首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ohta J  Kwon YH  Stipanuk MH 《Amino acids》2000,19(3-4):705-728
Summary. Hepatocytes were cultured for 3 days as spheroids (aggregates) or as monolayers in basal medium and in sulfur amino acid-supplemented media. Cultured hepatocytes had low levels of cysteine dioxygenase (CDO) activity and normal levels of γ-glutamylcysteine synthetase (GCS) and cysteinesulfinate decarboxylase (CSDC) activities compared to freshly isolated cells. CDO activity increased and GCS activity decreased in a dose-response manner in cells cultured in either methionine- or cysteine-supplemented media. CSDC activity was not significantly affected by methionine supplementation. Changes in CDO and GCS were associated with changes in cysteine catabolism to taurine plus sulfate and in synthesis of glutathione, respectively. These responses are similar to those observed in liver of intact rats fed diets supplemented with sulfur amino acids. A near-maximal response of CDO or GCS activity was observed when the medium contained 1.0 mmol/L of methionine plus cyst(e)ine. Changes in CDO and GCS activities did not appear to be mediated by changes in the intracellular glutathione concentration. Cultured hepatocytes offer a useful model for further studies of cysteine metabolism and its regulation in response to sulfur amino acid availability. Received June 2, 1999/Accepted September 16, 1999  相似文献   

2.
3.
Because hepatic cysteine dioxygenase (CDO) appears to play the major role in controlling cysteine catabolism in the intact rat, we characterized the effect of a lack of hepatic CDO on the regulation of cysteine and its metabolites at the whole body level. In mice with liver-specific deletion of CDO expression, hepatic and plasma cysteine levels increased. In addition, in mice with liver-specific deletion of CDO expression, the abundance of CDO and the proportion of CDO existing as the mature, more active isoform increased in extrahepatic tissues that express CDO (kidney, brown fat, and gonadal fat). CDO abundance was also increased in the pancreas, where most of the enzyme in both control and liver CDO-knockout mice was in the more active isoform. This upregulation of CDO concentration and active-site cofactor formation were not associated with an increase in CDO mRNA and thus presumably were due to a decrease in CDO degradation and an increase in CDO cofactor formation in association with increased exposure of extrahepatic tissues to cysteine in mice lacking hepatic CDO. Extrahepatic tissues of liver CDO-knockout mice also had higher levels of hypotaurine, consistent with increased metabolism of cysteine by the CDO/cysteinesulfinate decarboxylase pathway. The hepatic CDO-knockout mice were able to maintain normal levels of glutathione, taurine, and sulfate. The maintenance of taurine concentrations in liver as well as in extrahepatic tissues is particularly notable, since mice were fed a taurine-free diet and liver is normally considered the major site of taurine biosynthesis. This redundant capacity for regulation of cysteine concentrations and production of hypotaurine/taurine is additional support for the body's robust mechanisms for control of body cysteine levels and indicates that extrahepatic tissues are able to compensate for a lack of hepatic capacity for cysteine catabolism.  相似文献   

4.
Cysteine homeostasis is dependent on the regulation of cysteine dioxygenase (CDO) in response to changes in sulfur amino acid intake. CDO oxidizes cysteine to cysteinesulfinate, which is further metabolized to either taurine or to pyruvate plus sulfate. To gain insight into the physiological function of CDO and the consequence of a loss of CDO activity, mice carrying a null CDO allele (CDO(+/-) mice) were crossed to generate CDO(-/-), CDO(+/-), and CDO(+/+) mice. CDO(-/-) mice exhibited postnatal mortality, growth deficit, and connective tissue pathology. CDO(-/-) mice had extremely low taurine levels and somewhat elevated cysteine levels, consistent with the lack of flux through CDO-dependent catabolic pathways. However, plasma sulfate levels were slightly higher in CDO(-/-) mice than in CDO(+/-) or CDO(+/+) mice, and tissue levels of acid-labile sulfide were elevated, indicating an increase in cysteine catabolism by cysteine desulfhydration pathways. Null mice had lower hepatic cytochrome c oxidase levels, suggesting impaired electron transport capacity. Supplementation of mice with taurine improved survival of male pups but otherwise had little effect on the phenotype of the CDO(-/-) mice. H(2)S has been identified as an important gaseous signaling molecule as well as a toxicant, and pathology may be due to dysregulation of H(2)S production. Control of cysteine levels by regulation of CDO may be necessary to maintain low H(2)S/sulfane sulfur levels and facilitate the use of H(2)S as a signaling molecule.  相似文献   

5.
Kittens were adapted to a semipurified diet and then fed either a control diet that contained 0.1% taurine or a taurine-free diet for 6 weeks; at the end of the feeding period, kittens fed the taurine-free diet had plasma and liver taurine concentrations that were 0.38 and 0.15%, respectively, of those for control kittens. Hepatic cysteinesulfinate decarboxylase activity in taurine-deficient kittens was five-times the level in control kittens, but hepatic cysteine dioxygenase activity was not affected by the dietary treatment. Taurine-conjugated bile acids made up 98% of the total bile acids in the gall bladder of control kittens, but they accounted for only 44% of the total bile acids in the bile of taurine-depleted kittens; both the concentrations of taurine-conjugated bile acids and total bile acids were markedly decreased in taurine-deficient kittens. No effect of taurine depletion on the fractional excretion of taurine in the urine was observed. The kitten may have some mechanisms for adapting to a low-taurine diet, but these are clearly not sufficient to maintain tissue taurine levels in the absence of dietary taurine.  相似文献   

6.
Summary.  Hepatocyte preparations highly enriched in cells from either the periportal or the perivenous zone of the liver acinus were prepared using a digitonin/collagenase perfusion method. Five enzymes of cysteine metabolism were assayed in both periportal and perivenous preparations. The ratios of periportal to perivenous activity were 0.76, 0.60, 0.81, 1.62, and 1.01 for cysteine dioxygenase, cysteinesulfinate decarboxylase, γ-glutamylcysteine synthetase, cystathionase, and asparate (cysteinesulfinate) aminotransferase, respectively. Only cysteinesulfinate decarboxylase activity was significantly different between periportal and perivenous cells. In incubations with 2 mmol/L [35S]cysteine, total cysteine catabolism ([35S]taurine plus [35S]sulfate) between periportal and perivenous cells was not different, which is consistent with the observation of similar cysteine dioxygenase activity across the hepatic acinus. Consistent with the lower cysteinesulfinate decarboxylase activity in periportal cells, 16% of the total catabolism of [35S]cysteine in periportal cells resulted in taurine synthesis compared to 28% in perivenous cells. A lower rate of [35S]glutathione synthesis was observed in periportal cells compared to perivenous cells, but γ-glutamylcysteine synthetase activity was not significantly different between perivenous and periportal cells. Cysteinesulfnate decarboxylase can be added to the list of enzymes whose activities are markedly enriched in perivenous cells. Received January 15, 2002 Accepted February 4, 2002 Published online September 4, 2002 Acknowledgements This work was supported by the National Research Initiative Competitive Grants Program/United States Department of Agriculture Competitive Research Grant 02-37200-7583. Authors' address: Dr. Martha H. Stipanuk, Division of Nutritional Sciences, 227 Savage Hall, Cornell University, Ithaca, NY 14853-6301, U.S.A., E-mail: mhs6@cornell.edu  相似文献   

7.
The relationship between activities of enzymes involved in cysteine oxidation and the apparent conversion of cysteine to taurine in vivo were investigated in the rat and cat. Both hepatic cysteinesulfinate decarboxylase activity and the oxidation in vivo of cysteine to taurine were lower in the kitten than in the adult female rat and lower in the latter than in the young male rat. Our data support the hypothesis that cysteinesulfinate decarboxylase plays a rate-limiting role in taurine biosynthesis.  相似文献   

8.
Cysteine catabolism in mammals is dependent upon cysteine dioxygenase (CDO), an enzyme that adds molecular oxygen to the sulfur of cysteine, converting the thiol to a sulfinic acid known as cysteinesulfinic acid (3-sulfinoalanine). CDO is one of the most highly regulated metabolic enzymes responding to diet that is known. It undergoes up to 45-fold changes in concentration and up to 10-fold changes in catalytic efficiency. This provides a remarkable responsiveness of the cell to changes in sulfur amino acid availability: the ability to decrease CDO activity and conserve cysteine when cysteine is scarce and to rapidly increase CDO activity and catabolize cysteine to prevent cytotoxicity when cysteine supply is abundant. CDO in both liver and adipose tissues responds to changes in dietary intakes of protein and/or sulfur amino acids over a range that encompasses the requirement level, suggesting that cysteine homeostasis is very important to the living organism.  相似文献   

9.
Alterations in hepatic transsulfuration reactions were determined in rats treated with a glutathione-depleting agent. A dose of l-buthionine-(SR)-sulfoximine decreased hepatic methionine, cysteine, S-adenosylmethionine, and glutathione levels rapidly. Methionine adenosyltransferase and γ-glutamylcysteine lygase activities were decreased transiently, but significantly. The activity of cysteine dioxygenase was increased, resulting in an elevation of hypotaurine and taurine concentrations. Administration of phorone reduced hepatic glutathione and cysteine similarly, but S-adenosylmethionine concentrations were elevated for as long as 72 h. Hepatic methionine adenosyltransferase, cystathionine β-synthase, cystathionine γ-lyase, and γ-glutamylcysteine lygase activities were all increased but cysteine dioxygenase activity and taurine generation were markedly depressed. The results show that a decrease in hepatic GSH induces profound changes in sulfur amino acid metabolomics, which would subsequently influence various cellular processes. It is suggested that the change in hepatic levels of sulfur-containing substances and its physiological significance should be considered when a glutathione-depleting agent is utilized in biological experiments.  相似文献   

10.
Summary.  The effect of dietary sulfur amino acids on the taurine content of rat blood and tissues was investigated. Three types of diet were prepared for this study: a low-taurine diet (LTD), normal taurine diet (NTD; LTD + 0.5% Met), and high-taurine diet (HTD; LTD + 0.5% Met + 3% taurine). These diets had no differing effect on the growth of the rats. The concentration of taurine in the blood from the HTD- and NTD-fed rats was respectively 1,200% and 200% more than that from LTD-. In such rat tissues as the liver, the taurine content was significantly affected by dietary sulfur amino acids, resulting in a higher content with HTD and lower content with LTD. However, little or no effect on taurine content was apparent in the heart or eye. The activity for taurine uptake by the small intestine was not affected by dietary sulfur amino acids. The expression level of taurine transporter mRNA was altered only in the kidney under these dietary conditions: a higher expression level with LTD and lower expression level with HTD. Received January 8, 2002 Accepted January 18, 2002 Published online August 20, 2002 Authors' address: Dr. Hideo Satsu, Laboratory of Food Chemistry, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan, Fax: +81-3-5841-8026 E-mail: asatsu@mail.ecc.u-tokyo.ac.jp Abbreviations: HTD, high-taurine diet; NTD, normal taurine diet; LTD, low-taurine diet; TAUT, taurine transporter; CSA, cysteine sulfinate; CDO, cysteine dioxygenase; CSAD, cysteine sulfinate decarboxylase; PBS, phosphate-buffered saline; DIDS, 4,4′-diisothiocyanostilbene-2′,2′-disulfonic acid  相似文献   

11.
Cysteine dioxygenase (CDO, EC 1.13.11.20) is a non-heme mononuclear iron enzyme that oxidizes cysteine to cysteinesulfinate. CDO catalyzes the first step in the pathway of taurine synthesis from cysteine as well as the first step in the catabolism of cysteine to pyruvate and sulfate. Previous attempts to purify CDO have been associated with partial or total inactivation of CDO. In an effort to obtain highly purified and active CDO, recombinant rat CDO was heterologously expressed and purified, and its activity profile was characterized. The protein was expressed as a fusion protein bearing a polyhistidine tag to facilitate purification, a thioredoxin tag to improve solubility, and a factor Xa cleavage site to permit removal of the entire N-terminus, leaving only the 200 amino acids inherent to the native protein. A multi-step purification scheme was used to achieve >95% purity of CDO. The approximately 40.3 kDa full-length fusion protein was purified to homogeneity using a three-column scheme, the fusion tag was then removed by digestion with factor Xa, and a final column step was used to purify homogeneous approximately 23 kDa CDO. The purified CDO had high specific activity and kinetic parameters that were similar to those for non-purified rat liver homogenate, including a Vmax of approximately 1880 nmol min-1 mg-1 CDO (kcat=43 min-1) and a Km of 0.45 mM for L-cysteine. The expression and purification of CDO in a stable, highly active form has yielded significant insight into the kinetic properties of this unique thiol dioxygenase.  相似文献   

12.
The hepatic cysteine dioxygenase activity of rats was markedly decreased by the intraperitoneal administration of glucagon. The enzyme activity was also decreased by either dibutyryl cyclic AMP or theophylline. The prior administration of actinomycin D completely blocked the glucagon-mediated decrease of enzyme activity, while administrations of this inhibitor of protein synthesis after glucagon injection did not block the decrease of enzyme activity. A single administration of actinomycin D resulted in a slight increase of cysteine dioxygenase activity in the rat liver. On the other hand, the injection of cycloheximide resulted in a rapid decrease of the hepatic cysteine dioxygenase with a half-life of 2.5 h. The half-life of the enzyme in rat liver after glucagon administration was one hour. The administration of hydrocortisone or insulin had no effect on the glucagon-mediated decrease of cysteine dioxygenase of rat liver. The enzyme activity of alloxan diabetic rat liver was almost the same as that of the intact rat liver. The evidence obtained here suggests that enhancement of degradation or inactivation of cysteine dioxygenase is responsible for the glucagon-mediated decrease of the enzyme activity in rat liver.  相似文献   

13.
Rats were rendered diabetic with streptozotocin and supplemented or not with N-acetylcysteine (NAC) and taurine (TAU). The liver was examined for the quantity of glutathione (GSH), both total and oxidised (GSSG), by HPLC assay. Moreover, the liver expression of gamma-glutamyl-cysteine synthetase, cysteine dioxygenase and heme oxygenase 1 was evaluated. Streptozotocin-diabetic rats showed decreased levels of liver glutathione (GSH); dietary supplementation with the antioxidants NAC and TAU failed to restore liver GSH to the level of control rats. Gamma-glutamyl-cysteine synthetase expression was not reduced in the diabetic rats, so the low hepatic GSH level in the supplemented diabetic rats cannot be ascribed to decreased expression of the biosynthetic key enzyme. Moreover, the diabetic rats showed no evidence of increased expression of cysteine dioxygenase, which could have indicated that NAC-derived cysteine was consumed in metabolic pathways different from GSH synthesis. However, NAC+TAU treatment provided partial protection from glutathione oxidation in the liver of diabetic rats; moreover, the antioxidant treatment reduced the hepatic overexpression of heme oxygenase 1 (HO-1) mRNA which was detected in the diabetic rats. In conclusion, although NAC was not able to restore liver GSH levels, the antioxidant treatment restrained GSH oxidation and HO-1 overexpression, which are markers of cellular oxidative stress: diabetic rats probably exploit NAC as an antioxidant itself rather than as a GSH precursor.  相似文献   

14.
The physiological roles of taurine, a product of cysteine degradation and one of the most abundant amino acids in the body, remain elusive. Taurine deficiency leads to heart dysfunction, brain development abnormalities, retinal degradation, and other pathologies. The taurine synthetic pathway is proposed to be incomplete in astrocytes and neurons, and metabolic cooperation between these cell types is reportedly needed to complete the pathway. In this study, we analyzed taurine synthesis capability as reported by incorporation of radioactivity from [(35)S]cysteine into taurine, in primary murine astrocytes and neurons, and in several transformed cell lines (human (SH-SY5Y) and murine (N1E-115) neuroblastoma, human astrocytoma (U-87 MG and 1321 N1), and rat glioma (C6)). Extensive incorporation of radioactivity from [(35)S]cysteine into taurine was observed in rat glioma cells as well as in primary mouse astrocytes and neurons, establishing the presence of an intact taurine synthesis pathway in these cells. Interestingly, exposure of cells to cysteine or cysteamine resulted in elevated intracellular hypotaurine without a corresponding increase in taurine levels, suggesting that oxidation of hypotaurine limits taurine synthesis in cells. Consistent with its role as an organic osmolyte, taurine synthesis was stimulated under hypertonic conditions in neurons.  相似文献   

15.
The incidence of obesity is now at epidemic proportions and has resulted in the emergence of nonalcoholic fatty liver disease (NAFLD) as a common metabolic disorder that can lead to liver injury and cirrhosis. Excess sucrose and long-chain saturated fatty acids in the diet may play a role in the development and progression of NAFLD. One factor linking sucrose and saturated fatty acids to liver damage is dysfunction of the endoplasmic reticulum (ER). Although there is currently no proven, effective therapy for NAFLD, the amino sulfonic acid taurine is protective against various metabolic disturbances, including alcohol-induced liver damage. The present study was undertaken to evaluate the therapeutic potential of taurine to serve as a preventative treatment for diet-induced NAFLD. We report that taurine significantly mitigated palmitate-mediated caspase-3 activity, cell death, ER stress, and oxidative stress in H4IIE liver cells and primary hepatocytes. In rats fed a high-sucrose diet, dietary taurine supplementation significantly reduced hepatic lipid accumulation, liver injury, inflammation, plasma triglycerides, and insulin levels. The high-sucrose diet resulted in an induction of multiple components of the unfolded protein response in the liver consistent with ER stress, which was ameliorated by taurine supplementation. Treatment of mice with the ER stress-inducing agent tunicamycin resulted in liver injury, unfolded protein response induction, and hepatic lipid accumulation that was significantly ameliorated by dietary supplementation with taurine. Our results indicate that dietary supplementation with taurine offers significant potential as a preventative treatment for NAFLD.  相似文献   

16.
17.
Two hepatic enzymes, cysteine dioxygenase (CDO) and gamma-glutamylcysteine synthetase (GCS), play important regulatory roles in the response of cysteine metabolism to changes in dietary sulfur amino acid or protein levels. To examine the time-course of changes in CDO and GCS activities, CDO and GCS-catalytic or heavy subunit protein and mRNA levels, and cysteine and glutathione levels, we adapted rats to either a low protein (LP) or high protein (HP) diet, switched them to the opposite diet, and followed these parameters over 6 days. Hepatic CDO activity and amount, but not mRNA level, increased in response to higher protein intake; the t(1/2) of change for CDO activity or protein level was 22 h for rats switched from a LP to a HP diet and 8 h for rats switched from a HP to a LP diet, suggesting that the HP diet decreased turnover of CDO. Hepatic GCS activity, catalytic subunit amount and mRNA level decreased in response to a higher protein intake. GCS catalytic subunit level changed with a similar t(1/2) for both groups, but the change in GCS activity in rats switched from a LP diet to a HP diet was faster (approximately 16h) than for rats switched from a HP to a LP diet (approximately 74h). Hepatic cysteine and glutathione levels reached new steady states within 12 h (LP to HP) or 24 h (HP to LP). CDO activity appeared to be regulated at the level of protein, probably by diminished turnover of CDO in response to higher protein intake or cysteine level, whereas GCS activity appeared to be regulated both at the level of mRNA and activity state in response to the change in cysteine or protein availability. These findings support a role of cysteine concentration as a mediator of its own metabolism, favoring catabolism when cysteine is high and glutathione synthesis when cysteine is low.  相似文献   

18.
The amino acid taurine is essential for the function of skeletal muscle and administration is proposed as a treatment for Duchenne Muscular Dystrophy (DMD). Taurine homeostasis is dependent on multiple processes including absorption of taurine from food, endogenous synthesis from cysteine and reabsorption in the kidney. This study investigates the cause of reported taurine deficiency in the dystrophic mdx mouse model of DMD. Levels of metabolites (taurine, cysteine, cysteine sulfinate and hypotaurine) and proteins (taurine transporter [TauT], cysteine deoxygenase and cysteine sulfinate dehydrogenase) were quantified in juvenile control C57 and dystrophic mdx mice aged 18 days, 4 and 6 weeks. In C57 mice, taurine content was much higher in both liver and plasma at 18 days, and both cysteine and cysteine deoxygenase were increased. As taurine levels decreased in maturing C57 mice, there was increased transport (reabsorption) of taurine in the kidney and muscle. In mdx mice, taurine and cysteine levels were much lower in liver and plasma at 18 days, and in muscle cysteine was low at 18 days, whereas taurine was lower at 4: these changes were associated with perturbations in taurine transport in liver, kidney and muscle and altered metabolism in liver and kidney. These data suggest that the maintenance of adequate body taurine relies on sufficient dietary intake of taurine and cysteine availability and metabolism, as well as retention of taurine by the kidney. This research indicates dystrophin deficiency not only perturbs taurine metabolism in the muscle but also affects taurine metabolism in the liver and kidney, and supports targeting cysteine and taurine deficiency as a potential therapy for DMD.  相似文献   

19.
Intrauterine growth restriction (IUGR), in both animals and humans, has been linked to metabolic syndrome later in life. There has been recent evidence that perturbations in sulfur amino acid metabolism may be involved in this early programming phenomenon. Methionine is the precursor for cellular methylation reactions and for the synthesis of cysteine. It has been suggested that the mechanism behind the "fetal origins" of adult diseases may be epigenetic, involving DNA methylation. Because we have recently demonstrated the fetal origins phenomenon in Yucatan miniature swine, we hypothesized that sulfur amino acid metabolism is altered in IUGR piglets. In this study, metabolites and the activities of sulfur amino acid cycle enzymes were analyzed in liver samples of 3- to 5-day-old runt (IUGR: 0.85±0.13 kg) and large (1.36±0.21 kg) Yucatan miniature pig littermates (n=6 pairs). The IUGR piglets had significantly lower specific and total activities of betaine-homocysteine methyltransferase (BHMT) and cystathionine γ-lyase (CGL) than larger littermates (P<.05). Expression of CGL (but not BHMT) mRNA was also lower in IUGR piglets (P<.05). This low CGL reduced cysteine and taurine concentrations in IUGR pigs and led to an accumulation of hepatic cystathionine, with lower homocysteine concentrations. Methylation index and liver global DNA methylation were unaltered. Reduced prenatal growth in Yucatan miniature piglets impairs their remethylation capacity as well as their ability to remove cystathionine and synthesize cysteine and taurine, which could have important implications on long-term health outcomes of IUGR neonates.  相似文献   

20.
Earlier studies have shown that betaine administration may modulate the metabolism of sulfur amino acids in the liver. In this study, we determined the changes in the metabolomics of sulfur-containing substances induced by betaine in the kidney, the other major organ actively involved in the transsulfuration reactions. Male rats received betaine (1 %) in drinking water for 2 weeks before killing. Betaine intake did not affect betaine–homocysteine methyltransferase activity or its protein expression in the renal tissue. Expression of methionine synthase was also unchanged. However, methionine levels were increased significantly both in plasma and kidney. Renal methionine adenosyltransferase activity and S-adenosylmethionine concentrations were increased, but there were no changes in S-adenosylhomocysteine, homocysteine, cysteine levels or cystathionine β-synthase expression. γ-Glutamylcysteine synthetase expression or glutathione levels were not altered, but cysteine dioxygenase and taurine levels were decreased significantly. In contrast, betaine administration induced cysteine sulfinate decarboxylase and its metabolic product, hypotaurine. These results indicate that the metabolomics of sulfur-containing substances in the kidney is altered extensively by betaine, although the renal capacity for methionine synthesis is unresponsive to this substance unlike that of the liver. It is suggested that the increased methionine availability due to an enhancement of its uptake from plasma may account for the alterations in the metabolomics of sulfur-containing substances in the kidney. Further studies need to be conducted to clarify the physiological/pharmacological significance of these findings.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号