首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In spite of the importance of sperm motility to fertility in the stallion, little is known about the signaling pathways that regulate motility in this species. In other mammals, calcium/calmodulin signaling and the cyclic AMP/protein kinase-A pathway are involved in sperm motility regulation. We hypothesized that these pathways also were involved in the regulation of sperm motility in the stallion. Using immunoblotting, calmodulin and the calmodulin-dependent protein kinase II β were shown to be present in stallion sperm and with indirect immunofluorescence calmodulin was localized to the acrosome and flagellar principal piece. Additionally, inhibition of either calmodulin or protein kinase-A significantly reduced sperm motility without affecting viability. Following inhibition of calmodulin, motility was not restored with agonists of the cyclic AMP/protein kinase-A pathway. These data suggest that calcium/calmodulin and cyclic AMP/protein kinase-A pathways are involved in the regulation of stallion sperm motility. The failure of cyclic AMP/protein kinase-A agonists to restore motility of calmodulin inhibited sperm suggests that both pathways may be required to support normal motility.  相似文献   

2.
In the natural process of the migration of chum salmon from the sea to the river, spermatozoa moved from the testis to the sperm duct, and the pH value of seminal plasma, concentration of cyclic adenosine monophosphate (AMP) in the sperm cells, and potential for sperm motility increased. Cyclic AMP levels and the potential for motility gradually increased when testis spermatozoa with no capacity for movement were incubated in the artificial seminal plasma of which the pH was much the same as, or higher than, the pH of natural seminal plasma from the sperm duct. Such correlation in motility, pH, and cyclic AMP suggests that the increases in seminal pH and intracellular cyclic AMP level during passage of spermatozoa from the testis to the sperm duct cause the acquisition of potential for motility. Motility of testicular spermatozoa demembranated with Triton X-100 was very low in fish caught in the sea, while motility of spermatozoa from the posterior portion of the sperm duct was much higher in fish caught in the river. Furthermore, nondemembranated, intact spermatozoa showed a lag in the timing of the acquisition of potential for motility vs. demembranated spermatozoa: The demembranated sperm exhibited the potential earlier than the nondemembranated sperm. These data suggest that increase in activity of the motile apparatus, the axoneme, is a prerequisite, in part, for the acquisition of sperm motility, whereas the development of some function of the plasma membrane also contributes to this phenomenon. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Epididymal mouse sperm suspensions were preincubated for various times in medium containing glucose and/or dibutyryl cyclic AMP and then assessed for fertilizing ability in vitro, loss of the acrosome and motility changes. Capacitation time was significantly reduced by exposure to glucose and 0.1 mM-dbcAMP for 30 min as evidenced by early and synchronous fertilization of eggs, compared with glucose alone. Although this was accompanied by a precocious development of whiplash motility, the rate of acrosome loss in isolated sperm suspensions was not accelerated by the presence of exogenous cyclic nucleotide. Exposure of spermatozoa to 1 mM-dbcAMP in the presence of glucose resulted in very poor fertilization, but the effect could be prevented by withholding glucose until eggs were introduced; this may be due to free butyrate in the system since the inclusion of 1 mM-butyrate in glucose-containing medium had a similar inhibitory effect. Although cyclic nucleotide supported the acrosome reaction but not motility changes, no fertilization was obtained unless zonae were removed, when a low level of fertilization (30%) was observed. Both whiplash motility and acrosome loss are thus obligatory for sperm penetration of the zona and glycolytic metabolism supports both changes, perhaps by promoting endogenous generation of cyclic AMP to act as an intermediary in these two distinct phenomena.  相似文献   

4.
Buffalo sperm heads contain more than 50% of the total cyclic AMP-phosphodiesterase activity (EC 3.1.4.17) present in spermatozoa. Its distribution in sperm heads revealed no activity in acrosome and other membrane structures present in the head. All the cyclic AMP-phosphodiesterase activity was found firmly bound to sperm chromatin which could not be solubilized. In addition to cyclic AMP, cyclic GMP was also hydrolysed by chromatin preparation. The rate of hydrolysis was 2.5-times more rapid with cyclic AMP than with cyclic GMP at their optimum pH of 7.5 and 8.0, respectively. The pH and heat stability profiles, inhibition studies and the effect of divalent metal ions indicated that the two activities are not associated with the same protein. Mixed substrate analysis showed two sites at which the hydrolysis of cyclic AMP and cyclic GMP is catalysed. Chromatin cyclic nucleotide phosphodiesterases exhibited kinetics typical of one enzyme species both for cyclic AMP (K m = 100 microM; V = 1.0 nmol/min per mg protein) and cyclic GMP (Km = 23 microM; V = 0.4 nmol/min per mg protein). Each cyclic nucleotide was found to be a competitive inhibitor of the hydrolysis of the other with a Ki value of 30.18 microM for cyclic AMP hydrolysis and 256 microM for cyclic GMP hydrolysis. Hill coefficients of 1.0 obtained in the presence of cyclic AMP for cyclic GMP hydrolysis and vice-versa indicated no allosteric interactions. It is suggested that chromatin cyclic nucleotide phosphodiesterase may have a role post fertilization in cell growth and differentiation with no role in sperm motility which is regulated by similar enzymes present in sperm flagella.  相似文献   

5.
Spermatozoa from all portions of the bovine epididymis are essentially quiescent when examined in vitro without dilution. However, sperm from the caudal epididymis, particularly the distal portion, develop full motility when they are diluted into seminal plasma or simple isotonic buffers. Dilution of the sperm into neat cauda epididymal fluid (CE fluid) does not result in the initiation of motility. The initiation of motility upon dilution into buffers is complete within 10-20 min, while the inhibition induced by CE fluid is nearly instantaneous. CE fluid concentration, but not sperm concentration, controls sperm motility. Therefore, an inhibitory component of this fluid, but not sperm-sperm interactions, is responsible for the inhibition. CE sperm, which have been diluted into isotonic buffers and are consequently motile, become quiescent when resuspended in CE fluid; thus, this process is fully reversible. No elevations in sperm cyclic AMP levels can be detected concomitant with the induction of motility but high concentrations of cyclic AMP phosphodiesterase inhibitors can overcome the quiescence induced by CE fluid. The inhibitors of CE sperm motility reported for other species, e.g., the high-viscosity mucin, immobilin ; carnitine; calcium; or glycerylphosphorylcholine , do not appear to be of importance in the bovine caudal epididymis. The quiescence produced by bovine CE fluid is strongly dependent upon the extracellular pH; i.e., motility is inhibited at pH 5.5 but not at pH 7.6.  相似文献   

6.
The subcellular localizations of guanylate cyclase and 3',5'-cyclic nucleotide phosphodiesterase in sea urchin sperm were examined. Both the specific and total activities of these two enzymes were much higher in sperm flagella (tails) than in the heads. In addition to the observation that guanylate cyclase in the flagella was particulate-bound and solubilized by Triton X-100, more than 80% of the cyclase activity in the flagella was found in the plasma membrane fraction, whereas the activity of cyclic nucleotide phosphodiesterase was observed in both the axonemal and plasma membrane fractions. The observations indicated that the cyclase in the flagella appeared to be associated with the plasma membrane. Cyclic nucleotide phosphodiesterase in the plasma membrane fraction as well as the axonemal fraction hydrolyzed both cyclic GMP and cyclic AMP; however, the rates of hydrolysis for cyclic GMP were obviously higher than those for cyclic AMP. The enzymic properties of guanylate cyclase and cyclic nucleotide phosphodiesterase in sperm flagella were also briefly described.  相似文献   

7.
Dog and rat adrenal glomerulosa cells and subcellular fractions have been utilized to evaluate the mechanism of angiotensin II- and angiotensin III-induced aldosterone production. The effects of angiotensin, ACTH, and potassium have been compared on cyclic AMP and cyclic GMP in isolated glomerulosa cells and adenylate cyclase activity in subcellular fractions. The effect of angiotensin II has also been assessed on Na+-K+-activated ATPase of plasma membrane enriched fractions of dog and rat adrenals. We have demonstrated no effect of angiotensin II or angiotensin III on either adenylate cyclase, cyclic AMP, cyclic GMP, or Na+-K+-dependent ATPase activity over a wide range of concentrations. Potassium ion in concentrations that stimulate significant aldosterone production was also without effect. The negative effects of angiotensin and potassium were contrasted against a positive correlation between an ACTH-induced effect on aldosterone production, adenylate cyclase, and cyclic AMP accumulation. These studies have served to demonstrate that neither adenylate cyclase, cyclic AMP, cyclic GMP, or Na+-K+-activated ATPase seem to be directly involved in the mechanism of action of angiotensins on aldosterone production in the rat and dog adrenal glomerulosa.  相似文献   

8.
The subcellular localizations of guanylate cyclase and 3′,5′-cyclic nucleotide phophodiesterase in sea urchin sperm were examined. Both the specific and total activities of these two enzymes were much higher in sperm flagella (tails) than in the heads. In addition to the observation that guanylate cyclase in the flagella was particulate-bound and solubilized by Triton X-100, more than 980% of the cyclase activity in the flagella was found in the plasma membrane fraction, whereas the activity of cyclic nucleotide phosphodiesterase was observed in both the axonemal and plasma membrane fractions. The observations indicated that the cyclase in the flagella appeared to be associated with the plasma membrane. Cyclic nucleotide phosphodiesterase in the plasma membrane fraction as well as the axonemal fraction hydrolyzed both cyclic GMP and cyclic AMP; however, the rates of hydrolysis for cyclic GMP were obviously higher than those for cyclic AMP. The enzymic properties of guanylate cyclase and cyclic nucelotide phosphodiesterase in sperm flagella were also briefly described.  相似文献   

9.
Bridging of IgE receptors on rat mast cell plasma membranes induces phospholipid methylation and a monophasic increase in cyclic AMP. The stimulation of phospholipid methylation in the plasma membrane appears to be intrinsic to the processes leading to Ca2+ influx and histamine release. Evidence was obtained that IgE receptors are closely associated with methyltransferases and adenylate cyclase in the plasma membranes. The activation of one enzyme is regulated by the other. An increase in the cyclic AMP level before receptor bridging suppressed phospholipid methylation. On the other hand, inhibition of phospholipid methylation may affect the initial rise in cyclic AMP. Our experiments also indicated that bridging the receptor activates a membrane-associated proteolytic enzyme. Inasmuch as the inhibition of the enzyme activation results in the suppression of both phospholipid methylation and initial rise in cyclic AMP induced by receptor bridging, the proteolytic enzyme may be involved in the activation of methyltransferases and adenylate cyclase.  相似文献   

10.
Lipid rafts are specialized membrane microdomains that function as signaling platforms across plasma membranes of many animal and plant cells. Although there are several studies implicating the role of lipid rafts in capacitation of mammalian sperm, the function of these structures in sperm motility activation and chemotaxis remains unknown. In the ascidian Ciona intestinalis, egg-derived sperm activating- and attracting-factor (SAAF) induces both activation of sperm motility and sperm chemotaxis to the egg. Here we found that a lipid raft disrupter, methyl-β-cyclodextrin (MCD), inhibited both SAAF-induced sperm motility activation and chemotaxis. MCD inhibited both SAAF-promoted synthesis of intracellular cyclic AMP and sperm motility induced by ionophore-mediated Ca(2+) entry, but not that induced by valinomycin-mediated hyperpolarization. Ca(2+)-imaging revealed that lipid raft disruption inhibited Ca(2+) influx upon activation of sperm motility. The Ca(2+)-activated adenylyl cyclase was clearly inhibited by MCD in isolated lipid rafts. The results suggest that sperm lipid rafts function in signaling upstream of cAMP synthesis, most likely in SAAF-induced Ca(2+) influx, and are required for Ca(2+)-dependent pathways underlying activation and chemotaxis in Ciona sperm.  相似文献   

11.
Mammalian sperm cells contain most of the components of a cyclic AMP-mediation system. To determine if the cyclic AMP-dependent protein kinase has a role in the control of bovine sperm motility, a sperm model was developed that was permeable to exogenously added ATP. Treatment of bovine epididymal spermatozoa with dithiothreitol and Brij-35 (polyoxyethylene alcohol), a nonionic surfactant, resulted in a sperm model with caffeine-stimulated, ATP-reactivatable motility. The results of the data obtained using this sperm model can be summarized as follows. (1) Brij partially solubilized the cyclic AMP-dependent protein kinase activity and released nearly half of the total acid-extractable nucleotides of the cells. (2) Brij treatment severely damaged the sperm mitochondria as judged by their lack of respiration. (3) Brij-treated spermatozoa lose their motility but were reactivated with ATP; the reactivated motility was stimulated by caffeine. (4) Despite the caffeine stimulation of motility in Brij-treated spermatozoa, increased protein phosphorylation did not accompany reactivation of motility, nor could a cyclic AMP effect be demonstrated on reactivated motility or on kinase activity in the sperm model.  相似文献   

12.
13.
The effects of adenosine 3' : 5'-monophosphate (cyclic AMP), guanosine 3' : 5'-monophosphate (cyclic GMP) and exogenous protein kinase on Ca uptake and membrane phosphorylation were studied in subcellular fractions of vascular smooth muscle from rabbit aorta. Two functionally distinct fractions were separated on a continuous sucrose gradient: a light fraction enriched in endoplasmic reticulum (fraction E) and a heavier fraction containing mainly plasma membranes (fraction P). While cyclic AMP and cyclic GMP had no effect on Ca uptake in the absence of oxalate, both cyclic nucleotides inhibited the rate of oxalate-activated Ca uptake when used at concentrations higher than 10(-5) M. The addition of bovine heart protein kinase to either fraction produced an increase in the rate of oxalate-activated Ca uptake which was further augmented by cyclic AMP. Cyclic GMP caused smaller stimulations of protein kinase-catalyzed Ca uptake than cyclic AMP. Mg-dependent phosphorylation, attributable to endogenous protein kinase(s), was inhibited in fraction E by low concentrations (10(-8) M) of both cyclic AMP and cyclic GMP. In fraction P, an inhibition by cyclic AMP occurred also at a concentration of 10(-8) M, while with cyclic AMP a concentration of 10(-5) M was required for a similar inhibition. Bovine heart protein kinase stimulated the phosphorylation of the membrane fractions much more than Ca uptake. In fraction E, in the presence of bovine protein kinase, both cyclic AMP and cyclic GMP stimulated phosphorylation up to 200%. Under these conditions, no stimulation was observed in fraction P. These results are compatible with the hypothesis that in vascular smooth muscle soluble rather than particulate protein kinases are involved in the regulation of intracellular Ca concentration.  相似文献   

14.
In order to clarify the role of the system that generates and degrades cyclic AMP during the initiation of motility of trout sperm, short-term changes in levels of intraspermatozoal cyclic AMP, adenylate cyclase, and phosphodiesterase were measured. Levels of cyclic AMP and the activity of adenylate cyclase increased and reached a maximum level 1 sec after transfer of sperm to K+-free medium, where they became motile, and then decreased rapidly. However, there were no changes in either parameter in sperm which remained immotile in K+-rich medium. In addition, an increase in the activity of phosphodiesterase was observed 4 sec later than the increase in levels of cyclic AMP and adenylate cyclase. These findings suggest that a very rapid change in the level of intracellular cyclic AMP occurs within 1 sec, at the moment of spawning, by the activation of adenylate cyclase and phosphodiesterase, and regulates the initiation of trout sperm motility.  相似文献   

15.
Previous studies (Carr and Acott , 1984) indicate that bovine sperm are maintained in a quiescent state in the caudal epididymis (CE) by a pH-dependent inhibitory factor. Here, we have determined that the pH of bovine CE fluid and of CE semen is approximately 5.8, and that the motility of CE sperm in undiluted CE fluid increases as the pH is elevated. Therefore, the acidity of CE fluid may play a physiological role in the maintenance of sperm quiescence. The changes in sperm motility, in response to changes in the pH of CE fluid, are reversible and rapid. Dilution of CE fluid with buffers at either pH 5.5 or 7.6 produces a much slower initiation of motility. In buffer a significantly lower pH is required to inhibit sperm motility than is required in CE fluid. The apparent pKs for inhibition are 5.3 in buffer and 6.6 in CE fluid. However, the motility of sperm in buffers that contain lactate, shows a pH dependence similar to sperm in CE fluid. That is, lactate inactivates sperm in buffer at pH 5.5 but not at pH 7.6. Lactate, and several other permeant weak acids, have previously been shown to reduce the intracellular pH of bovine sperm and many other types of cells. We show that these permeant weak acids, but not impermeant weak acids, reversibly reduce CE sperm motility in buffer at pH 5.5 but not at pH 7.6. Weak bases, which have previously been shown to elevate intracellular pH, initiate sperm motility in CE fluid. These results suggest that intracellular pH can regulate CE sperm motility and may be the intracellular messenger for the pH-dependent quiescence factor. Although sperm cyclic AMP levels have been previously correlated with motility stimulation, cyclic AMP levels do not change when the pH of CE fluid is elevated, even though full motility is initiated.  相似文献   

16.
Agents known to affect intracellular levels of cyclic AMP in many diverse systems have been tested for their effect on the chemotaxis induced by Escherichia coli culture filtrates, spontaneous motility and cyclic AMP levels of rabbit peritoneal neutrophils. Prostaglandin E1 and A1 but not prostaglandin F2alpha increased neutrophil cyclic AMP levels and, correspondingly, only the former two prostaglandins inhibited chemotaxis. Nevertheless, a quantitative relationship between prostaglandin stimulation of cyclic AMP and inhibition of chemotaxis could not be found. Epinephrine, isoproterenol, and, to a much lesser extent, norepinephrine increased neutrophil cyclic AMP through beta adrenergic stimulation. Only epinephrine and isoproterenol inhibited chemotaxis, but the inhibition was variable and not related to the ability of these catecholamines to increase intracellular cyclic AMP. Cholera toxin increased neutrophil cyclic AMP after a 30-min lag period which paralled its inhibitory effect on chemotaxis and spontaneous motility. However, the effect on chemotaxis require 50 ng/ml of toxin whereas the effect on cyclic AMP was manifested at 2 ng/ml of toxin. Prior to 30-min preincubation there was no effect of even 1250 ng/ml of toxin on either cyclic AMP or chemotaxis. Choleragenoid prevented the effects of toxin on both cyclic AMP and chemotaxis. The bacterial chemotactic factor obtained from E. coli culture filtrates did not effect a measurable change in levels of neutrophil cyclic AMP. The data indicate that even though cyclic AMP is not, in the main sequence of events, triggering the chemotactic response, increases in neutrophil cyclic AMP may modulate the movement and thus the chemotactic responsiveness of the neutrophil.  相似文献   

17.
We have used a change in temperature to vary sperm motility in order to see if changes in glucose consumption and cellular concentration of ATP, ADP, AMP, and cyclic AMP (cAMP) are correlated with the temperature-dependent control of motility. Effect of temperature on the kinetic parameters of adenylate cyclase and cyclic nucleotide phosphodiesterase also were studied. Glucose consumption rate was independent of adenine nucleotide concentration or energy charge. Furthermore, the percentage of progressively motile sperm and velocity of motile sperm were independent of mean cAMP concentration, in contrast to previously published data presented as evidence for the modulation of progressive motility of sperm via changes in cAMP concentration.  相似文献   

18.
Tyrosine hydroxylase (TH) contained in dopamine (DA) neurons of rat retina is activated in vivo as a consequence of photic stimulation. Experiments were conducted to test the effects of changes of membrane potential and of cyclic AMP-dependent protein phosphorylation on TH activity of these retinal neurons. Retinas were dissociated into suspensions of apparently viable cells to test the direct effects of pharmacological manipulations on TH activity in the absence of trans-synaptic influences. To test the effects of changes of membrane potential on TH activity we examined the effects of a depolarizing agent, potassium. Incubation of cell suspensions in Ringer's solution containing a depolarizing concentration of K+ (52 mM) resulted in a significant increase of TH activity, suggesting that membrane depolarization may trigger a series of molecular events that leads to TH activation. Incubation of cell suspensions in the presence of 8-bromo cyclic AMP, a cyclic AMP analog that is known to activate cyclic AMP-dependent processes following extra-cellular application, resulted in a significant activation of TH that was comparable to that produced in vitro by cyclic AMP-dependent protein phosphorylation. These data support the hypothesis that membrane potential plays a role in the regulation of TH activity, and indicate that cyclic AMP-dependent phosphorylation can activate retinal TH in situ. The apparent viability of the retinal cells in suspension suggests that this preparation may be useful for studying synaptic regulatory mechanisms.  相似文献   

19.
Capacitation of rhesus monkey spermatozoa was assessed by monitoring sperm flagellar beat and trajectory changes during incubation in vitro and by determining sperm penetration into rhesus oocytes and hamster zona-free ova. Rhesus sperm capacitation in vitro depended on the addition to the culture medium of the cyclic nucleotide mediators, caffeine and dibutyryl cyclic AMP. Capacitation was correlated with the development of hyperactivated motility. Spermatozoa treated with the cyclic nucleotide mediators, and showing hyperactivated motility, penetrated 57.4% of all rhesus oocytes and fertilized 88.9% of mature rhesus oocytes that were morphologically normal. Control spermatozoa did not penetrate any of the eggs. Some sperm penetration into hamster ova occurred but was not statistically significant. These data provide a basis for achieving in-vitro fertilization in the rhesus monkey and information on specific sperm motility characteristics associated with fertilizing ability.  相似文献   

20.
Exposure to hypo-osmotic or hyperosmotic environment triggers the initiation of fish sperm motility. In this article, we report that calcium and potassium channel blockers do not influence motility of puffer fish sperm but calmodulin antagonists reversibly decrease it, suggesting that calmodulin-Ca(2+) interactions are prerequisite for the initiation of sperm motility in this species. Gadolinium (a stretch activated ion channel blocker) decreased the motility of puffer fish sperm from 92 +/- 3% to 6 +/- 3% and that of carp sperm from 91 +/- 7% to 3.5 +/- 4.3% in a dose-dependent manner (10-40 micro M). The effect of gadolinium was reversible, suggesting that stretch activated ion channels participate in the initiation of sperm motility of the two species. Gadolinium inhibits changes in the isoelectric point of certain proteins of puffer fish sperm, which occur when sperm motility is initiated in a hypertonic solution. Anisotropy measurements showed that hypo-osmotic treatment, which initiates carp sperm motility, increased membrane fluidity. When hypo-osmotic treatment was given in the presence of gadolinium, the sperm membrane remained as rigid as in quiescent cells, while motility was blocked. By contrast, gadolinium did not influence the motility parameters of Ciona or human sperm. Based on these lines of evidence, we suggest that conformational changes of mechanosensitive membrane proteins are involved in osmolality-dependent but not osmolality-independent sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号