首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tendons with different in vivo functions are known to have different baseline biomechanics, biochemistry and ultrastructure, and these can be affected by changes in loading. However it is not know whether different tendon types respond in the same, or different ways, to changes in loading.This study performed in vitro un-loading (stress deprivation) in culture on ovine medial extensor tendons (MET, a positional tendon), and superficial and deep digital flexor tendons (SDFTs and DDFTs, with energy-storing and intermediate functions respectively), for 21 days (n = 14 each). Tensile strength and elastic modulus were then measured, followed by biochemical assays for sulphated glycosaminoglycan (sGAG) and hydroxyproline content. Histological inspection for cell morphology, cell density and collagen alignment was also performed.The positional tendon (MET) had a significant reduction (∼50%) in modulus and strength (P < 0.001) after in vitro stress-deprivation, however there were no significant effects on the energy-storing tendons (SDFT and DDFT). In contrast, sGAG was not affected in the MET, but was reduced in the SDFT and DDFT (P < 0.001). All tendons lost compactness and collagen organisation, and had reduced cell density, but these were more rapid in the MET than the SDFT and DDFT.These results suggest that different tendon types respond to identical stimuli in different ways, thus; (i) the results from an experiment in one tendon type may not be as applicable to other tendon types as previously thought, (ii) positional tendons may be particularly vulnerable to clinical stress-deprivation, and (iii) graft tendon source may affect the biological response to loading in ligament and tendon reconstruction.  相似文献   

2.
The aim of this study was to determine the characteristic differences in tendinocytes derived from tendons in the equine forelimb, superficial digital flexor tendon (SDFT), deep digital flexor tendon (DDFT) and common digital extensor tendon (CDET), in morphology, proliferation, collagen production ability and ability for synthesis of matrix metalloproteinases (MMPs). Significant differences were observed in cell number in vivo. The cellular number was largest in the SDFT and smallest in the CDET. The values of in vitro proliferation ratios and ability for synthesis of collagen and MMPs were largest in the SDFT and smallest in the CDET. Addition of TNFα to culture of all three types of tendinocytes increased the synthesis of both proMMP-9 (except CDET) and collagen and decreased proMMP-13 synthesis and had no effect on proMMP-2 synthesis. Flexor tendons in forelimbs (SDFT and DDFT) restore energy during locomotion and are more easily injured than are extensor tendons. This structural property would cause active ECM and MMPs synthesis. And CDET have very low turnover potential; in the small number of cells, low cellular proliferation, lower ability for synthesis of collagen and MMPs. The isolated tendinocytes provided much information on the characteristics and properties of tendons for the ECM turnover system and responsiveness of tendinocytes to complex inflammatory responses in tendinopathy.  相似文献   

3.
目的:研究2.87Mrad剂量γ射线照射后,肌腱组织形态学及羟脯氨酸含量的变化。方法:选取40根人新鲜上肢掌深屈肌腱,-80℃深低温冷冻6周,等分为二:实验组(A组),对照组(B组)。A组肌腱在干冰低温保存条件下行γ射线照射,检测肌腱最终吸收剂量为2.87Mrad。分别行HE、VG染色,在普通光镜和透射电镜下观察其组织形态学变化。用柱前衍生高效液相色谱检测肌腱胶原蛋白水解液中羟脯氨酸含量。结果:①形态学观察发现,同非照射组肌腱相比,照射组肌腱胶原纤维束间隙较大,纤维排列卷曲紊乱,并可见部分断裂。电镜下胶原纤维横纹模糊消失,腱细胞膜溶解消失,核崩解,细胞器减少。②在同等水解条件下,胶原蛋白水解液中照射组羟脯氨酸含量与非照射组相比,有显著差异(P0.05)。结论:2.87Mrad剂量γ射线照射可引起肌腱组织形态结构发生显著改变。在同等水解条件处理下,照射组肌腱胶原蛋白水解液中羟脯氨酸含量显著高于非照射组。  相似文献   

4.
The quality of the attachment of meat to bone is often reported to be insufficient by more and more poultry's consumers. This is particularly true for thigh meat in broilers. The aim of this study was to compare muscle to bone attachment (namely, tendons) from a biomechanical and a biochemical point of view in 50 standard (S) and 50 Label Rouge (LR) chickens. Carcasses weighted around 1.7 kg in the two groups. Two tendons were harvested and proceeded for passive stretch tests, prior to cooking or not, to determine main mechanical characteristics (maximum load, stiffness and longitudinal strain). Biochemical parameters such as dry matter percentage, total collagen content, collagen solubility and sulphated glycosaminoglycans (sGAGs) content were also determined. Results showed that biomechanical values differ largely between the two studied tendons. For a given tendon, the values were also different between the two groups of chickens mainly after cooking. The results clearly showed that, mainly after cooking, the mechanical resistance of tendon to stretch was better in LR than in S chickens. LR chickens were reported to have tendons with higher collagen and sGAGs contents associated with a lower collagen solubility. These differences may explain biomechanical differences observed for the two types of tendons and could be due to increased age and/or higher physical activity of LR chickens.  相似文献   

5.
Nonenzymatic glycation of connective tissue matrix proteins is a major contributor to the pathology of diabetes and aging. Previously the author and colleagues have shown that nonenzymatic glycation significantly enhances the matrix stability in the Achilles tendon (Reddy et al., 2002, Arch. Biochem. Biophys., 399, 174–180). The present study was designed to gain further insight into glycation-induced collagen cross-linking and its relationship to matrix stiffness in the rabbit Achilles tendon. The glycation process was initiated by incubating the Achilles tendons (n = 6) in phosphate-buffered saline containing ribose, whereas control tendons (n = 6) were incubated in phosphate-buffered saline without ribose. Eight weeks following glycation, the biomechanical attributes as well as the degree of collagen cross-linking were determined to examine the potential associations between matrix stiffness and molecular properties of collagen. Compared to nonglycated tendons, the glycated tendons showed increased maximum load, stress, strain, Young''s modulus of elasticity, and toughness indicating that glycation increases the matrix stiffness in the tendons. Glycation of tendons resulted in a considerable decrease in soluble collagen content and a significant increase in insoluble collagen and pentosidine. Analysis of potential associations between the matrix stiffness and degree of collagen cross-linking showed that both insoluble collagen and pentosidine exhibited a significant positive correlation with the maximum load, stress, and strain, Young''s modulus of elasticity, and toughness (r values ranging from .61 to .94) in the Achilles tendons. However, the soluble collagen content present in neutral salt buffer, acetate buffer, and acetate buffer containing pepsin showed an inverse relation with the various biomechanical attributes tested (r values ranging from .22 to .84) in the Achilles tendons. The results of the study demonstrate that glycation-induced collagen cross-linking is directly associated with the increased matrix stiffness and other mechanical attributes of the tendon.  相似文献   

6.
To explore the effects of growth retardation, caused by restricted protein intake, on collagen turnover in the whole skin, Sprague-Dawley rats (n = 20) were labelled with 18O2 and fed on either an adequate (18%) or a low (3%) lactalbumin diet. Skin biopsies were obtained at intervals during the following 6 months. Independent groups of animals (n = 186) were used to determine the size of the 0.5 M-acetic acid-soluble and -insoluble collagen pools in the entire skin of healthy and malnourished rats. Collagen was estimated by measurement of hydroxyproline. Soluble-collagen synthesis rates were equivalent to 99 +/- 8 mumol of hydroxyproline/day in healthy animals and 11 +/- 2 mumol/day in malnourished rats. Insoluble-collagen synthesis rates were 32 and 5 mumol of hydroxyproline/day in the healthy and protein-depleted rats respectively. The degradation of soluble collagen amounted to 37 +/- 8 and 6 +/- 2 mumol of hydroxyproline/day in the healthy and malnourished groups respectively. Efflux of collagen from the soluble collagen, defined as the sum of the rate of soluble collagen that is degraded plus that which matures into insoluble collagen, was 70 +/- 8 and 11 +/- 2 mumol of hydroxyproline/day in the healthy and malnourished groups respectively. Insoluble collagen was not degraded in either group. The fraction of soluble collagen leaving the pool that was converted into insoluble collagen was 0.46 in both diet groups. It is concluded that the turnover of soluble collagen is markedly decreased with malnutrition, but degradation and conversion into insoluble collagen account for the same proportions of efflux from the soluble-collagen pool as in rapidly growing rats.  相似文献   

7.
Although inflammatory cells and their products are involved in various pathological processes, a possible role in tendon dysfunction has never been convincingly confirmed and extensively investigated. The goal of this study was to determine whether or not an acute inflammatory process deprived of mechanical trauma can induce nonspecific damages to intact collagen fibers. To induce leukocyte accumulation, carrageenan was injected into rat Achilles tendons. We first tested the effect of leukocyte recruitment on the concentrations or activities of matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases. Second, we analyzed at the biochemical, histological, and biomechanical levels the impact of leukocyte invasion on tendons. Finally, collagen bundles isolated from rat-tail tendons were exposed in vitro to mechanical stress and/or inflammatory cells to determine if mechanical loading could protect tendons from the leukocyte proteolytic activity. Carrageenan-induced leukocyte accumulation was associated with an increased matrix metalloproteinase activity and a decreased content of tissue inhibitors of matrix metalloproteinases. However, hydroxyproline content and load to failure did not change significantly in these tendons. Interestingly, mechanical stress, when applied in vitro, protected collagen bundles from inflammatory cell-induced deterioration. Together, our results suggest that acute inflammation does not induce damages to intact and mechanically stressed collagen fibers. This protective effect would not rely on increased tissue inhibitors of matrix metalloproteinases content but would rather be conferred to the intrinsic resistance of mechanically loaded collagen fibers to proteolytic degradation.  相似文献   

8.
Connective tissue susceptibility to nonenzymatic glycation was examined following 0, 2, 4, 6, 8, and 10 weeks of incubating the rabbit Achilles tendon in phosphate-buffered saline containing ribose (glycated). The biomechanical integrity of the glycated tendons was then compared to control tendons incubated in phosphate-buffered saline (non-glycated) at each time interval, while the biochemical stability of both groups of tendons was determined by examining collagen extractability and the formation of pentosidine at 8 weeks. Whereas there were no significant biomechanical differences between control and glycated tendons at 0- and 2-week intervals (P > 0.05), moderately significant increases in maximum load, energy to yield, and toughness of glycated tendons were observed at 4 weeks. Beyond 4 weeks of incubation, the differences between glycated and non-glycated tendons became highly significant, as glycated tendons withstood more load and tensile stress (P < 0.01 for each variable), attained significantly higher modulus of elasticity (P < 0.01), absorbed more energy (P < 0.01), and became tougher (P < 0.01) than controls. These differences in the biomechanical indices of the effects of glycation were stable between the 6th and 10th week of glycation. The maximum increases in the biomechanical measurements as a result of glycation were 29% for maximum load, 125% for stress, 19% for strain, 106% for Young's modulus of elasticity, 14% for energy to yield, and 57% for toughness. Biochemical analysis showed a 61% reduction in the extractability of neutral salt-soluble collagen, a 48% decrease in acid-soluble collagen, and a 29% decline in pepsin-soluble collagen in glycated tendons (P < 0.01). In contrast, there was a 28% increase in the amount of insoluble collagen and significantly higher amounts of pentosidine (P < 0.01) in glycated tendons. Collectively, these biomechanical and biochemical results suggest that nonenzymatic glycation may explain the altered stability of connective tissue matrix induced by the processes of diabetes and aging.  相似文献   

9.
Growth, loading, and mobilization lead to changes in tendon structure. Recent studies have shown that proteoglycans (PGs) regulate the organization of collagen fibrils, the main structural components of tendons. We hypothesized that moderate exercise alters PG synthesis in the avian gastrocnemius tendon. To test our hypothesis we compared the PG content in gastrocnemius tendons from control 6.5-week-old chickens with that in tendons from 6.5-week-old chickens that underwent exercise. Our results show high levels and a wide variety of glycosaminoglycans (GAGs) in 6.5-week-old tendons. Chondroitin-4-sulfate disaccharide was the major GAG disaccharide in control and exercised 6.5-week-old gastrocnemius tendons. Exercise led to an increase in the size of the tendons, the content of hyaluronic acid, and the level of decorin. High levels of keratan sulfate (KS) were found in the lower halves of gastrocnemius tendons, although the amount of KS decreased with exercise. This corresponded well with lower content of aggrecan in the lower halves of exercised tendons. In conclusion, our data support the hypothesis that exercise alters the content of PGs in chicken tendons.  相似文献   

10.
Aging process is characterized by a decline in the organism functionality, especially in the decrease of muscle function, which also affects tendons. On the other hand, the resistance training (RT) has been used as an important tool to increase muscle and tendineous function during aging. Thus, this study aim has been to verify the effects of RT on the biomechanical properties of three different aged rat tendons. For this purpose, 20 wistar rats have been divided into four groups (5 rats per group): young sedentary (YS), trained (YT), old sedentary (OS) and old trained (OT). The RT has been performed through climb protocol for 12 weeks. After RT, the calcaneal tendon (CT), superficial flexor tendon (SFT) and deep flexor tendon (DFT) have been used for analysis. The results indicate that the RT in aged rats can prevent tendon function decrease (p<0.05). Although RT has prompted significant biomechanical changes in trained aged rats, there has been no increase in cross-section area or tendon stiffness reduction. Thus, the OT group showed better biomechanical responses when compared with OS (p<0.05). Therefore, RT can be used as an excellent strategy for increasing in tendon capacity during aging.  相似文献   

11.
12.
Rodent models are commonly used to investigate tendon healing, with the biomechanical and structural properties of the healed tendons being important outcome measures. Tendon storage for later testing becomes necessary when performing large experiments with multiple time-points. However, it is unclear whether freezing rodent tendons affects their material properties. Thus the aim of this study was to determine whether freezing rat Achilles tendons affects their biomechanical or structural properties. Tendons were frozen at either −20 °C or −80 °C directly after harvesting, or tested when freshly harvested. Groups of tendons were subjected to several freeze-thaw cycles (1, 2, and 5) within 3 months, or frozen for 9 months, after which the tendons were subjected to biomechanical testing. Additionally, fresh and thawed tendons were compared morphologically, histologically and by transmission electron microscopy. No major differences in biomechanical properties were found between fresh tendons and those frozen once or twice at −20 °C or −80 °C. However, deterioration of tendon properties was found for 5-cycle groups and both long-term freezing groups; after 9 months of freezing at −80 °C the tear resistance of the tendon was reduced from 125.4 ± 16.4N to 74.3 ± 18.4N (p = 0.0132). Moreover, tendons stored under these conditions showed major disruption of collagen fibrils when examined by transmission electron microscopy. When examined histologically, fresh samples exhibited the best cellularity and proteoglycan content of the enthesis. These properties were preserved better after freezing at −80 °C than after freezing at −20 °C, which resulted in markedly smaller chondrocytes and less proteoglycan content. Overall, the best preservation of histological integrity was seen with tendons frozen once at −80 °C. In conclusion, rat Achilles tendons can be frozen once or twice for short periods of time (up to 3 months) at −20 °C or −80 °C for later testing. However, freezing for 9 months at either −20 °C or −80 °C leads to deterioration of certain parameters.  相似文献   

13.
Mechanical stress is an important modulator of connective tissue repair. However, the effects on tendon healing are very poorly defined, preventing optimal use of mechanical stress. We hypothesized that early voluntary exercise initially retards tendon repair but results in a faster recovery rate at longer term. Male Wistar rats were injured by a collagenase injection in the Achilles tendon, and exercise was voluntarily performed on a running wheel. We observed the persistent presence of neutrophils in injured tendons of rats that began exercise immediately after the trauma [injured + early exercise (Inj+EEx)]. Early exercise also increased the concentration of ED1(+) macrophages in injured tendons after 3 and 7 days compared with ambulatory injured rats (Inj). Similar results were obtained with the subset of ED2(+) macrophages in the tendon core 3 days after the collagenase injection. Furthermore, collagen content returned to normal values more rapidly in the Inj+EEx tendons than in the Inj group, but this was not associated with an increase in cell proliferation. Surprisingly, Inj+EEx tendons roughly displayed lower stiffness and force at rupture point relative to Inj tendons at day 28. Injured tendons of rats that began exercise only from day 7 had better mechanical properties than those of early-exercised rats 28 days postinjury. We speculate that the persistence of the inflammatory response and undue mechanical loading in the Inj+EEx tendons led to fibrosis and a loss of tendon function.  相似文献   

14.
Tendons in different locations function in unique, and at times complex, invivo loading environments. Specifically, some tendons are subjected to compression, shear and/or torsion in addition to tensile loading, which play an important role in regulating tendon properties. To date, there have been few studies evaluating tendon mechanics when loaded in compression and shear, which are particularly relevant for understanding tendon regions that experience such non-tensile loading during normal physiologic function. The objective of this study was to evaluate mechanical responses of different regions of bovine deep digital flexor tendons (DDFT) under compressive and shear loading, and correlate structural characteristics to functional mechanical properties. Distal and proximal regions of DDFT were evaluated in a custom-made loading system via three-step incremental stress-relaxation tests. A two-relaxation-time solid linear model was used to describe the viscoelastic response. Results showed large differences in the elastic behavior between regions: distal region stresses were 4–5 times larger than proximal region stresses during compression and 2–3 times larger during shear. Surprisingly, the viscous (i.e., relaxation) behavior was not different between regions for either compression or shear. Histological analysis showed that collagen and proteoglycan in the distal region distributed differently from the proximal region. Results demonstrate mechanical differences between two regions of DDFT under compression and shear loading, which are attributed to variations of composition and microstructural organization. These findings deepen our understanding of structure–function relationships of tendon, particularly for tissues adapted to supporting combinations of tension, compression, and shear in physiological loading environments.  相似文献   

15.
The ultrastructural morphometry of collagen fibril populations in 24 calcaneal tendons obtained from 12 Fischer 344 rats were studied to elucidate matrical changes induced by food restriction and/or endurance exercise. Rats were randomly assigned to four equal groups: ad libitum control (AC), ad libitum exercise (AE), restricted diet control (RC) and restricted diet exercise (RE) groups. Beginning from 6 weeks of age, animals in the two food restriction groups were fed 60% of the mean food consumption of ad libitum fed rats. Then, starting from 6-7 months of age, the rats in the two exercise groups performed 40-50 min of treadmill running at 1.2-1.6 miles h-1 every day for a total of 10 weeks. Endurance training did not significantly alter body weight, but food restriction with or without exercise resulted in a significant loss of body weight. In ad libitum fed controls, food restriction alone did not significantly alter the mean collagen fibril CSA, but predisposed a preponderance of small-sized collagen fibrils. Endurance training per se induced a significant (32%) increase in mean fibril CSA (P less than 0.05), but this adaptive response to exercise was prevented by food restriction, as indicated by a 33% decline in fibril CSA (P less than 0.05). These findings demonstrate that dietary restriction modifies the adaptation of tendon collagen morphometry in response to endurance training, and that weight loss is better achieved with food restriction than endurance exercise.  相似文献   

16.
Tendon remodeling occurs in response to changes in loading and mobilization. Though the normal mechanical function depends on precise alignment of collagen fibrils, it is proteoglycans that regulate collagen fibrillogenesis and thus, indirectly, tendon function. In this paper we discuss the basic biochemical structure of several members of two proteoglycans families. Decorin, biglycan, fibromodulin and lumican, all members of the small leucine-rich proteoglycans family, bind to collagen fibrils and are active participants in fibrillogenesis. Aggrecan and versican, two members of large modular proteoglycans or lecticans, and their partner hyaluronan likely provide tendon tissues with a high capacity to resist high compressive and tensile forces associated with loading and mobilization. We present data from our laboratory showing that proteoglycans and glycosaminoglycan content increases not only with growth but also with loading of young avian gastrocnemius tendons. Specifically, an increase in the content of keratan sulfate, chondroitin sulfate and hyaluronan was observed. Moderate exercise for several weeks led not only to a further increase in total proteoglycans content but also to qualitative changes in proteoglycan make up.  相似文献   

17.
The worldwide trajectory of increasing obesity rates is a major health problem precipitating a rise in the prevalence of a variety of co-morbidities and chronic diseases. Tendinopathy, in weight and non-weight bearing tendons, in individuals with overweight or obesity has been linked to metabolic dysfunction resulting from obesity. Exercise and dietary fibre supplementation (DFS) are common countermeasures to combat obesity and therefore it seems reasonable to assume that they might protect tendons from structural and mechanical damage in a diet-induced obesity (DIO) model. The purpose of this study was to determine the effects of a DIO, DIO combined with moderate exercise, DIO combined with DFS (prebiotic oligofructose), and DIO combined with moderate exercise and DFS on the mechanical and biochemical properties of the rat tail tendon. Twenty-four male Sprague-Dawley rats, fed a high-fat/high-sucrose diet were randomized into a sedentary, a moderate exercise, a DFS, or a moderate exercise combined with DFS group for 12 weeks. Additionally, six lean age-matched animals were included as a sedentary control group. DIO in combination with exercise alone and with exercise and DFS reduced the Young’s Modulus but not the collagen content of the rat tail tendons compared to lean control animals. However, no differences in the mechanical and biochemical properties of the rat tail tendon were detected between the DIO and the lean control group, suggesting that DIO by itself did not impact the tail tendon. It seems that longer DIO exposure periods may be needed to develop overt differences in our DIO model.  相似文献   

18.
The interactions of small leucine-rich proteoglycans (SLRPs) with collagen fibrils, their association with water, and their role in fibrillogenesis suggests that SLRPs may play an important role in tendon mechanics. Some studies have assessed the role of SLRPs in the mechanical response of the tendon, but the relationships between sophisticated mechanics, assembly of collagen, and SLRPs have not been well characterized. Decorin content was varied in a dose dependent manner using decorin null, decorin heterozygote, and wild type mice. Quantitative measures of mechanical (tension and compression), compositional, and structural changes of the mouse patellar tendon were evaluated. Viscoelastic, tensile dynamic modulus was increased in the decorin heterozygous tendons compared to wild type. These tendons also had a significant decrease in total collagen and no structural changes compared to wild type. Decorin null tendons did not have any mechanical changes; however, a significant decrease in the average fibril diameter was found. No differences were seen between genotypes in elastic or compressive properties, and all tendons demonstrated viscoelastic mechanical dependence on strain rate and frequency. These results suggest that decorin, a member of the SLRP family, plays a role in tendon viscoelasticity that cannot be completely explained by its role in collagen fibrillogenesis. In addition, reductions in decorin do not cause large changes in indentation compressive properties, suggesting that other factors contribute to these properties. Understanding these relationships may ultimately help guide development of tissue engineered constructs or treatment modalities.  相似文献   

19.
Repaired Achilles tendons typically take weeks before they are strong enough to handle physiological loads. Gene therapy is a promising treatment for Achilles tendon defects. The aim of the present study was to evaluate the histological/biomechanical effects of Transforming growth factor-β1 (TGF-β1) and vascular endothelial growth factor 165 (VEGF165) gene transfer on Achilles tendon healing in rabbits. Bone Marrow-Derived Mesenchymal Stem Cells (BMSCs) were transduced with adenovirus carrying human TGF-β1 cDNA (Ad-TGF-β1), human VEGF165 cDNA (Ad-VEGF165), or both (PIRES-TGF-β1/VEGF165) Viruses, no cDNA (Ad-GFP), and the BMSCs without gene transfer and the intact tendon were used as control. BMSCs were surgically implanted into the experimentally injured Achilles tendons. TGF-β1 distribution, cellularity, nuclear aspect ratio, nuclear orientation angle, vascular number, collagen synthesis, and biomechanical features were measured at 1, 2, 4, and 8 weeks after surgery. The TGF-β1 and TGFβ1/VEGF165 co-expression groups exhibited improved parameters compared with other groups, while the VEGF165 expression group had a negative impact. In the co-expression group, the angiogenesis effects of VEGF165 were diminished by TGF-β1, while the collagen synthesis effects of TGF-β1 were unaltered by VEGF165. Thus treatment with TGF-β1 cDNA-transduced BMSCs grafts is a promising therapy for acceleration and improvement of tendon healing, leading to quicker recovery and improved biomechanical properties of Achilles tendons.  相似文献   

20.
Chronic consumption of acetaminophen (APAP) during exercise training leads to a reduction in tendon stiffness and modulus compared with a placebo. We explored whether this effect could be due to a reduction in tendon collagen content or cross-linking. Ten-week-old male Wistar rats (n = 50) were divided into placebo or APAP groups and into sedentary or treadmill-exercised groups. APAP (200 mg/kg) or saline was administered once daily by oral gavage. Rats in the exercise groups ran on a treadmill 5 days per week for 8 wk with progression to 60 min per day, 20 m/min, and 8° incline. After 8 wk, lyophilized Achilles tendon samples were assayed for the collagen-specific amino acid hydroxyproline and cross-linking [hydroxylyslpyridinoline (HP)] content by high-performance liquid chromatrography. Collagen content was not influenced by exercise or APAP (P > 0.05). Compared with placebo, tendon water content was 7% (P = 0.006, main effect) lower in animals consuming APAP (placebo: 54.79 ± 0.8%, APAP: 50.89 ± 1.2%). HP in the Achilles tendon was 36% greater (sedentary: 141 ± 15, exercise: 204 ± 26 mmol/mol collagen) in the exercise-trained rats independent of drug treatment (P = 0.020, main effect). Independent of exercise, HP content was 33% lower (P = 0.032, main effect) in the animals consuming APAP (placebo: 195 ± 21, APAP: 140 ± 19 mmol/mol collagen). Our data suggests that chronic consumption of APAP results in a reduction in collagen cross-linking and a loss of tissue water independent of chronic exercise. This reduction in cross-linking and water content could contribute to the decrease in tendon stiffness noted in humans chronically consuming APAP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号