首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plastid isoprenoids are synthesized via the 2-C-methyl-D-erythritol 4-phosphate pathway. A few years after its discovery, most of the Escherichia coli genes involved in the pathway have been identified, including gcpE. In this work, we have identified an Arabidopsis thaliana protein with homology to the product of this gene. The plant polypeptide, GCPE, contains two structural domains that are absent in the E. coli protein: an N-terminal extension and a central domain of 30 kDa. We demonstrate that the N-terminal region targets the Arabidopsis protein to chloroplasts in vivo, consistent with its role in plastid isoprenoid biosynthesis. Although the presence of the internal extra domain may have an effect on activity, the Arabidopsis mature GCPE was able to complement a gcpE-defective E. coli strain, indicating the plant protein is a true functional homologue of the bacterial gcpE gene product.  相似文献   

2.
In a variety of organisms, including plants and several eubacteria, isoprenoids are synthesized by the mevalonate-independent 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway. Although different enzymes of this pathway have been described, the terminal biosynthetic steps of the MEP pathway have not been fully elucidated. In this work, we demonstrate that the gcpE gene of Escherichia coli is involved in this pathway. E. coli cells were genetically engineered to utilize exogenously provided mevalonate for isoprenoid biosynthesis by the mevalonate pathway. These cells were then deleted for the essential gcpE gene and were viable only if the medium was supplemented with mevalonate or the cells were complemented with an episomal copy of gcpE.  相似文献   

3.
Control of formation of the histidyl-transfer ribonucleic acid (tRNA) synthetase with an increased K(m) for histidine was studied in a hisS mutant of Salmonella typhimurium. Histidine restriction of both the hisS and hisS(+) strains resulted in a derepression of synthesis of histidyl-tRNA synthetase. When grown in a concentration less than the K(m) (100 mug/ml) of l-histidine, the hisS mutant maintained a higher level of histidyl-tRNA synthetase than the hisS(+) strain. Addition of excess amounts of l-histidine to the growth medium of the hisS mutant culture grown with 100 mug of l-histidine per ml resulted in a repression of histidyl-tRNA synthetase formation to equal that of the hisS(+) strain grown in 100 mug of l-histidine per ml. These data confirm previous findings that histidine tRNA is involved in the repression of synthesis of histidyl-tRNA synthetase.  相似文献   

4.
The 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway for isoprenoid biosynthesis is essential in most eubacteria and plants and has remarkable biotechnological interest. However, only the first steps of this pathway have been determined. Using bioinformatic and genetic approaches, we have identified gcpE as a novel gene of the MEP pathway. The distribution of this gene in bacteria and plants strictly parallels that of the gene encoding 1-deoxy-D-xylulose 5-phosphate reductoisomerase, which catalyses the first committed step of the MEP pathway. Our data demonstrate that the gcpE gene is essential for the MEP pathway in Escherichia coli and indicate that this gene is required for the trunk line of the isoprenoid biosynthetic route.  相似文献   

5.
Abstract The region of the chromosome immediately upstream of the Escherichia coli gene gcpE has been cloned and sequenced. This region contains two functional open reading frames, orf 384 and orf 337, encoding proteins of 43082 and 36189 Da, respectively. Sequencing analysis (this paper) and the isolation of a DNA fragment containing a functional promoter (Talukder, A.A., Yanai, S., and Yamada, M. (1994) Biosci. Biotech. Biochem. 58, 117–120) indicate that orf 337 is in an operon with gcpE . The gene orf 384 is immediately downstream of the gene ndk , which encodes nucleoside diphosphate kinase.  相似文献   

6.
A number of specialized lambda transducing bacteriophages which carry the Escherichia coli gene guaB were isolated from E. coli. One of these bacteriophages, lambda cI857 Sam7 d guaB-2, also carries hisS, the structural gene for histidyl-transfer ribonucleic acid synthetase (EC 6.1.1.21). Histidyl-transfer ribonucleic acid synthetase activities in induced and uninduced lysogens carrying lambda d guaB-2 indicate that the phage carries the entire structural gene and that the gene is under the control of an E. coli promoter. These conclusions were confirmed by the in vivo production of a protein encoded by the phage which comigrates with authentic histidyl-transfer ribonucleic acid synthetase on two-dimensional polyacrylamide gels.  相似文献   

7.
K Shiba  K Ito    T Yura 《Journal of bacteriology》1984,160(2):696-701
A cold-sensitive mutant was isolated among temperature-resistant revertants of the secY24 mutant defective in secretion of envelope proteins across the cytoplasmic membrane at 42 degrees C. A single mutation, designated ssyA3, is responsible both for the extragenic suppression of secY and for the cold-sensitive growth. In contrast to the parental secY24 mutant, the suppressed cells do not accumulate precursors of envelope proteins at any temperatures. The cells containing the ssyA3 mutation, whether in combination with secY24 or not, show an optimal growth at 42 degrees C and a very poor growth at 30 degrees C. At the low temperature, protein synthesis is generally slowed down, probably at the step of chain elongation. The gene ssyA was mapped at a new locus between hisS and glyA on the chromosome. It is possible that the product of this gene interacts both with the protein secretion system and the protein synthesizing system.  相似文献   

8.
We developed a versatile, efficient genetic transfer method for Synechococcus sp. strains PCC 7942 and PCC 6301 that exceeds natural transformation efficiencies by orders of magnitude. As a test case, we complemented a histidine auxotroph and identified a hisS homolog of PCC 7942 as the complementing gene.  相似文献   

9.
Mutants that require histidine due to an altered structural gene for the histidyl-transfer ribonucleic acid synthetase (hisS) have been isolated by a general selection for histidine-requiring strains in which the mutation producing histidine auxotrophy is unlinked to the histidine operon. One of the mutants has been shown to require an abnormally high internal histidine pool for growth owing to an altered synthetase that is unstable at low histidine concentrations. It is difficult to determine accurately the K(m) for histidine of the synthetase enzyme from the mutant because of the instability of the enzyme at limiting histidine concentrations; however, a histidine K(m) value has been estimated that is approximately 100 times higher than the histidine K(m) of the wild-type enzyme. For the mutant strains to achieve the high internal pool of histidine required for growth, all the systems that transport histidine from the growth medium must be functioning to capacity. Amino acids that interfere with histidine transport strongly inhibit the growth of the mutants. The mutants have been useful in providing a selective genetic marker for transductional mapping in the hisS region. The mutants are discussed as representative of a general class of curable mutants that have an altered enzyme with poor affinity for a substrate or coenzyme.  相似文献   

10.
The gene encoding nucleosidediphosphate kinase (ndk) was located at 55 units on the Salmonella typhimurium chromosome. The ndk locus was 83% cotransducible with hisS and 2% cotransducible with glyA in phage P22-mediated crosses. A nucleosidediphosphate kinase mutant that produced only 10% of the wild-type enzyme activity (ndk-1) grew normally and produced a heat-labile enzyme.  相似文献   

11.
S J Eisenbeis  J Parker 《Gene》1982,18(2):107-114
A plasmid has been constructed which carries hisS, the structural gene for histidyl-RNA synthetase of E. coli, on a 1.6-kb fragment bounded by PvuII and BstEII sites. The DNA sequence of both ends of this fragment was determined. The amino-terminal sequence of histidyl-tRNA synthetase was also determined to locate the promoter proximal coding region and the frame in which it is read. Three promoters were identified by consensus criteria. The region surrounding these promoters contains extensive twofold symmetry.  相似文献   

12.
The essential genes of microorganisms encode biological functions important for survival and thus tend to be of high scientific interest. Drugs that interfere with essential functions are likely to be interesting candidates for antimicrobials. However, these genes are hard to study genetically because knockout mutations in them are by definition inviable. We recently described a conditional mutation system in Escherichia coli that uses a plasmid to produce an amber suppressor tRNA regulated by the arabinose promoter. This suppressor was used here in the construction of amber mutations in seven essential E. coli genes. Amber stop codons were introduced as "tagalong" mutations in the flanking DNA of a downstream antibiotic resistance marker by lambda red recombination. The drug marker was removed by expression of I-SceI meganuclease, leaving a markerless mutation. We demonstrate the method with the genes frr, gcpE, lpxC, map, murA, ppa, and rpsA. We were unable to isolate an amber mutation in ftsZ. Kinetics of cell death and morphological changes were measured following removal of arabinose. As expected given the wide range of cellular mechanisms represented, different mutants showed widely different death curves. All of the mutations were bactericidal except the mutation in gcpE, which was bacteriostatic. The strain carrying an amber mutation in murA was by far the most sensitive, showing rapid killing in nonpermissive medium. The MurA protein is critical for peptidoglycan synthesis and is the target for the antibiotic fosfomycin. Such experiments may inexpensively provide valuable information for the identification and prioritization of targets for antibiotic development.  相似文献   

13.
Brown AC  Parish T 《Plasmid》2006,55(1):81-86
The Escherichia coli-mycobacterium shuttle vector pJAM2 has been used to inducibly express genes in mycobacteria. The vector carries the promoter region from the highly inducible acetamidase gene of Mycobacterium smegmatis which is used to drive expression of heterologous genes. We used pJAM2 to over-express the Mycobacterium tuberculosis gene Rv2868c, a homologue of gcpE. In M. smegmatis the plasmid was stable, but the promoter region was readily deleted when the parental vector or recombinant plasmids were transformed into M. tuberculosis. We mapped the deletion by sequencing and found that it encompassed the entire acetamidase promoter and adjacent sequence totalling approximately 7.3 kb and occurred very soon after introduction into M. tuberculosis. This is the first report of instability of a vector carrying the acetamidase promoter in M. tuberculosis.  相似文献   

14.
The gcpE and lytB gene products control the terminal steps of isoprenoid biosynthesis via the 2-C-methyl-D-erythritol 4-phosphate pathway in Escherichia coli. In lytB-deficient mutants, a highly immunogenic compound accumulates significantly, compared to wild-type E. coli, but is apparently absent in gcpE-deficient mutants. Here, this compound was purified from E. coli DeltalytB mutants by preparative anion exchange chromatography, and identified by mass spectrometry, (1)H, (13)C and (31)P NMR spectroscopy, and NOESY analysis as (E)-4-hydroxy-3-methyl-but-2-enyl pyrophosphate (HMB-PP). HMB-PP is 10(4) times more potent in activating human Vgamma9/Vdelta2 T cells than isopentenyl pyrophosphate.  相似文献   

15.
ABSTRACT

We describe the high-level expression of the Streptococcus equisimilis histidyl-tRNA synthetase gene hisS) in Escherichia coli and the purification and characterization of the gene product. Due to a lack of an efficient E. coli ribosome binding sequence in the hisS gene, the coding region was fused in-frame to the expression vector pT7-7, thereby creating a fusion gene construct (pT7-7recIII), which is under the control of a strong bacteriophage T7 promoter. Another construct (pT-7recII) was used for low level expression of the native histidyl-tRNA synthetase (HisRS). The plasmids were electroporated into E. coli HB101, which already contained pGP1-2. After temperature induction, the fusion HisRS, which has an extra 15 amino acids between the initiator Met and the second amino acid, Lys, was expressed at a level of —18% of total cell protein (~50 mg'liter of bacterial culture). The fusion HisRS was purified to >99% by a combination of anion exchange and cation exchange chromatography of the S100 fraction. The predicted MWs of the native and fusion proteins are 47,932 and 49,717, respectively. The mass of the active fusion HisRS was estimated to be 94,000 Da by Sephacryl S-200 gel filtration chromatography and 108,200 Da by nondenaturing PAGE. Both methods show that the funtional enzyme is a dimer of two identical subunits. SDS-PAGE analysis of purified fusion HisRS with or without reduction showed a single band of Mr = 53.7 kDa.  相似文献   

16.
17.
Activation of V gamma 9/V delta 2 T cells by small nonprotein Ags is frequently observed after infection with various viruses, bacteria, and eukaryotic parasites. We suggested earlier that compounds synthesized by the 2-C:-methyl-D-erythritol 4-phosphate (MEP) pathway of isopentenyl pyrophosphate synthesis are responsible for the V gamma 9/V delta 2 T cell reactivity of many pathogens. Using genetically engineered Escherichia coli knockout strains, we now demonstrate that the ability of E. coli extracts to stimulate gamma delta T cell proliferation is abrogated when genes coding for essential enzymes of the MEP pathway, dxr or gcpE, are disrupted or deleted from the bacterial genome.  相似文献   

18.
(E)-4-Hydroxy-3-methylbut-2-enyl diphosphate synthase (GcpE), which catalyzes the conversion of 2-C-methyl-D-erythritol cyclodiphosphate (MEcPP) into (E)-4-hydroxy-3-methylbut-2-enyl diphosphate (HMBPP), is an essential enzyme of the non-mevalonate (2-C-methyl-D-erythritol-4-phosphate (MEP)) pathway for isoprenoid biosynthesis. The terminal steps of the MEP pathway are still not fully understood, although this pathway is necessary for survival in various organisms such as cyanobacteria, plastids of algae and higher plants, and the apicoplast of human malaria parasites. To determine the efficient redox partner for thermophilic cyanobacterial GcpE, We have expressed the gcpE and petF genes in Escherichia coli and studied the protein-protein interaction of GcpE protein with ferredoxin I (PetF) from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. Recombinant GcpE protein was purified by an N-terminal His(6) tag and reconstituted as a [4Fe-4S](2+) metalloprotein. GcpE was shown to interact strongly with PetF via the bacterial two-hybrid system designed to detect protein-protein interactions. Moreover, a direct protein-protein interaction between PetF and GcpE was confirmed in an in vitro glutathione S-transferase (GST) pull-down assay. To investigate electron transfer activity from PetF to GcpE, we also constructed a NADPH-dependent reducing shuttle system with purified recombinant ferredoxin-NADP(+) oxidoreductase (PetH) and PetF. The result demonstrated that PetF has the ability to transfer electrons to GcpE. Thus, the combined data provide the first evidence that GcpE is a ferredoxin-dependent enzyme in T. elongatus BP-1.  相似文献   

19.
Salmonella enterica serovar Typhimurium is capable of producing cellulose as the main exopolysaccharide compound of the biofilm matrix. It has been shown for Gluconacetobacter xylinum that cellulose biosynthesis is allosterically regulated by bis-(3',5') cyclic diguanylic acid, whose synthesis/degradation depends on diguanylate cyclase/phosphodiesterase enzymatic activities. A protein domain, named GGDEF, is present in all diguanylate cyclase/phosphodiesterase enzymes that have been studied to date. In this study, we analysed the molecular mechanisms responsible for the failure of Salmonella typhimurium strain SL1344 to form biofilms under different environmental conditions. Using a complementation assay, we were able to identify two genes, which can restore the biofilm defect of SL1344 when expressed from the plasmid pBR328. Based on the observation that one of the genes, STM1987, contains a GGDEF domain, and the other, mlrA, indirectly controls the expression of another GGDEF protein, AdrA, we proceeded on a mutational analysis of the additional GG[DE]EF motif containing proteins of S. typhimurium. Our results demonstrated that MlrA, and thus AdrA, is required for cellulose production and biofilm formation in LB complex medium whereas STM1987 (GGDEF domain containing protein A, gcpA) is critical for biofilm formation in the nutrient-deficient medium, ATM. Insertional inactivation of the other six members of the GGDEF family (gcpB-G) showed that only deletion of yciR (gcpE) affected cellulose production and biofilm formation. However, when provided on plasmid pBR328, most of the members of the GGDEF family showed a strong dominant phenotype able to bypass the need for AdrA and GcpA respectively. Altogether, these results indicate that most GGDEF proteins of S. typhimurium are functionally related, probably by controlling the levels of the same final product (cyclic di-GMP), which include among its regulatory targets the cellulose production and biofilm formation of S. typhimurium.  相似文献   

20.
A large-scale search for attenuation regulation in bacteria was performed using two original computer programs, which modeled the attenuation regulation and multiple alignment along a phylogenetic tree. The programs are available at http://lab6.iitp.ru. Candidate attenuations were predicted for many organisms belonging to α-, ß-, γ-, and δ-proteobacteria, Actinobacteria, Bact eroidetes/Chlorobi, Firmicutes, and Thermotoga; in Cloroflexi, the corresponding sites were found upstream of hisG, hisZ, hisS, pheA, pheST, trpEG, trpA, trpB, trpE, trpS, thrA, thrS, leuA, leuS, ilvB, ilvI, ilvA, ilvC, ilvD, and ilvG. Searches were conducted across all bacterial genomes contained in GenBank, NCBI. Other bacterial taxa were not predicted to have attenuation. It was possible to assume, in some cases, that RNA triplexes play a substantial role in the formation of an active antiterminator and terminator or pseudoknots during termination. The attenuation regulation of Lactobacillus lactis lysQ was assumed to depend on the histidyl-tRNA concentration. Several types of attenuation regulation and the evolution of attenuation are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号