首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal antibodies specific for vimentin (V9), keratin 7 (CK 7) and keratin 18 (CK5) have been microinjected into three human epithelial cell lines: HeLa, MCF-7 and RT-4. The effect of the injection on other keratin polypeptides and vimentin filaments has been observed by double label immunofluorescence and in some instances by immunoelectron microscopy using gold labels of different sizes. Microinjection of V9 into HeLa cells causes the vimentin to collapse into a perinuclear cap leaving the keratin filaments unaffected. Injection of CK5 does not affect the vimentin filaments but disrupts the keratin filaments revealing keratin aggregates similar to those seen in some epithelial cell lines during mitosis. The keratin aggregates obtained after microinjection in HeLa contain the keratins 8 and 18 and probably also other keratins, as no residual keratin filaments are observed with a keratin polyclonal antibody of broad specificity. Aggregates in mitotic HeLa cells contain at least the keratins 7, 8, and 18. In MCF-7 cells keratins 8, 18, and 19 are observed in the aggregates seen 3 h after microinjection which, however, show a different morphology from those seen in HeLa cells. In MCF-7 cells a new keratin filament is built within 6 h after the injection which is composed mainly of keratin 8 and 19. The antibody-complexed keratin 18 remains in spherical aggregates of different size. The results suggest that in HeLa cells vimentin and keratin form independent networks, and that individual 10 nm filaments in epithelial cell lines can contain more than two keratins.  相似文献   

2.
Structural proteins of the intermediate filament family are an early indicator of differentiation before organogenesis becomes apparent. Keratin intermediate filaments are characteristically expressed only by epithelial and not by mesenchymal cells. Here we show, using monoclonal antibodies, a transient expression of the keratin pair 8 and 18 in a population of mesenchymal cells in the regenerating newt limb, specifically in the undifferentiated progenitor cells (blastemal cells) which give rise to the new tissues. These keratins are also expressed in cultured limb cells that can differentiate into muscle. In contrast no reactivity with anti-keratin 8 and 18 antibodies was observed in the newt limb bud at an early stage of development, indicating a molecular difference between the developing and regenerating limb. The molecular weights of the newt proteins detected by these antibodies are very similar to those of human keratins 8 and 18, further supporting the immunocytochemical evidence that the newt homologs of these keratins are expressed in blastemal cells. This is the first demonstration of keratin expression in mesenchymal progenitor cells in an adult animal.  相似文献   

3.
After selective extraction and purification, plant keratin intermediate filaments were reassembled in vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filaments in vitro. In higher magnification images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24—25 nm periodic structural repeat alone the axis of beth the 10 nm filaments and protofilaments. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments.  相似文献   

4.
The four major keratins of normal human epidermis (molecular mass 50, 56.5, 58, and 65-67 kD) can be subdivided on the basis of charge into two subfamilies (acidic 50-kD and 56.5-kD keratins vs. relatively basic 58-kD and 65-67-kD keratins) or subdivided on the basis of co-expression into two "pairs" (50-kD/58-kD keratin pair synthesized by basal cells vs. 56.5-kD/65-67-kD keratin pair expressed in suprabasal cells). Acidic and basic subfamilies were separated by ion exchange chromatography in 8.5 M urea and tested for their ability to reassemble into 10-nm filaments in vitro. The two keratins in either subfamily did not reassemble into 10-nm filaments unless combined with members of the other subfamily. While electron microscopy of acidic and basic keratins equilibrated in 4.5 M urea showed that keratins within each subfamily formed distinct oligomeric structures, possibly representing precursors in filament assembly, chemical cross-linking followed by gel analysis revealed dimers and larger oligomers only when subfamilies were combined. In addition, among the four major keratins, the acidic 50-kD and basic 58-kD keratins showed preferential association even in 8.5 M urea, enabling us to isolate a 50-kD/58-kD keratin complex by gel filtration. This isolated 50-kD/58-kD keratin pair readily formed 10-nm filaments in vitro. These results demonstrate that in tissues containing multiple keratins, two keratins are sufficient for filament assembly, but one keratin from each subfamily is required. More importantly, these data provide the first evidence for the structural significance of specific co-expressed acidic/basic keratin pairs in the formation of epithelial 10-nm filaments.  相似文献   

5.
Recombinant DNA technology has been used to analyze the first step in keratin intermediate filament (IF) assembly; i.e., the formation of the double stranded coiled coil. Keratins 8 and 18, lacking cysteine, were subjected to site specific in vitro mutagenesis to change one amino acid in the same relative position of the alpha-helical rod domain of both keratins to a cysteine. The mutations lie at position -36 of the rod in a "d" position of the heptad repeat pattern, and thus air oxidation can introduce a zero-length cystine cross-link. Mutant keratins 8 and 18 purified separately from Escherichia coli readily formed cystine homodimers in 2 M guanidine-HCl, and could be separated from the monomers by gel filtration. Heterodimers with a cystine cross-link were obtained when filaments formed by the two reduced monomers were allowed to oxidize. Subsequent ion exchange chromatography in 8.5 M urea showed that only a single dimer species had formed. Diagonal electrophoresis and reverse phase HPLC identified the dimer as the cystine containing heterodimer. This heterodimer readily assembled again into IF indistinguishable from those obtained from the nonmutant counterparts or from authentic keratins. In contrast, the mixture of cystine-stabilized homodimers formed only large aberrant aggregates. However, when a reducing agent was added, filaments formed again and yielded the heterodimer after oxidation. Thus, the obligatory heteropolymer step in keratin IF assembly seems to occur preferentially at the dimer level and not during tetramer formation. Our results also suggest that keratin I and II homodimers, once formed, are at least in 2 M guanidine-HCl a metastable species as their mixtures convert spontaneously into heterodimers unless the homodimers are stabilized by the cystine cross-link. This previously unexpected property of homodimers explains major discrepancies in the literature on the keratin dimer.  相似文献   

6.
7.
We have generated human recombinant keratins K8 and K18 and describe conditions to quantitatively follow their assembly into filaments. When renatured individually from 8M urea into a low ionic strength/high pH-buffer, K8 was present in a dimeric to tetrameric form as revealed by analytical ultracentrifugation. In contrast, K18 sedimented as a monomer. When mixed in 8 M urea and renatured together, K8 and K18 exhibited s-value profiles compatible with homogeneous tetrameric complexes. This finding was confirmed by sedimentation equilibrium centrifugation. Subsequently, these tetrameric starter units were subjected to assembly experiments at various protein concentrations. At low values such as 0.0025 g/l, unit-length filaments were abundantly present after 2s of assembly. During the following 5 min, filaments grew rapidly and by measuring the length of individual filaments we were able to generate time-dependent length profiles. These data revealed that keratins K8/K18 assemble several times faster than vimentin and desmin. In addition, we determined the persistence length l(p) of K8/K18 filaments to be in the range of 300 nm. Addition of 1 mM MgCl(2) increases l(p) to 480 nm indicating that magnesium ions affect the interaction of keratin subunits within the filament during assembly to some extent.  相似文献   

8.
After selective extraction and purification, plant keratin intermediate filaments were reassembledin vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filamentsin vitro. In higher mcation images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24–25 nm periodic structural repeat alone the axis of both the 10 nm filaments and protofilarnents. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments.  相似文献   

9.
The hair follicle consists of a complex system of multiple tissue compartments that are clearly distinguishable by their morphology and type of differentiation. We have synthesized hair follicle-specific keratins from the companion layer (K6hf, K17) and the hair cortex (Ha1, Hb3, Hb6) in Escherichia coli. The assembly of purified keratins in mixtures of K6hf/K17 and in mixtures of hair cortex keratins was compared in urea solutions, low ionic strength and physiological strength buffers, by urea melting gels, electron microscopy and analytical ultracentrifugation. Both types of keratin mixtures, keratins from the companion layer and keratins from the hair cortex, formed heterotypic complexes at 5 M urea. In low ionic strength buffers, the keratins from the companion layer were assembled to bona fide intermediate filaments. In contrast, mixtures of hair cortex keratins stayed in an oligomeric state with a mean s value of 9 as determined in sedimentation velocity experiments. Hair cortex keratins were, however, assembled into intermediate filaments at physiological salt conditions. A point mutated hair cortex keratin [Hb6(Glu402Lys)] formed no long filaments when mixed with Ha1; instead, the assembled structures showed a length distribution of 50.8 +/- 13.4 nm, comparable to the size distribution of assembly intermediates called 'unit-length' filaments.  相似文献   

10.
In the past two decades, keratin biomaterials have shown impressive results as scaffolds for tissue engineering, wound healing, and nerve regeneration. In addition to its intrinsic biocompatibility, keratin interacts with specific cell receptors eliciting beneficial biochemical cues. However, during extraction from natural sources, such as hair and wool fibers, natural keratins are subject to extensive processing conditions that lead to formation of unwanted by‐products. Additionally, natural keratins suffer from limited sequence tunability. Recombinant keratin proteins can overcome these drawbacks while maintaining the desired chemical and physical characteristics of natural keratins. Herein, we present the bacterial expression, purification, and solution characterization of human hair keratins K31 and K81. The obligate heterodimerization of the K31/K81 pair that results in formation of intermediate filaments is maintained in the recombinant proteins. Surprisingly, we have for the first time observed new zero‐ and one‐dimensional nanostructures from homooligomerization of K81 and K31, respectively. Further analysis of the self‐assembly mechanism highlights the importance of disulfide crosslinking in keratin self‐assembly.  相似文献   

11.
12.
Keratins, constituent proteins of intermediate filaments of epithelial cells, are phosphoproteins containing phosphoserine and phosphothreonine. We examined the in vitro phosphorylation of keratin filaments by cAMP-dependent protein kinase, protein kinase C and Ca2+/calmodulin-dependent protein kinase II. When rat liver keratin filaments reconstituted by type I keratin 18 (molecular mass 47 kDa; acidic type) and type II keratin 8 (molecular mass 55 kDa; basic type) in a 1:1 ratio were used as substrates, all the protein kinases phosphorylated both of the constituent proteins to a significant rate and extent, and disassembly of the keratin filament structure occurred. Kinetic analysis suggested that all these protein kinases preferentially phosphorylate keratin 8, compared to keratin 18. The amino acid residues of keratins 8 and 18 phosphorylated by cAMP-dependent protein kinase or protein kinase C were almost exclusively serine, while those phosphorylated by Ca2+/calmodulin-dependent protein kinase II were serine and threonine. Peptide mapping analysis indicated that these protein kinases phosphorylate keratins 8 and 18 in a different manner. These observations gave the way for in vivo studies of the role of phosphorylation in the reorganization of keratin filaments.  相似文献   

13.
The intermediate filaments (IFs) form major structural elements of the cytoskeleton. In vitro analyses of these fibrous proteins reveal very different assembly properties for the nuclear and cytoplasmic IF proteins. However, keratins in particular, the largest and most heterogenous group of cytoplasmic IF proteins, have been difficult to analyze due to their rapid assembly dynamics under the near-physiological conditions used for other IF proteins. We show here that keratins, like other cytoplasmic IF proteins, go through a stage of assembling into full-width soluble complexes, i.e., "unit-length filaments" (ULFs). In contrast to other IF proteins, however, longitudinal annealing of keratin ULFs into long filaments quasi-coincides with their formation. In vitro assembly of IF proteins into filaments can be initiated by an increase of the ionic strength and/or lowering of the pH of the assembly buffer. We now document that 23-mer peptides from the head domains of various IF proteins can induce filament formation even under conditions of low salt and high pH. This suggests that the "heads" are involved in the formation and longitudinal association of the ULFs. Using a Tris-buffering protocol that causes formation of soluble oligomers at pH 9, the epidermal keratins K5/14 form less regular filaments and less efficiently than the simple epithelial keratins K8/18. In sodium phosphate buffers (pH 7.5), however, K5/14 were able to form long partially unraveled filaments which compacted into extended, regular filaments upon addition of 20 mM KCl. Applying the same assembly regimen to mutant K14 R125H demonstrated that mutations causing a severe disease phenotype and morphological filament abnormalities can form long, regular filaments with surprising efficiency in vitro.  相似文献   

14.
After selective extraction and purification, plant keratin intermediate filaments were reassembledin vitro. Scanning tunneling microscope (STM) and transmission electron microscope (TEM) micrographs showed that acidic keratins and basic keratins can assemble into dimers and further into 10 nm filamentsin vitro. In higher mcation images, it can be seen that fully assembled plant keratin intermediate filaments consist of several thinner filaments of 3 nm in diameter, which indicates the formation of protofilaments in the assembly processes. One of the explicit features of plant keratin intermediate filaments is a 24–25 nm periodic structural repeat alone the axis of both the 10 nm filaments and protofilarnents. The periodic repeat is one of the fundamental characteristic of all intermediate filaments, and demonstrates the half staggered arrangement of keratin molecules within the filaments. Project supported by the National Natural Science Foundation of China (Grant No. 39370352) and the Doctor Foundation of Minishy of Education of China.  相似文献   

15.
Recently, bovine pulmonary microvascular endothelial cells (PMV) were shown to contain cytokeratin 8 and 19 intermediate filaments (Patton et al., 1990). In this study, we examine the effect of culture contiguity and vasoactive agents on the content and assembly of cytokeratins in PMV. Immunofluorescent staining of PMV cultures show a progressive increase in cytokeratin filament assembly. In freshly plated PMV, keratin appears as hazy staining (less than 4 hr) and later organizes into keratin 'plaques' (4 days) associated with cell-cell contacts; post confluent (greater than 7 days) PMV cultures contain fully assembled cytokeratin filaments which extend to the cell periphery and approach filaments in apposed cells. Vimentin filaments are also present in freshly plated PMV cultures but unlike cytokeratins, become less filamentous at confluency. This cell density-dependent modulation of cytokeratins is also demonstrated by densitometric analysis of autoradiographs of 35S-methionine labeled keratins in which PMV keratin content is elevated at high cell densities, while vimentin content remains constant. Desmoplakins I and II, components of desmosomes, could not be demonstrated in PMV by immunoblotting. PMV treated with permeability modulating agents (4 x 10(-3) M EGTA, 1 microM cytochalasin B, 1 microM bradykinin, 1 microM A23187, and 1 microM PMA) exhibit border retraction and altered keratin filament staining. From these studies we conclude: 1) cytokeratin 8 and 19 containing intermediate filaments are present in confluent PMV cultures with vimentin but without desmosomes, 2) the state of assembly of PMV cytokeratin and vimentin filaments appears to be oppositely affected by culture contiguity, and 3) treatment of monolayers with vasoactive agents alters the state of assembly of cytokeratin filaments. We speculate that modulation of cytokeratin assembly in PMV may be involved in regulation of pulmonary microvascular structure and function.  相似文献   

16.
The expression of intermediate filaments is developmentally regulated. In the mammalian embryo keratins are the first to appear, followed by vimentin, while the principal intermediate filament of the adult brain is glial fibrillary acidic protein. The intermediate filaments expressed by a cell thus reflect its state of differentiation. The differentiation state of cells, and especially of glial cells, in turn determines their ability to support axonal growth. In this study we used three new antibodies directed against three fish intermediate filaments (glial fibrillary acidic protein, keratin 8 and vimentin), in order to determine the identity and level of expression of intermediate filaments present in fish glial cells in culture. We found that fish astrocytes and oligodendrocytes are both able to express keratin 8 and vimentin. We further demonstrate that under proliferative conditions astrocytes express high keratin 8 levels and most oligodendrocytes also express keratin 8, whereas under nonproliferative conditions the astrocytes express only low keratin 8 levels and most oligodendrocytes do not express keratin 8 at all. These results suggest that the fish glial cells retain characteristics of immature cells. The findings are also discussed in relation to the fish glial lineage.  相似文献   

17.
《The Journal of cell biology》1990,111(6):3049-3064
To investigate the sequences important for assembly of keratins into 10- nm filaments, we used a combined approach of (a) transfection of mutant keratin cDNAs into epithelial cells in vivo, and (b) in vitro assembly of mutant and wild-type keratins. Keratin K14 mutants missing the nonhelical carboxy- and amino-terminal domains not only integrated without perturbation into endogenous keratin filament networks in vivo, but they also formed 10-nm filaments with K5 in vitro. Surprisingly, keratin mutants missing the highly conserved L L E G E sequence, common to all intermediate filament proteins and found at the carboxy end of the alpha-helical rod domain, also assembled into filaments with only a somewhat reduced efficiency. Even a carboxy K14 mutant missing approximately 10% of the rod assembled into filaments, although in this case filaments aggregated significantly. Despite the ability of these mutants to form filaments in vitro, they often perturbed keratin filament organization in vivo. In contrast, small truncations in the amino-terminal end of the rod domain more severely disrupted the filament assembly process in vitro as well as in vivo, and in particular restricted elongation. For both carboxy and amino rod deletions, the more extensive the deletion, the more severe the phenotype. Surprisingly, while elongation could be almost quantitatively blocked with large mutations, tetramer formation and higher ordered lateral interactions still occurred. Collectively, our in vitro data (a) provide a molecular basis for the dominance of our mutants in vivo, (b) offer new insights as to why different mutants may generate different phenotypes in vivo, and (c) delineate the limit sequences necessary for K14 to both incorporate properly into a preexisting keratin filament network in vivo and assemble efficiently into 10-nm keratin filaments in vitro.  相似文献   

18.
Pancreatic acinar cells express keratins 8 and 18 (K8/18), which form cytoplasmic filament (CF) and apicolateral filament (ALF) pools. Hepatocyte K8/18 CF provide important protection from environmental stresses, but disruption of acinar cell CF has no significant impact. We asked whether acinar cell ALF are important in providing cytoprotective roles by studying keratin filaments in pancreata of K8- and K18-null mice. K8-null pancreas lacks both keratin pools, but K18-null pancreas lacks only CF. Mouse but not human acinar cells also express apicolateral keratin 19 (K19), which explains the presence of apicolateral keratins in K18-null pancreas. K8- and K18-null pancreata are histologically normal, and their acini respond similarly to stimulated secretion, although K8-null acini viability is reduced. Absence of total filaments (K8-null) or CF (K18-null) does not increase susceptibility to pancreatitis induced by caerulein or a choline-deficient diet. In normal and K18-null acini, K19 is upregulated after caerulein injury and, unexpectedly, forms CF. As in hepatocytes, acinar injury is also associated with keratin hyperphosphorylation. Hence, K19 forms ALF in mouse acinar cells and helps define two distinct ALF and CF pools. On injury, K19 forms CF that revert to ALF after healing. Acinar keratins appear to be dispensable for cytoprotection, in contrast to hepatocyte keratins, despite similar hyperphosphorylation patterns after injury.  相似文献   

19.
Of the >20 epithelial keratins, keratin 20 (K20) has an unusual distribution and is poorly studied. We began to address K20 function, by expressing human wild-type and Arg80-->His (R80H) genomic (18 kb) and cDNA K20 in cells and mice. Arg80 of K20 is conserved in most keratins, and its mutation in epidermal keratins causes several skin diseases. R80H but not wild-type K20 generates disrupted keratin filaments in transfected cells. Transgenic mice that overexpress K20 R80H have collapsed filaments in small intestinal villus regions, when expressed at moderate levels, whereas wild-type K20-overexpressing mice have normal keratin networks. Overexpressed K20 maintains its normal distribution in several tissues, but not in the pancreas and stomach, without causing any tissue abnormalities. Hence, K20 pancreatic and gastric expression is regulated outside the 18-kb region. Cross-breeding of wild-type or R80H K20 mice with mice that overexpress wild-type K18 or K18 that is mutated at the conserved K20 Arg80-equivalent residue show that K20 plays an additive and compensatory role with K18 in maintaining keratin filament organization in the intestine. Our data suggest the presence of unique regulatory domains for pancreatic and gastric K20 expression and support a significant role for K20 in maintaining keratin filaments in intestinal epithelia.  相似文献   

20.
Hesse M  Franz T  Tamai Y  Taketo MM  Magin TM 《The EMBO journal》2000,19(19):5060-5070
It has been reported previously that keratin 8 (K8)-deficient mice of one strain die from a liver defect at around E12.5, while those of another strain suffer from colorectal hyperplasia. These findings have generated considerable confusion about the function of K8, K18 and K19 that are co-expressed in the mouse blastocyst and internal epithelia. To resolve this issue, we produced mice doubly deficient for K18 and K19 leading to complete loss of keratin filaments in early mouse development. These embryos died at around day E9.5 with 100% penetrance. The absence of keratins caused cytolysis restricted to trophoblast giant cells, followed by haematomas in the trophoblast layer. Up to that stage, embryonic development proceeded unaffected in the absence of keratin filaments. K18/19-deficient mouse embryos die earlier than any other intermediate filament knockouts reported so far, suggesting that keratins, in analogy to their well established role in epidermis, are essential for the integrity of a specialized embryonic epithelium. Our data also offer a rationale to explore the involvement of keratin mutations in early abortions during human pregnancies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号