that in the whole heart homogenate. Ultrastructural analysis has shown that the myocyte/endothelial surface area is 70:30 in whole cardiac muscle. Comparison of angiotensin converting enzyme activity of an endothelial plasma membrane fraction with that of whole heart sarcolemma suggests an upper limit of 42% for endothelial contamination. Contamination by endothelial plasmalemma was dramatically reduced by preparing sarcolemma from myocytes produced by proteolytic disruption of whole hearts. Following disruption, myocytes were separated from non-muscle cells by sedimentation through 0.5 M sucrose. Sarcolemma prepared from sheep cardiac myocytes had approximately 15-fold less angiotensin converting enzyme activity than whole sheep heart sarcolemma but comparable ouabain-inhibitable (Na+ + K+)-ATPase activity.  相似文献   

9.
Cardiac conducting fibers taken from 12 dogs were studied in the electron microscope. The majority of samples contained a moderate number of multivesicular bodies (MVB's) and an extremely high number occurred in one dog. Single MVB's were found in the perinuclear region and in the cytoplasm separating myofibrils. A high accumulation of MVB's occurred at the cell periphery within cytoplasmic stalks extending into the extracellular space, in the intercalated disc, and also outside of the cell. The latter appeared to be extruded from the cell in the following way: 1) peripheral cytoplasm formed stalk-like extensions which contained MVB's; 2) the stalks detached from the cell; 3) vacuolar and sarcolemmal membranes surrounding the MVB disintegrated; 4) vesicles released from MVB adhered to the cellular surface and the coat of their membrane blended with the coat of the sarcolemma. The above pattern seems to be the same in those parts of sarcolemma which face the interstitial tissue and in the intercalated disc.  相似文献   

10.
Subfractionation of cardiac sarcolemma with wheat-germ agglutinin.   总被引:1,自引:0,他引:1       下载免费PDF全文
The properties of highly purified bovine cardiac sarcolemma subfractionated with the lectin, wheat-germ agglutinin (WGA) were studied. Two different membrane subfractions were isolated, one which was agglutinated in the presence of 1.0 mg of WGA/mg of protein (WGA+ vesicles) and a second fraction which failed to agglutinate (WGA- vesicles). These two membrane fractions had quantitatively different rates of Na+/K+-dependent, ouabain-sensitive ATPase and Na+/Ca2+ exchange activities, yet a similar protein composition, which suggests that they were both derived from the plasma membrane. WGA- vesicles had a decreased number of [3H]quinuclidinyl benzilate-binding sites and no detectable [3H]nitrendipine-binding sites. Electron-microscopic and freeze-fracture analysis showed that the WGA+ fraction was composed of typical spherical sarcolemmal vesicles, whereas the WGA- fraction primarily contained elongated tubular structures suggestive of the T-tubule vesicles which were previously isolated from skeletal muscle. Assays of marker enzymes revealed that these fractions were neither sarcoplasmic reticulum nor plasma membrane from endothelial cells. Moreover, WGA agglutination did not result in the separation of right-side-out and inside-out vesicles. On the basis of these findings we propose that the WGA+ fraction corresponds to highly purified sarcolemma, whereas the WGA- fraction may be derived from T-tubule membranes.  相似文献   

11.
The properties of particulate guanylate cyclase (GTP pyrophosphate-lyase (cyclizing), EC 4.6.1.2) from purified rabbit skeletal muscle membrane fragments were studied. Four membrane fractions were prepared by sucrose gradient centrifugation and the fractions characterized by analysis of marker enzymes. Guanylate cyclase activity was highest in the fraction possessing enzymatic properties typical of sarcolemma, while fractions enriched with sarcoplasmic reticulum had lower activities. In the presence of suboptimal Mn2+ concentrations, Mg2+ stimulated particulate guanylate cyclase activity both before and after solubilization in 1% Triton X-100. Guanylate cyclase activity was biphasic in the presence of Ca2+. Increasing the Ca2+ concentration from 10(-8) to 10(-5) M decreased the specific activity. As the Ca2+ concentration was further increased to 5 . 10(-4) M enzyme activity again increased. After solubilization of the membranes in 1% Triton X-100, Ca2+ suppressed enzyme activity. Studies utilizing ionophore X537A indicated that the altered effect of Ca2+ upon the solubilized membranes was independent of asymmetric distribution of Ca2+ and Mg2+.  相似文献   

12.
The effects of vitamin D-3 on calcium and phosphate transport in skeletal muscle plasma membranes were studied. Sarcolemma vesicles were isolated from vitamin D-deficient and vitamin D-treated (one week) chicks by sucrose density gradient centrifugation of a crude muscle plasma membrane fraction. Measurement of (Na+ + K+)-ATPase activity, cholesterol to phospholipid molar ratios and levels of intracellular marker enzymes showed a high degree of purification of the preparations. Administration of vitamin D-3 significantly increased active Ca2+ and phosphate uptake into the vesicles. The efflux of both ions from preloaded vesicles was only slightly altered by the sterol. Ca2+-ATPase activity was higher in sarcolemma from treated animals. This confirms that the effects of vitamin D-3 on calcium transport are related to the Ca2+ pump and not to the passive permeability properties of the membrane. No changes in the protein composition of vesicles from both experimental groups were observed. However, treatment with vitamin D-3 increased sphingomyelin and phosphatidylcholine concentrations. These changes in lipid structure may play a role in the effects of vitamin D-3 on transport characteristics of sarcolemma.  相似文献   

13.
A simple electrophoretic method is introduced allowing to isolate five fractions of skeletal muscle ST-system vesicles. In a previous study differences in lipid content, 3H-ouabain binding and in presence of triads in individual fractions (Lehotsky et. al. 1986) were analysed. In the present study biochemical characterization was extended, and (in accordance with previous results) major differences were observed to exist between fraction 1 and fractions 3 and 4. SDS-PAGE showed that fractions 3 and 4 were enriched in a protein with m.w. 100 kD, these fractions showing the highest specific activities of (Mg2+ + Ca2+)-ATPase and oxalate-supported Ca2+-uptake; activities of Mg2+-ATPase and surface membrane marker enzymes were the lowest in these fractions. On the other hand, in fraction 1 the highest activities of Mg2+-ATPase and marker enzymes of the surface membrane were observed together with a decreased content of the 100 kD protein and activities of Ca2+ transport. It could be concluded that the method is suitable to differentiate between relatively pure SR (fractions 3 and 4) and fractions rich in sarcolemma or T-tubules components (fractions 1 and 5).  相似文献   

14.
Synaptosomal plasma membrane (SPM) and other subcellular fractions were isolated from the forebrain of 1-day-old chickens by a procedure based on that of Davis and Bloom (16) and Cotman and Taylor (13). The procedure involves the centrifugation through a discontinuous sucrose gradient of a crude synaptosomal-mitochondrial fraction which has been lysed and weighted with iodonitrotetrazolium. SPM isolated by this method contains only small amounts of lysosomal or mitochondrial membranes and is practically devoid of contaminating microsomal membranes, as estimated by enzyme marker assays. The purity of chick-brain SPM prepared by this method is compared to the purity of chickbrain fractions obtained by two other laboratories, using different methods (4, 59). The SPM were extracted with Triton X-100 and all fractions solubilized in sodium dodecyl sulfate (SDS). The delipidated proteins of all fractions were subjected to SDS-polyacrylamide electrophoresis on slab gels and stained for protein. A distinct difference was observed between the patterns given by the Triton-soluble and-insoluble fractions. Electron microscopy of the synaptic junction fraction showed numerous junctional complexes.  相似文献   

15.
J Q Zhang  B Elzey  G Williams  S Lu  D J Law  R Horowits 《Biochemistry》2001,40(49):14898-14906
N-RAP is a recently discovered muscle-specific protein found at cardiac intercalated disks. Double immunogold labeling of mouse cardiac muscle reveals that vinculin is located immediately adjacent to the fascia adherens region of the intercalated disk membrane, while N-RAP extends approximately 100 nm further toward the interior of the cell. We partially purified cardiac intercalated disks using low- and high-salt extractions followed by density gradient centrifugation. Immunoblots show that this preparation is highly enriched in desmin and junctional proteins, including N-RAP, talin, vinculin, beta1-integrin, N-cadherin, and connexin 43. Electron microscopy and immunolabeling demonstrate that N-RAP and vinculin are associated with the large fragments of intercalated disks that are present in this preparation, which also contains numerous membrane vesicles. Detergent treatment of the partially purified intercalated disks removed the membrane vesicles and extracted vinculin and beta1-integrin. Further separation on a sucrose gradient removed residual actin and myosin and yielded a fraction morphologically similar to fasciae adherentes that was highly enriched in N-RAP, N-cadherin, connexin 43, talin, desmin, and alpha-actinin. The finding that N-RAP copurifies with detergent-extracted intercalated disk fragments even though beta-integrin and vinculin have been completely removed suggests that N-RAP association with the adherens junction region is mediated by the cadherin system. Consistent with this hypothesis, we found that recombinant N-RAP fragments bind alpha-actinin in a gel overlay assay. In addition, immunofluorescence shows that N-RAP remains bound at the ends of isolated, detergent-treated cardiac myofibrils. These results demonstrate that N-RAP remains tightly bound to myofibrils and fasciae adherentes during biochemical purification and may be a key constituent in the mechanical link between these two structures.  相似文献   

16.
The cells of the atrioventricular (AV) junction in the ferret heart were examined using light microscopy, a wax-model reconstruction and quantitative electron microscopy to determine their organization and characteristics. A series of subdivisions of the specialized tissues of the AV junction was apparent at both the light and electron microscopic levels. A transitional zone was observed interposed between the atrial muscle cells and the AV node. The AV node consisted of a coronary sinus portion, a superficial portion and a deep portion. The AV bundle had a segment above the anulus fibrosus, a segment which penetrated the right fibrous trigone, a non-branching segment below the anulus fibrosus and a branched segment. At the ultrastructural level the AV junctional conduction tissues had fewer irregularly oriented myofibrils than did working atrial myocardial cells. T-tubules, present in atrial muscle cells, were not observed in the modified muscle cells of the AV node and bundle. Conventional intercalated discs also were not observed between the cells of the AV node or the AV bundle. Atrial myocardial cells had the highest percentage of the plasma membrane occupied by desmosomes, fasciae adherentes and gap junctions. The AV bundle cells had the highest percentage of appositional surface membrane and a relatively large fraction of plasma membrane occupied by gap junctions. Cells of the superficial portion of the AV node had the smallest percentage of the plasma membrane composed of gap junctions, desmosomes or fasciae adherentes, as well as the smallest fraction of the cell membrane apposed to adjacent cells. The stereological data indicate that the most useful distinguishing characteristic between atrial muscle cells and conduction cells was that a smaller percentage of the conduction cell sarcoplasm was occupied by mitochondria and myofibrils. The most useful characteristics that could be used to differentiate between the regions of the AV junctional conduction tissues were the amounts and types of surface membrane specializations in the respective cell types.  相似文献   

17.
The protein exchange method, immunocytochemistry and the nuclear import of fluorophore-labeled enzymes were used to investigate the colocalisation of aldolase and FBPase in cardiomyocytes. The results indicate in vivo interaction of these two enzymes. In the cardiomyocyte cytoplasm, these enzymes were found to colocalise at the Z-line and on intercalated discs. The translocation of both enzymes through the nuclear pores was also investigated. The immunocytochemistry revealed the colocalisation of aldolase and FBPase in the heterochromatin region of cardiomyocyte nuclei. The Pearson's correlation coefficients, which represent the degree of colocalisation were 0.47, 0.52 and 0.66 in the sarcomer, the intercalated disc and the nucleus, respectively. This is the first report on aldolase and FBPase colocalisation in cardiomyocytes. Interaction of aldolase with FBPase, which results in heterologous complex formation, is necessary for glyconeogenesis to proceed. Therefore, this metabolic pathway in the sarcomer, in the intercalated disc as well as in the nucleus might be expected.  相似文献   

18.
The localization of the membrane-associated thiol oxidase in rat kidney was investigated. Fractionation of the kidney cortex by differential centrifugation demonstrated that the enzyme is found in the plasma membrane. The crude plasma membrane was fractionated by density-gradient centrifugation on Percoll to obtain purified brush-border and basal-lateral membranes. Gamma-Glutamyltransferase, alkaline phosphatase and aminopeptidase M were assayed as brush-border marker enzymes, and (Na+ + K+)-stimulated ATPase was assayed as a basal-lateral-membrane marker enzyme. Thiol oxidase activity and distribution were determined and compared with those of the marker enzymes. Its specific activity was enriched 18-fold in the basal-lateral membrane fraction relative to its activity in the cortical homogenate, and its distribution paralleled that of (Na+ + K+)-stimulated ATPase. This association indicates that thiol oxidase is localized in the same fraction as (Na+ + K+)-stimulated ATPase, i.e. the basal-lateral region of the plasma membrane of the kidney tubular epithelium.  相似文献   

19.
A plasma membrane fraction from the rat parotid gland has been prepared by a procedure which selectively enriches for large membrane sheets. This fraction appears to have preserved several ultrastructural features of the acinar cell surface observed in situ. Regions of membrane resembling the acinar luminal border appear as compartments containing microvillar invaginations, bounded by elements of the junctional complex, and from which basolateral membranes extend beyond the junctional complex either to contact other apical compartments or to terminate as free ends. Several additional morphological features of the apical compartments suggest that they are primarily derived from the surface of acinar cells, rather than from the minority of other salivary gland cell types. Enzymatic activities characteristically associated with other cellular organelles are found at only low levels in the plasma membrane fraction. The fraction is highly enriched in two enzyme activities--K+ -dependent p-nitrophenyl phosphatase (K+ -NPPase, shown to be Na+/K+ adenosine triphosphatase; 20-fold) and gamma-glutamyl transpeptidase (GGTPase; 26-fold)--both known to mark plasma membranes in other tissues. These activities exhibit different patterns of recovery during fractionation, suggesting their distinct distributions among parotid cellular membranes. Secretion granule membranes also exhibit GGTPase, but no detectable K+ -NPPase. Since Na+/K+ adenosine triphosphatase and GGTPase, respectively, mark the basolateral and apical cellular surfaces in other epithelia, we hypothesize that these two enzymes mark distinct domains in the parotid plasmalemma, and that GGTPase, as the putative apical marker, may signify a compositional overlap between the two types of membranes which fuse during exocytosis.  相似文献   

20.
Plasma membranes from heart (sarcolemma) were prepared by the method of Kidwai, A.M. (1975) Methods in Enzymology (Fleischer, S. and Packer, L., eds.), Vol XXXIA, pp. 134--144, Academic Press, New York). On many occasions the sarcolemmal fraction identified by the enzyme markers such as (Na+ + K+)-ATPase banded at heavier densities (d greater than 1.25 g/ml) than expected for plasma membrane (d less than 1.15 g/ml). Radio-iodination of the membrane was added as an independent marker and conditions for the reproducible preparation of the sarcolemma were studied. Cultured heart cells were enzymatically iodinated under conditions which did not affect viability and labeled primarily the sarcolemma. The distribution of radioactivity in homogenates of cultured cells on the density gradient corresponded to that of the enzymes' activity. The best sarcolemma preparation was obtained with 0.3 M KCl extraction of heart homogenates in the presence of 0.05 M pyrophosphate, especially if the salt was also present during the fractionation by density gradient centrifugation. Alterations in the density were also observed with erythrocytes and cultured liver cells' plasma membrane. The data suggests a meta-stable state of the plasma membranes due to handling or storage which could cause alterations of some of their physical properties (e.g. density).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号