首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 344 毫秒
1.
To reveal growth factor and its signal pathway to CCAAT/enhancer binding protein alpha (C/EBPalpha) in hepatocyte differentiation, we used Huh-6 and HepG2, human hepatoblastoma (HBL) cell lines that maintain the expression of genes in hepatoblasts and remain at that stage of differentiation. Insulin-like growth factor (IGF)-II, hepatocyte growth factor (HGF), and dexamethasone (Dex) stimulated HBL cells for Northern blot analysis. Bromodeoxyuridine (BrdU) up-take assay and Western blot analysis on albumin was performed to unveil proliferation and differentiation activity of IGF-II. C/EBPalpha and phosphorylation of Akt were analyzed by Western blot analysis. LY294002 and wortmannin, specific inhibitors of PI3 kinase, and PD98059, a specific inhibitor of mitogen-activated protein (MAP) kinase, were used to examine the signaling pathway of C/EBPalpha upregulated by IGF-II. Luciferase assay was performed to study the promoter activity of C/EBPalpha. Actinomycin D was used to analyze half-life of C/EBPalpha mRNA. IGF-II up-regualted C/EBPalpha by Northern blot and Western blot while HGF and Dex did not by Northern blot. IGF-II promoted proliferation and differentiation by BrdU up-take assay and Western blot analysis on albumin. Akt phosphorylated by IGF-II, suggested that phosphatidyl-inositol (PI) 3 kinase mediated the signaling pathway of IGF-II. LY294002 and wortmannin suppressed expression of C/EBPalpha. IGF-II activated the promoter activity and prolonged half-life of mRNA, suggesting that IGF-II activated promoter and stabilized mRNA. LY294002 and wortmannin suppressed the promoter activity of C/EBPalpha while PD98059 did not, suggesting that activation of the promoter was mediated by PI3 kinase.  相似文献   

2.
We previously reported that prostaglandin F(2alpha) (PGF(2alpha)) activates both phosphoinositide-hydrolyzing phospholipase C and phosphatidylcholine-hydrolyzing phospholipase D in osteoblast-like MC3T3-E1 cells and then induces the activation of protein kinase C (PKC). In this study, we investigated the effect of PGF(2alpha) on the induction of heat shock protein 27 (HSP27), a low-molecular-weight heat shock protein, in these cells. PGF(2alpha) significantly induced the accumulation of HSP27 dose-dependently within the range of 10 nM to 10 microM. PGF(2alpha) stimulated the increase in the levels of mRNA for HSP27. A total of 10 nM 12-O-tetradecanoylphorbol-13-acetate (TPA), an activator of PKC, induced the accumulation of HSP27. The stimulative effect of PGF(2alpha) was reduced in the PKC down-regulated cells. Calphostin C, a specific inhibitor of PKC, suppressed the PGF(2alpha)-induced HSP27 accumulation as well as that induced by TPA. HSP27 induction by PGF(2alpha) was reduced by U-73122, a phospholipase C inhibitor, or propranolol, a phosphatidic acid phosphohydrolase inhibitor. PGF(2alpha) and TPA stimulated p42/p44 mitogen-activated protein (MAP) kinase. PD98059, an inhibitor of the upstream kinase that activates p42/p44 MAP kinase, suppressed the induction of HSP27 stimulated by PGF(2alpha) or TPA. PD98059 and calphostin C reduced the levels of mRNA for HSP27 increased by PGF(2alpha). These results indicate that PGF(2alpha) stimulates the induction of HSP27 via p42/p44 MAP kinase activation, which depends on upstream PKC activation in osteoblasts.  相似文献   

3.
We previously showed that sphingosine 1-phosphate phosphorylates p42/p44 mitogen-activated protein (MAP) kinase and p38 MAP kinase in osteoblast-like MC3T3-E1 cells. In the present study, we investigated the effect of sphingosine 1-phosphate on phospholipase C-catalyzing phosphoinositide hydrolysis induced by prostaglandin F2alpha (PGF2 alpha) in these cells. Sphingosine 1-phosphate significantly amplified the inositol phosphates formation by PGF2 alpha. Sphingosine 1-phosphate did not enhance the formation induced by NaF, a direct activator of heterotrimeric GTP-binding proteins. PD98059, an inhibitor of the kinase that activates p42/p44 MAP kinase, had little effect on the amplification by sphingosine 1-phosphate. SB203580, an inhibitor of p38 MAP kinase, reduced the effect of sphingosine 1-phosphate on the formation of inositol phosphates by PGF2 alpha. The phosphorylation of p42/p44 MAP kinase by PGF alpha was attenuated by PD98059. SB203580 suppressed the phosphorylation of p38 MAP kinase by PGF2 alpha. Tumor necrosis factor-alpha enhanced the PGF2 alpha-stimulated formation of inositol phosphates. These results strongly suggest that sphingosine 1-phosphate amplifies PGF2 alpha-induced phosphoinositide hydrolysis by phospholipase C through p38 MAP kinase in osteoblasts.  相似文献   

4.
Prostaglandin F2alpha (PGF2alpha) significantly induced p42/p44 mitogen-activated protein (MAP) kinase activity in osteoblast-like MC3T3-E1 cells. PD98059, a selective inhibitor of MAP kinase kinase, inhibited PGF2alpha-induced interleukin-6 (IL-6) synthesis as well as PGF2alpha-induced p42/p44 MAP kinase activation. PD98059 suppressed the IL-6 synthesis induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), a protein kinase C (PKC) activator, or NaF, an activator of heterotrimeric GTP-binding protein, as well as the p42/p44 MAP kinase activation by TPA or NaF. Calphostin C, a highly potent and specific inhibitor of PKC, inhibited the PGF2alpha-induced p42/p44 MAP kinase activity. These results strongly suggest that PKC-dependent p42/p44 MAP kinase activatioin is involved in PGF2alpha-induced IL-6 synthesis in osteoblasts.  相似文献   

5.
We have previously demonstrated that corticotropin-releasing hormone (CRH) receptor 1 (CRH-R1) is functionally expressed in rat microglia. In the present study, we show that CRH, acting on CRH-R1, promoted cell proliferation and tumour necrosis factor-alpha (TNF-alpha) release in cultured rat microglia. Exogenous CRH resulted in an increase in BrdU incorporation compared with control cells, which was observed in a range of concentrations of CRH between 10 and 500 nm, with a maximal response at 50 nm. The effect of CRH on BrdU incorporation was inhibited by a CRH antagonist astressin but not by a cAMP-dependent protein kinase inhibitor H89. Exposure of microglial cells to CRH resulted in a transient and rapid increase in TNF-alpha release in a dose-dependent manner. In the presence of astressin, the effects of CRH on TNF-alpha release were attenuated. CRH effects on TNF-alpha release were also inhibited by specific inhibitors of MEK, the upstream kinase of the extracellular signal-regulated protein kinase (ERK) (PD98059) or p38 mitogen-activated protein kinase (SB203580), but not by H89. Furthermore, CRH induced rapid phosphorylation of ERK and p38 kinases. Astressin, PD98059, and SB230580 were able to inhibit CRH-induced kinase phosphorylation. These results suggest that CRH induces cell proliferation and TNF-alpha release in cultured microglia via MAP kinase signalling pathways, thereby providing insight into the interactions between CRH and inflammatory mediators.  相似文献   

6.
Depolarizing stimuli increase catecholamine (CA) biosynthesis, tyrosine hydroxylase (TH) activity, and TH phosphorylation at Ser19, Ser31, and Ser40 in a Ca(2+)-dependent manner. However, the identities of the protein kinases that phosphorylate TH under depolarizing conditions are not known. Furthermore, although increases in Ser31 or Ser40 phosphorylation increase TH activity in vitro, the relative influence of phosphorylation at these sites on CA biosynthesis under depolarizing conditions is not known. We investigated the participation of extracellular signal-regulated protein kinase (ERK) and cAMP-dependent protein kinase (PKA) in elevated K(+)-stimulated TH phosphorylation in PC12 cells using an ERK pathway inhibitor, PD98059, and PKA-deficient PC12 cells (A126-B1). In the same paradigm, we measured CA biosynthesis. TH phosphorylation stoichiometry (PS) was determined by quantitative blot-immunolabeling using site- and phosphorylation state-specific antibodies. Treatment with elevated K(+) (+ 58 mM) for 5 min increased TH PS at each site in a Ca(2+)-dependent manner. Pretreatment with PD98059 prevented elevated K(+)-stimulated increases in ERK phosphorylation and Ser31 PS. In A126-B1 cells, Ser40 PS was not significantly increased by forskolin, and elevated K(+)-stimulated Ser40 PS was three- to five-fold less than that in PC12 cells. In both cell lines, CA biosynthesis was increased 1.5-fold after treatment with elevated K(+) and was prevented by pretreatment with PD98059. These results suggest that ERK phosphorylates TH at Ser31 and that PKA phosphorylates TH at Ser40 under depolarizing conditions. They also suggest that the increases in CA biosynthesis under depolarizing conditions are associated with the ERK-mediated increases in Ser31 PS.  相似文献   

7.
Close contact of mesenchymal cells in vivo and also in super dense micromass cultures in vitro results in cellular condensation and alteration of existing cellular signaling required for initiation and progression of chondrogenesis. To investigate chondrogenesis related changes in the activity of ubiquitous cell signaling mediated by mitogen-activated protein kinases (MAP kinase), we have compared the effect of cell seeding of pluripotent C3H10T1/2 mesenchymal cells as monolayers (non-chondrogenic culture) or high density micromass cultures (chondrogenic) on the regulation and phosphorylation state of extracellular signal-regulated kinase 1 and 2 (ERK1/2) and also on regulation of ERK1/2 nuclear targets, namely, activation protein-1 (AP-1) and serum response factor (SRF). Increasing cell density resulted in reduced DNA binding as well as activity of AP-1. SRF activity, on the other hand, was up-regulated in confluent monolayer cultures but like AP-1 was inhibited in micromass cultures. Low levels of PD 98059 (5 microM), a specific inhibitor of ERK1/2, resulted in delayed induction of AP-1 and SRF activity whereas higher concentrations of this inhibitor (10-50 microM) conferred an opposite effect. Increasing concentrations of the PD 98059 inhibitor in long term monolayer or micromass cultures (2.5 day) resulted in differential regulation of c-Fos and c-Jun protein levels as well as total expression and phosphorylation levels of ERK1/2. PD 98059 treatment of C3H10T1/2 micromass cultures also resulted in up-regulation of type IIB collagen and Sox9 gene expression. While high expression of aggrecan and type IIB collagen genes were dependent on BMP-2 signaling, ERK inhibition of BMP-2 treated micromass cultures resulted in reduced activity of both genes. Our findings show that the activity of ERK1/2 in chondrogenic cultures of C3H10T1/2 cells is tightly controlled and can cross interact with other signaling activities mediated by BMP-2 to positively regulate chondrogensis.  相似文献   

8.
Transforming growth factor-beta (TGF-beta) reportedly induces vascular endothelial growth factor (VEGF) synthesis in osteoblast-like MC3T3-E1 cells. We have recently shown that TGF-beta activates p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase in these cells. In the present study, we investigated the exact mechanism of TGF-beta behind the synthesis of VEGF in MC3T3-E1 cells. PD98059 and U-0126, specific inhibitors of MEK, suppressed the VEGF synthesis induced by TGF-beta. U-0126 inhibited the TGF-beta-induced p44/p42 MAP kinase phosphorylation. SB203580 and PD169316, inhibitors of p38 MAP kinase, reduced the TGF-beta-stimulated VEGF synthesis. SB202474, a negative control for p38 MAP kinase inhibitor, did not affect the VEGF synthesis. A combination with PD98059 and SB203580 almost completely suppressed the TGF-beta-induced VEGF synthesis. Retinoic acid, which alone failed to affect VEGF synthesis, markedly enhanced the VEGF synthesis stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-increased levels of VEGF mRNA. The amplifications by retinoic acid of TGF-beta-increased VEGF synthesis and levels of VEGF mRNA were reduced by PD98059 or SB203580. The combination of PD98059 and SB203580 almost completely suppressed the enhancement by retinoic acid of VEGF synthesis induced by TGF-beta. Taken together, our results strongly suggest that both p44/p42 MAP kinase and p38 MAP kinase take part in TGF-beta-stimulated VEGF synthesis in osteoblasts, and that retinoic acid upregulates the VEGF synthesis.  相似文献   

9.
Although it is known that transforming growth factor (TGF)-beta induces vascular endothelial growth factor (VEGF) synthesis in vascular smooth muscle cells, the underlying mechanisms are still poorly understood. In the present study, we examined whether the mitogen-activated protein (MAP) kinase superfamily is involved in TGF-beta-stimulated VEGF synthesis in aortic smooth muscle A10 cells. TGF-beta stimulated the phosphorylation of p42/p44 MAP kinase and p38 MAP kinase, but not that of SAPK (stress-activated protein kinase)/JNK (c-Jun N-terminal kinase). The VEGF synthesis induced by TGF-beta was not affected by PD98059 or U0126, specific inhibitors of the upstream kinase that activates p42/p44 MAP kinase. We confirmed that PD98059 or U0126 did actually suppress the phosphorylation of p42/p44 MAP kinase by TGF-beta in our preparations. PD169316 and SB203580, specific inhibitors of p38 MAP kinase, significantly reduced the TGF-beta-stimulated synthesis of VEGF (each in a dose-dependent manner). PD169316 or SB203580 attenuated the TGF-beta-induced phosphorylation of p38 MAP kinase. These results strongly suggest that p38 MAP kinase plays a part in the pathway by which TGF-beta stimulates the synthesis of VEGF in aortic smooth muscle cells.  相似文献   

10.
11.
Insulin stimulates Na(+),K(+)-ATPase activity and induces translocation of Na(+),K(+)-ATPase molecules to the plasma membrane in skeletal muscle. We determined the molecular mechanism by which insulin regulates Na(+),K(+)-ATPase in differentiated primary human skeletal muscle cells (HSMCs). Insulin action on Na(+),K(+)-ATPase was dependent on ERK1/2 in HSMCs. Sequence analysis of Na(+),K(+)-ATPase alpha-subunits revealed several potential ERK phosphorylation sites. Insulin increased ouabain-sensitive (86)Rb(+) uptake and [(3)H]ouabain binding in intact cells. Insulin also increased phosphorylation and plasma membrane content of the Na(+),K(+)-ATPase alpha(1)- and alpha(2)-subunits. Insulin-stimulated Na(+),K(+)-ATPase activation, phosphorylation, and translocation of alpha-subunits to the plasma membrane were abolished by 20 microm PD98059, which is an inhibitor of MEK1/2, an upstream kinase of ERK1/2. Furthermore, inhibitors of phosphatidylinositol 3-kinase (100 nm wortmannin) and protein kinase C (10 microm GF109203X) had similar effects. Notably, insulin-stimulated ERK1/2 phosphorylation was abolished by wortmannin and GF109203X in HSMCs. Insulin also stimulated phosphorylation of alpha(1)- and alpha(2)-subunits on Thr-Pro amino acid motifs, which form specific ERK substrates. Furthermore, recombinant ERK1 and -2 kinases were able to phosphorylate alpha-subunit of purified human Na(+),K(+)-ATPase in vitro. In conclusion, insulin stimulates Na(+),K(+)-ATPase activity and translocation to plasma membrane in HSMCs via phosphorylation of the alpha-subunits by ERK1/2 mitogen-activated protein kinase.  相似文献   

12.
13.
Exposure of C6 glioma cells to endothelin-1 (ET-1) caused dose-dependent (10(-11) M to 10(-7) M) increments in intracellular calcium concentration ([Ca2+]i) and c-fos mRNA expression (4.5-fold) that were abolished by the endothelinA receptor antagonist, BQ610, and by inhibition of phospholipase C with U73122. ET-1 stimulated c-fos mRNA expression was also inhibited by protein kinase C inhibition (chelerythrine) and by the MAP kinase kinase inhibitor PD98059, but not by inhibitors of tyrosine kinases, protein kinase A type I or II, calmodulin kinase II, or calcium channel blockade. C6 cells treated with ET-1 demonstrated a significant increase in MAP kinase activity as evidenced by Western blotting. These results indicate a mechanism of long-term signaling by ET-1 involving an ET(A) receptor-mediated, phospholipase C(beta)-linked pathway that is dependent on protein kinase C and MAP kinase activation.  相似文献   

14.
Our objective is to test the hypothesis that inhibition of mitogen-activated protein (MAP) kinase kinase (MEK) with PD98059 in human luteinized granulosa cells will block epidermal growth (EGF)-stimulated MAP kinase activity and induce apoptosis. Luteinized granulosa cells from human in vitro fertilization aspirates were cultured and treated with the following: (1) vehicle; (2) PD98059; (3) EGF; (4) PD98059 + EGF. Treatment with PD98059 suppressed MAP kinase activity, inhibited MAP kinase phosphorylation by Western blot analysis, blocked nuclear translocation of phosphorylated MAP kinase by confocal microscopy, and increased percentages of subdiploid apoptotic nuclei by flow cytometry. Our data are the first evidence that a relationship may exist between the MAP kinase pathway and control of apoptosis in human luteinized granulosa cells. These results support the hypothesis that suppression of the MAP kinase pathway may lead to apoptosis in these cells.  相似文献   

15.
To investigate the effects of nerve growth factor (NGF) and cyclic AMP (cAMP) on the level of the nicotinic acetylcholine receptor subunit alpha3 mRNA, we used PC12h cells, PC12 cells expressing dominant-negative Ras protein, and the parental PC12 cells. PC12h cells have NGF-responsive tyrosine hydroxylase activity. Expression of dominant-negative Ras protein prevents the signaling through the Ras-mitogen-activated protein kinase cascade. The morphological changes of the parental PC12 cells in response to NGF and 8-(4-chlorophenylthio)adenosine 3',5'-cyclic monophosphate (CPTcAMP), a cell-penetrating cAMP analogue, were similar to those of PC12h cells. NGF up-regulated the alpha3 mRNA level in PC12h cells and down-regulated the alpha3 mRNA level in the parental PC12 cells. Expression of dominant-negative Ras protein and an inhibitor of mitogen-activated protein kinase kinase inhibited the effects of NGF on alpha3 mRNA level. CPTcAMP down-regulated the alpha3 mRNA level in all three PC12 cell lines. An inhibitor of protein kinase A inhibited the CPTcAMP-induced down-regulation of alpha3 mRNA. The alpha3 mRNA down-regulation required prolonged treatment with CPTcAMP even after cAMP response element binding protein phosphorylation was decreased. Membrane depolarization with high K+ had no effect on the alpha3 mRNA level in PC12h cells. Based on these results, we propose that at least two unknown effectors regulate alpha3 mRNA levels in PC12 cells.  相似文献   

16.
We investigated whether transforming growth factor-beta (TGF-beta) stimulates the induction of heat shock protein (HSP) 27 and HSP70 in osteoblast-like MC3T3-E1 cells and the mechanism underlying the induction. TGF-beta increased the level of HSP27 but had no effect on the HSP70 level. TGF-beta stimulated the accumulation of HSP27 dose-dependently, and induced an increase in the level of mRNA for HSP27. TGF-beta induced the phosphorylation of p44/p42 mitogen-activated protein (MAP) kinase and p38 MAP kinase. The HSP27 accumulation induced by TGF-beta was significantly suppressed by PD98059, an inhibitor of the upstream kinase of p44/p42 MAP kinase, or SB203580, an inhibitor of p38 MAP kinase. PD98059 and SB203580 suppressed the TGF-beta-stimulated increase in the level of mRNA for HSP27. Retinoic acid, a vitamin A (retinol) metabolite, which alone had little effect on the HSP27 level, markedly enhanced the HSP27 accumulation stimulated by TGF-beta. Retinoic acid enhanced the TGF-beta-induced increase of mRNA for HSP27. The amplification of TGF-beta-stimulated HSP27 accumulation by retinoic acid was reduced by PD98059 or SB203580. Retinoic acid failed to affect the TGF-beta-induced phosphorylation of p44/p42 MAP kinase or p38 MAP kinase. These results strongly suggest that p44/p42 MAP kinase and p38 MAP kinase take part in the pathways of the TGF-beta-stimulated HSP27 induction in osteoblasts, and that retinoic acid upregulates the TGF-beta-stimulated HSP27 induction at a point downstream from p44/p42 MAP kinase and p38 MAP kinase.  相似文献   

17.
Metabolic responses induced by thrombin in human umbilical vein endothelial cells (HUVECs) were investigated by using the cytosensor technique. Thrombin increased the extracellular acidification rate of endothelial cells, measured as an index of metabolic activity with a cytosensor microphysiometer, in a concentration-dependent fashion with an EC(50) of 1.27+/-0.59 IU/ml, which was abolished by the MAP kinase inhibitor PD98059. When intracellular Ca(2+) was chelated or PKC was inactivated, PD98059 failed to abolish the thrombin-induced acidification rate response in HUVECs. In addition, the tyrosine kinase inhibitor genistein, PKC inhibitor calphostin C, and Na(+)/H(+)exchanger antagonist MIA also partly inhibited thrombin-induced acidification rate responses. It is suggested that thrombin stimulated rapid metabolic responses via MAP kinase in HUVECs, which are calcium- and PKC-dependent.  相似文献   

18.
To investigate the functional role of the different Na+, K(+)-ATPase alpha (catalytic) subunit isoforms in neuronal cells, we used quantitative in situ hybridization with riboprobes specific for alpha 1, alpha 2, and alpha 3 isoforms to measure the level of alpha isoform-specific expression in the neuroendocrine cells of the supraoptic (SON) and paraventricular (PVN) nuclei of rat hypothalamus. A prolonged increase in electrical activity of these cells, achieved by 5 days of salt treatment, increased the amount of alpha 1 isoform mRNA in the SON and PVN by 50%. Levels of alpha 1 mRNA in other brain regions and levels of alpha 2 and alpha 3 mRNAs were not affected by salt treatment. We conclude that the alpha 1 isoform Na+, K(+)-ATPase may be specifically adapted to pump out Na+, which enters the cells through voltage-gated channels during neuronal depolarization.  相似文献   

19.
Using NIH 3T3 cells, we have investigated nuclear phosphoinositide metabolism in response to insulin, a molecule which acts as a proliferating factor for this cell line and which is known as a powerful activator of the mitogen-activated protein (MAP) kinase pathway. Insulin stimulated inositol lipid metabolism in the nucleus, as demonstrated by measurement of the diacylglycerol mass produced in vivo and by in vitro nuclear phosphoinositide-specific phospholipase C (PI-PLC) activity assay. Despite the fact that nuclei of NIH 3T3 cells contained all of the four isozymes of the beta family of PI-PLC (i.e. beta1, beta2, beta3, and beta4), insulin only activated the beta1 isoform. Insulin also induced nuclear translocation of MAP kinase, as demonstrated by Western blotting analysis, enzyme activity assays, and immunofluorescence staining, and this translocation was blocked by the specific MAP kinase kinase inhibitor PD98059. By means of both a monoclonal antibody recognizing phosphoserine and in vivo labeling with [(32)P]orthophosphate, we ascertained that nuclear PI-PLC-beta1 (and in particular the b subtype) was phosphorylated on serine residues in response to insulin. Both phosphorylation and activation of nuclear PI-PLC-beta1 were substantially reduced by PD98059. Our results conclusively demonstrate that activation of nuclear PI-PLC-beta1 strictly depends on its phosphorylation which is mediated through the MAP kinase pathway.  相似文献   

20.
In order to maintain normal metabolism, the neuroretina is completely dependent on the constant delivery of glucose across the retinal microvascular endothelial cells comprising the inner blood-retinal barrier. Glucose uptake into these cells is influenced by various stimuli, including hypoxia and growth factors. Recently, insulin-like growth factor-1 (IGF-1) was shown to enhance retinal endothelial glucose transport in a process that is dependent on protein kinase C (PKC) and phosphatidylinositol-3 kinase (PI3 kinase). In the current study, the role of mitogen-activated protein kinase (MAP kinase) in regulating IGF-1 effects on retinal endothelial cell glucose transport was investigated in a bovine retinal endothelial cell (BREC) culture model. IGF-1 (25 ng/mL) caused a rapid increase in MAP-kinase activity and ERK phosphorylation. Inhibition of MAP kinase with PD98059 (100 microm) blocked IGF-1 enhancement of 2-deoxyglucose uptake. In order to clarify the relationship between PKC, PI3 kinase and MAP kinase in IGF-1 signaling in retinal endothelial cells, the effects of selective inhibitors of MAP kinase (PD98059), PKC (GF109203X), and PI3 kinase (wortmannin, LY294002) on signal transduction by IGF-1 were studied. Inhibition of MAP kinase abolished IGF-1 stimulation of PKC but had no effect on PI3 kinase activity, whereas inhibition of either PKC and PI3 kinase had no effect on MAP kinase phosphorylation or activity in IGF-1-treated cells. Taken together, these data demonstrate that IGF-1 stimulation of BREC glucose transport requires activation of MAP kinase and that MAP kinase is upstream from PKC but is independent of PI3 kinase in mediating the actions of IGF-1 on retinal endothelial cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号