首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Xylanases of marine fungi of potential use for biobleaching of paper pulp   总被引:1,自引:0,他引:1  
Microbial xylanases that are thermostable, active at alkaline pH and cellulase-free are generally preferred for biobleaching of paper pulp. We screened obligate and facultative marine fungi for xylanase activity with these desirable traits. Several fungal isolates obtained from marine habitats showed alkaline xylanase activity. The crude enzyme from NIOCC isolate 3 (Aspergillus niger), with high xylanase activity, cellulase-free and unique properties containing 580 U l–1 xylanase, could bring about bleaching of sugarcane bagasse pulp by a 60 min treatment at 55°C, resulting in a decrease of ten kappa numbers and a 30% reduction in consumption of chlorine during bleaching. The culture filtrate showed peaks of xylanase activity at pH 3.5 and pH 8.5. When assayed at pH 3.5, optimum activity was detected at 50°C, with a second peak of activity at 90°C. When assayed at pH 8.5, optimum activity was seen at 80°C. The crude enzyme was thermostable at 55°C for at least 4 h and retained about 60% activity. Gel filtration of the 50–80% ammonium sulphate-precipitated fraction of the crude culture filtrate separated into two peaks of xylanase with specific activities of 393 and 2,457 U (mg protein)–1. The two peaks showing xylanase activity had molecular masses of 13 and 18 kDa. Zymogram analysis of xylanase of crude culture filtrate as well as the 50–80% ammonium sulphate-precipitated fraction showed two distinct xylanase activity bands on native PAGE. The crude culture filtrate also showed moderate activities of -xylosidase and -l-arabinofuranosidase, which could act synergistically with xylanase in attacking xylan. This is the first report showing the potential application of crude culture filtrate of a marine fungal isolate possessing thermostable, cellulase-free alkaline xylanase activity in biobleaching of paper pulp.  相似文献   

2.
A newly isolated strain of Bacillus subtilis produced -mannanase when cultivated in a medium containing either locust bean gum, konjac mannan or guar gum as a sole carbon source. In contrast, xylanase was produced only when oat spelt xylan or wheat bran was used as a carbon source. The culture supernatant, which contained both -mannanase and xylanase, was used to biobleach crude paper pulp to 50% gain in brightness.  相似文献   

3.
Summary The production of cellulase and xylanase was investigated with a newly isolated strain of Trichoderma viride BT 2169. The medium composition was optimized on a shake-flask scale using the Graeco-Latin square technique. The temperature and time for optimal growth and production of the enzymes in shake cultures were optimized using a central composite design. The temperature optima for maximal production of filter paper cellulase (FPase), xylanase and -gluosidase were 32.8°, 34.7° and 31.1° C, respectively, and the optimum times for production of these enzymes were found to be 144, 158 and 170 h, respectively. The optimized culture medium and conditions (33° C) gave 0.55 unit of FPase, 188.1 units of xylanase and 3.37 units of -glucosidase per milliliter of culture filtrate at 144 h of shake culture. Among different carbon sources tested, the maximum enzyme activities were produced with sulphite pulp and all three enzymes were produced irrespective of the carbon sources used. Batch fermentation in a laboratory fermentor using 2% sulphite pulp allowed the production of 0.61 unit of FPase, 145.0 units of xylanase and 2.72 units of -glucosidase. In a fed-batch fermentation on 6% final Avicel concentration FPase and -glucosidase were 3.0 and 2.4 times higher respectively than those in batch fermentation on 2% Avicel. The pH and temperature optima as well as pH and temperature stabilities of T. viride enzymes were found to be comparable to T. reesei and some other fungal enzymes.  相似文献   

4.
Enzyme production by a new mesophilic Streptomyces isolate was investigated which grew optimally on 1% (w/v) xylan and 10% (w/v) wheat bran at pH 7 and 37 °C. Xylan induced only CMCase (0.29 U/ml) besides xylanase (22–35 U/ml, 40–49 U/mg protein). Wheat bran induced xylanase (105 U/ml, 17.5 U/mg protein), CMCase (0.74 U/ml), -xylosidase (0.009 U/ml), -glucosidase (0.026 U/ml), -L-arabinofuranosidase (0.049 U/ml), amylase (1.6 U/ml) and phytase (0.432 U/ml). The isolate was amenable to solid state cultivation and produced increased levels of xylanase (146 U/ml, 28 U/mg protein). The pH and temperature optima of the crude xylanase activity were 5.5 and 65 °C respectively. The pI was 6.0 as determined by PEG precipitation. The crude enzyme was applied in treatment of paper pulp and predigestion of poultry feed and was found to be effective in releasing sugars from both and soluble phosphorus from the latter.  相似文献   

5.
ABacillus sp (V1-4) was isolated from hardwood kraft pulp. It was capable of growing in diluted kraft black liquor at pH 11.5 and produced 49 IU (mol xylose min–1 ml–1) of xylanase when cultivated in alkaline medium at pH 9. Maximal enzyme activity was obtained by cultivation in a defined alkaline medium with 2% birchwood xylan and 1% corn steep liquor at pH 9, but high enzyme production was also obtained on wheat bran. The apparent pH optimum of the enzyme varied with the pH used for cultivation and the buffer system employed for enzyme assay. With cultivation at pH 10 and assays performed in glycine buffer, maximal activity was observed at pH 8.5; with phosphate buffer, maximal activity was between pH 6 and 7. The xylanase temperature optimum (at pH 7.0) was 55°C. In the absence of substrate, at pH 9.0, the enzyme was stable at 50°C for at least 30 min. Elecrophoretic analysis of the crude preparation showed one predominant xylanase with an alkaline pl. Biobleaching studies showed that the enzyme would brighten both hardwood and softwood kraft pulp and release chromophores at pH 7 and 9. Because kraft pulps are alkaline, this enzyme could be used for prebleaching with minimal pH adjustment.  相似文献   

6.
Summary The black rot fungus Thielaviopsis basicola has the ability to grow on cellulosic biomass, producing xylanase. Of the four cellulosic substrates tested, rice straw was found to be the best for production of xylanase. A xylanase activity of 34 U/ml was obtained with rice straw which was more than three times that obtained with larchwood xylan. The -xylosidase activities obtained with these two substrates were 0.05 U/ml and 0.016 U/ml respectively. Both enzymes are active at pH 5 but the temperature optima of xylanase and -xylosidase activities are 60°C and 40°C respectively. The xylanase activity is stable over a pH range of 4–8 but the stability towards temperature falls sharply above 50°C.  相似文献   

7.
Anaerobic enrichment cultures inoculated with neutral and alkaline (pH 7.0–9.0) sediment and biomat samples from hot-springs in Hveragerdi and Fluir, Iceland, were screened for growth on beech xylan from pH 8.0 to 10.0 at 68° C: no growth occured in cultures above pH 8.4. Five anaerobic xylanolytic bacteria were isolated from enrichment cultures at pH 8.4; all five microbes were Gram-positive rods with terminal spores, and produced CO2, H2, acetate, lactate and ethanol from xylan and xylose. One of the isolates, strain A2, grew from 50 to 75° C, with optimum growth near 68° C, and from pH 5.2 to 9.0 with an optimum between 6.8 and 7.4. Taxonomically, strain A2 was most similar to Clostridium thermohydrosulfuricum. At pH 7.0, the supernatant xylanases of strain A2 had a temperature range from 50 to 78° C with an optimum between 68 and 78° C. At 68° C, xylanase activity occurred from pH 4.9 to 9.1, with an optimum from pH 5.0 to 6.6. At pH 7.0 and 68° C, the K m of the supernatant xylanases was 2.75 g xylan/l and the V max was 2.65 × 10–6 kat/l culture supernatant. When grown on xylose, xylanase production was as high as when grown on xylan. Correspondence to: B. K. Ahring  相似文献   

8.
Thermotolerant Emericella nidulans NK-62 was isolated from bird nesting material and was tested for its ability to produce xylanase. The fungus when grown on a medium containing wheat bran (2% w/v) supplemented with Czapek's mineral salt solution at 45 °C for 7 days produced 362 IU/ml of xylanase (EC 3.2.1.8). The specific activity of E. nidulans NK-62 xylanase was found to be 275 IU/mg of total protein. The enzyme was found to be active over a broad temperature and pH range with 60 °C as optimum temperature for enzyme activity. The enzyme was stable at 50 °C and its half-life at 55 °C was 45 min. -xylosidase (EC 3.2.1.37) and carboxymethylcellulase (EC 3.2.1.4) activities, 0.018 and 0.21 IU/ml respectively, were also noticed. The fungus was screened for its ability to produce xylanase on four different lignocellulosic substrates. It produced 318.9 IU/ml of cellulase-free xylanase on corn cobs. The fungus could also utilize lentil bran (seed husk of Lens esculentus) and meal of groundnut shells to produce 84.8 and 17.3 IU/ml xylanase respectively.  相似文献   

9.
A very high level of cellulase-free, thermostable xylanase has been produced from newly isolated strain of Bacillus pumilus under submerged fermentation in a basal medium supplemented with wheat bran (2%, w/v) pH 8.0 and at 37 °C. After optimization of various production parameters, an increase of nearly 13-fold in xylanase production (5407 IU/ml) was achieved. The produced xylanase is stable in neutral to alkaline pH region at 70 °C. The suitability of this xylanase for use in the bioleaching of eucalyptus Kraft pulp was investigated. A xylanase dose of 5 IU/g of oven dried pulp of 10% consistency exhibited the optimum bleach boosting of the pulp at pH 7.0 and 60 °C after 180 min of treatment. An increase of 5% in brightness along with an increase of 21% and 28% in whiteness and fluorescence respectively, whereas 18% decrease in the yellowness of the biotreated pulp was observed. Enzyme treated pulp when subjected to chemical bleaching, resulted in 20% reduction in chlorine consumption and up to 10% reduction in consumption of chlorine dioxide. Also a reduction of about 16% in kappa number and 83% in permanganate number, along with a reduction in COD value and significant improvement in various pulp properties, viz. viscosity, tensile strength, breaking length, burst factor, burstness, tear factor and tearness were observed in comparison to the conventional chemical bleaching.  相似文献   

10.
During the bleaching of wood pulp for the paper industry, large amounts of chlorinated aromatic compounds are produced and released into the environment. These compounds are extremely toxic and are a major source of pollution. The paper and pulp industry is seeking for alternative methods for bleaching pulp. One such method involves the use of hemicellulases to release the colored lignohemicellulose. We have isolated and characterized several thermophilic bacteria which produce xylanases. One such strain, T-6, produced high levels of extracellular xylanase, free of cellulase and proteinase activities. Strain T-6 was classified as a strain of Bacillus stearothermophilus and was able to grow on defined medium containing xylose, methionine and asparagine at 65 °C. Xylanase activity was induced by either xylose or xylan; no activity was detected with other carbon sources, such as glycerol, acetate, lactose, glucose, maltose, fructose, mannose, galactose or sucrose. Xylanase constitutive mutants were obtained following mutagenesis and detection on p-nitrophenol -d-xylopyranoside containing agar plates. Xylanase T-6 was produced on large scale, and was purified and concentrated by a single adsorption-desorption step from a cation exchanger. The overall purification yield of a 1000 liter fermentation was 45%, resulting in a 98% pure enzyme. Xylanase T-6 was shown to partially remove lignin from unbleached pulp at 65 °C and pH 9.0, without loss in pulp viscosity. The enzyme-treated pulp was used to make handsheets that had higher brightness than untreated pulp.  相似文献   

11.
Thermophilic, aerobic bacteria isolated from Icelandic hot springs were screened for xylanase activity. Of 97 strains tested, 14 were found to be xylanase positive. Xylanase activities up to 12 nkat/ml were produced by these strains in shake flasks on xylan medium. The xylanases of the two strains producing the highest activities (ITI 36 and ITI 283) were similar with respect to temperature and pH optima (80°C and pH 8.0). Xylanase production of strain ITI 36 was found to be induced by xylan and xylose. Xylanase activity of 24 nkat/ml was obtained with this strain in a laboratory-scale-fermentor cultivation on xylose medium. -Xylosidase activity was also detected in the culture filtrate. The thermal half-life of ITI 36 xylanase was 24 h at 70°C. The highest production of sugars from hydrolysis of beech xylan was obtained at 70°C, although xylan depolymerization was detected even up to 90°C. Correspondence to: M. Rättö  相似文献   

12.
Bacillus stearothermophilus L1 was isolated by enrichment culture using an alkaline extract of pulp as the carbon source at 65°C and pH 9.0. The bacterium produced extracellular xylanase and -l-arabinofuranosidase (EC 3.2.1.55). The xylanase activity was high when the cells were grown in the presence of d-xylose, whereas the arabinofuranosidase activity was high when grown in media containing l-arabinose. The arabinofuranosidase was purified 59-fold with an 80% yield by DEAE Sephacel and Sephadex G-100 chromatography. The purified enzyme had an apparent molecular mass of 110 000 kDa and consisted of two subunits of 52 500 kDa and 57 500 kDa. Using p-nitrophenyl--l-arabinofuranosidase as the substrate, the enzyme had a Michaelis constant (K m) of 2.2 × 10–4 m, maximum reaction velocity (Vmax) of 11o mol min–1 mg–1, temperature optimum of 70°C and pH optimum of 7.0 (50% activity at pH 8.0). The enzyme was specific for the furanoside configuration. The purified enzyme partially delignified softwood Kraft pulp. Treatment of the pulp with 38 units ml–1 of -l-arabinofuranosidase at 65°C for 2 h at pH 8.0 and 9.0 led to lignin releases of 2.3% and 2.1%, respectively. The enzyme acted synergistically with a thermophilic xylanase in the delignification process, yielding a 19.2% release of lignin. Correspondence to: Eugene Rosenberg  相似文献   

13.
Enzymatic pretreatment of softwood kraft pulp was investigated using xylanase and mannanase, singly or in combination, either sequentially or simultaneously. Enzymes were obtained from Streptomyces galbus NR that had been cultivated in a medium, containing either xylan of sugar cane bagasse or galactomannan of palm-seeds, when they were used as sole carbon sources from local wastes in fermentation media. No cellulase activity was detected. Incubation period, temperature, initial pH values and nature of nutritive constituents were investigated. Optimum production of both enzymes was achieved after 5 days incubation on a rotary shaker (200 rpm) at 35 degrees C and initial pH 7.0. Partial purification of xylanase and mannanase in the cultures supernatant were achieved by salting out at 40-60 and 60-80% ammonium sulphate saturation with a purification of 9.63- and 8.71-fold and 68.80 and 62.79% recovery, respectively. The xylanase and mannanase from S. galbus NR have optimal activity at 50 and 40 degrees C, respectively. Both enzymes were stable at a temperature up to 50 degrees C. Xylanase and mannanase showed highest activity at pH 6.5 and were stable from 5.0 to 8.0 and from 5.5 to 7.5, respectively. The partial purified enzymes preparations of xylanase and mannanase enzymes showed high bleaching activity, which is an important consideration for industry. Xylanase was found to be more effective for paper-bleaching than mannanase. When xylanase and mannanase were dosed together (simultaneously), both enzymes were able to enhance the liberation of reducing sugars and improve pulp bleachability, possibly as a result of nearly additive interactions. The simultaneous addition of both enzymes was more effective in pulp treatment than their sequential addition.  相似文献   

14.
Humicola brevis var. thermoidea cultivated under solid state fermentation in wheat bran and water (1:2 w/v) was a good producer of β-glucosidase and xylanase. After optimization using response surface methodology the level of xylanase reached 5,791.2 ± 411.2 U g(-1), while β-glucosidase production was increased about 2.6-fold, reaching 20.7 ± 1.5 U g(-1). Cellulase levels were negligible. Biochemical characterization of H. brevis β-glucosidase and xylanase activities showed that they were stable in a wide pH range. Optimum pH for β-glucosidase and xylanase activities were 5.0 and 5.5, respectively, but the xylanase showed 80 % of maximal activity when assayed at pH 8.0. Both enzymes presented high thermal stability. The β-glucosidase maintained about 95 % of its activity after 26 h in water at 55 °C, with half-lives of 15.7 h at 60 °C and 5.1 h at 65 °C. The presence of xylose during heat treatment at 65 °C protected β-glucosidase against thermal inactivation. Xylanase maintained about 80 % of its activity after 200 h in water at 60 °C. Xylose stimulated β-glucosidase activity up to 1.7-fold, at 200 mmol L(-1). The notable features of both xylanase and β-glucosidase suggest that H. brevis crude culture extract may be useful to compose efficient enzymatic cocktails for lignocellulosic materials treatment or paper pulp biobleaching.  相似文献   

15.
Anaerobic fungi belonging to the family Neocallimastigaceae are native inhabitants in the rumen of the most herbivores, such as cattle, sheep and goats. A member of this unique group, Neocallimastix sp. GMLF2 was isolated from cattle feces and screened for its xylanase encoding gene using polymerase chain reaction. The gene coding for a xylanase (xyn2A) was cloned in Escherichia coli and expression was monitored. To determine the enzyme activity, assays were conducted for both fungal xylanase and cloned xylanase (Xyl2A) for supernatant and cell-associated activities. Optimum pH and temperature of the enzyme were found to be 6.5 and 50°C, respectively. The enzyme was stable at 40°C and 50°C for 20 min but lost most of its activity when temperature reached 60°C for 5-min incubation time. Rumen fungal xylanase was mainly released to the supernatant of culture, while cloned xylanase activity was found as cell-associated. Multiple alignment of the amino acid sequences of Xyl2A with published xylanases from various organisms suggested that Xyl2A belongs to glycoside hydrolase family 11.  相似文献   

16.
The suitability of culture supernatant from Streptomyces albus ATCC 3005 for use in the biobleaching of eucalyptus kraft pulp was investigated. S. albus was found to grow on a minimal salts medium containing oat spelts xylan and yeast extract as the main carbon and nitrogen sources, respectively. Maximal extracellular xylanase and peroxidase production was detected after 120 h (11.97 U ml(-1)) and 72 h (0.58 U ml(-1)), respectively. Importantly, no cellulase activity could be detected. When the effect of pH on enzyme activity was examined, maximal xylanase and peroxidase activity was obtained at pH 6.5 and pH 9.9, respectively. The optimum hydrogen peroxide (H2O2) concentration for peroxidase activity was found to occur at 20 mM, with peroxidase remaining active at 100 mM H2O2 after 1 h incubation at 53 degrees C; the half-life of the enzyme at that temperature was estimated to be 33 min. Short-term (1 h) biobleaching of eucalyptus kraft pulp with culture supernatant from S. albus in the presence of H2O2 resulted in a significant reduction of kappa number (2.85 units) with no change in viscosity. These results suggest a potential application of cellulase-free culture supernatants from S. albus in biobleaching.  相似文献   

17.
A very high level of cellulase-free, thermostable xylanase has been produced from newly isolated strain of Bacillus pumilus under submerged fermentation in a basal medium supplemented with wheat bran (2%, w/v) pH 8.0 and at 37 °C. After optimization of various production parameters, an increase of nearly 13-fold in xylanase production (5407 IU/ml) was achieved. The produced xylanase is stable in neutral to alkaline pH region at 70 °C. The suitability of this xylanase for use in the bioleaching of eucalyptus Kraft pulp was investigated. A xylanase dose of 5 IU/g of oven dried pulp of 10% consistency exhibited the optimum bleach boosting of the pulp at pH 7.0 and 60 °C after 180 min of treatment. An increase of 5% in brightness along with an increase of 21% and 28% in whiteness and fluorescence respectively, whereas 18% decrease in the yellowness of the biotreated pulp was observed. Enzyme treated pulp when subjected to chemical bleaching, resulted in 20% reduction in chlorine consumption and up to 10% reduction in consumption of chlorine dioxide. Also a reduction of about 16% in kappa number and 83% in permanganate number, along with a reduction in COD value and significant improvement in various pulp properties, viz. viscosity, tensile strength, breaking length, burst factor, burstness, tear factor and tearness were observed in comparison to the conventional chemical bleaching.  相似文献   

18.
This study reports on the effects of growth temperature on the secretion and some properties of the xylanase and -xylosidase activities produced by a thermotolerant Aspergillus phoenicis. Marked differences were observed when the organism was grown on xylan-supplemented medium at 25 °C or 42 °C. Production of xylanolytic enzymes reached maximum levels after 72 h of growth at 42 °C; and levels were three- to five-fold higher than at 25 °C. Secretion of xylanase and -xylosidase was also strongly stimulated at the higher temperature. The optimal temperature was 85 °C for extracellular and 90 °C for intracellular -xylosidase activity, independent of the growth temperature. The optimum temperature for extracellular xylanase increased from 50 °C to 55 °C when the fungus was cultivated at 42 °C. At the higher temperature, the xylanolytic enzymes produced by A. phoenicis showed increased thermostability, with changes in the profiles of pH optima. The chromatographic profiles were distinct when samples obtained from cultures grown at different temperatures were eluted from DEAE–cellulose and Biogel P-60 columns.  相似文献   

19.
Bacillus circulans AB 16 was able to produce 50 IU/ml of xylanase, with negligible cellulase activity when grown on untreated wheat straw. The pH optimum of the crude enzyme was 6–7 with a temperature optimum of 80 C. The enzyme showed high pH and thermal stability retaining 100% activity at 60 C, pH 8 and 9 after 2.5 h of incubation. The residual activity at 70 C after 2.5 h was 62% and 45% at pH 8 and 9, respectively. At 75 C only 22.2% activity remained at pH 8 after 1 h incubation. Since Kraft pulp is alkaline this enzyme could be used for prebleaching of pulp at temperatures up to 70 C without pH adjustment.  相似文献   

20.
Rhizopus oryzae strain NBRC 4707 produced lactic acid and ethanol more efficiently than strain NRRL 395 in potato pulp, an agricultural by-product of the starch industry. The two strains developed comparable activities of xylanase, cellulase, -amylase, and glucoamylase, while the polygalacturonase activity of strain NBRC 4707 was double that of strain NRRL 395. The addition of commercial pectinase enhanced the formation of metabolites, suggesting that the degradation of pectic substances determines the fermentation of potato pulp by R. oryzae. Orange and apple peel were more effective in the induction of polygalacturonase activity than potato pulp, sugarbeet pulp, or wheat bran when used as a principal carbon source for fungal growth in a solid-state culture. The fungal cells in both types of fruit peel stimulated the fermentation of potato pulp and increased the quantity of lactic acid and ethanol to higher levels than those in other agricultural by-products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号