首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of dietary lipids during childhood is evident, as they are necessary for correct growth and development of the newborn. When breastfeeding is not possible, infant formulas are designed to mimic human milk as much as possible to fulfill infant’s requirements. However, the composition of these dairy products is relatively constant, while human milk is not a uniform bio-fluid and changes according to the requirements of the baby. In this study, breast milk samples were donated by 24 Spanish mothers in different lactation stages and different infant formulas were purchased in supermarkets and pharmacies. Gas chromatography coupled to flame ionization detection was used for the fatty acid determination. Compared to breast milk, first-stage formulas are apparently very similar in composition; however, no major differences were observed in the fatty acid profiles between formulas of different lactation stages. The Galician women breast milk has a fatty acid profile rich in oleic acid, linoleic acid, arachidonic acid, and docosahexaenoic acid. When comparing human milk with formulas, it becomes evident that the manufacturers tend to enrich the formulas with essential fatty acids (especially with α-linolenic acid), but arachidonic and docosahexaenoic acid levels are lower than in breast milk. Additionally, the obtained results demonstrated that after 1 year of lactation, human milk is still a good source of energy, essential fatty acids, and long-chain polyunsaturated fatty acids for the baby.  相似文献   

2.
The protein content of breast milk provides a foundation for estimating protein requirements of infants. Because it serves as a guideline for regulatory agencies issuing regulations for infant formula composition, it is critical that information on the protein content of breast milk is reliable. We have therefore carried out a meta-analysis of the protein and amino acid contents of breast milk and how they evolve during lactation. As several bioactive proteins are not completely digested in the infant and therefore represent “non-utilizable” protein, we evaluated the quantity, mechanism of action and digestive fate of several major breast milk proteins. A better knowledge of the development of the protein contents of breast milk and to what extent protein utilization changes with age of the infant will help improve understanding of protein needs in infancy. It is also essential when designing the composition of infant formulas, particularly when the formula uses a “staging” approach in which the composition of the formula is modified in stages to reflect changes in breast milk and changing requirements as the infant ages.  相似文献   

3.
Instrumental neutron activation analysis (INAA) and protoninduced X-ray emission (PIXE) analysis have been employed to determine the concentration of 13 elements in human breast milk, various infant formulas, and locally produced cereals from Nigeria, as well as from various infant formulas and natural cow and goat milk available in the UK. The study shows that if the locally produced cereal is to be used on a regular basis for babies in Nigeria, then their diet must be supplemented with essential trace elements. Furthermore, parents should be discouraged from giving their infants cow and goat milk because of the high concentration of major elements compared to human breast milk.  相似文献   

4.
Human milk is the optimal mode of infant feeding for the first several months of life, and infant formulas serve as an alternative when breast-feeding is not possible. Milk proteins have a balanced amino acid composition and some of them provide beneficial bioactivities in their intact forms. They also encrypt a variety of bioactive peptides, possibly contributing to infant health and growth. However, there is limited knowledge of how milk proteins are digested in the gastrointestinal tract and bioactive peptides are released in infants. A peptidomic analysis was conducted to identify peptides released from milk proteins in human milk and infant formula, using a suckling rat pup model. Among the major milk proteins targeted, α-lactalbumin and β-casein in human milk, and β-lactoglobulin and β-casein in infant formula were the main sources of peptides, and these peptides covered large parts of the parental proteins’ sequences. Release of peptides was concentrated to specific regions, such as residues 70–92 of β-casein in human milk, residues 39–55 of β-lactoglobulin in infant formula, and residues 57–96 and 145–161 of β-CN in infant formula, where resistance to gastrointestinal digestion was suggested. In the context of bioactive peptides, release of fragments containing known bioactive peptides was confirmed, such as β-CN-derived opioid and antihypertensive peptides. It is therefore likely that these fragments are of biological significance in neonatal health and development.  相似文献   

5.
6.
Human breast milk is rich in nutrients, hormones, growth factors and immunoactive molecules, which influence the growth, development and immune status of the newborn infant. Although several of these factors are also present in bovine milk, the greater susceptibility of the formula-fed infant to infection and disease and the development of allergy is often attributed to the reduced level of protective factors in milk formulas. Nevertheless, modifying manufacturing processes may preserve the biological activity of some bioactive molecules in end products. Transforming growth factor (TGF)-beta is one such molecule. TGF-beta is a polypeptide, which has been described in both human and bovine milk. It is implicated in many processes, including epithelial cell growth and differentiation, development, carcinogenesis and immune regulation. The present article discusses the biological activity of TGF-beta2 that has been preserved and activated in a cow's milk-based product. More specifically, it addresses possible mechanisms of action in the intestinal lumen and speculates on how milk products containing naturally occurring TGF-beta2 could be exploited in functional foods for the infant or as therapies for specific intestinal diseases.  相似文献   

7.
Differences in zinc bioavailability among milk and formulas may be attributed to binding of zinc to various ligands. We determined the distribution of zinc and protein at different pHs and zinc and calcium concentrations. We used radiolabelled cow's milk, human milk, whey-predominant (WPF) and casein-predominant (CPF) infant formula. Lowering the pH changed zinc and protein distribution: zinc shifted from pellet (casein) to whey in cow's milk, from fat to whey in human milk and from fat and pellet to whey in formulas. Protein shifted from whey to pellet in human milk and from whey and pellet to fat in formulas. Increasing zinc and calcium concentrations shifted protein and zinc from pellet to whey for cow's milk and from whey and pellet to fat for the formulas. Protein distribution was not affected by calcium or zinc addition in human milk or CPF, while zinc shifted from whey to fat in human milk and from fat and pellet to whey in CPF. Zinc and calcium binding to isolated bovine or human casein increased with pH. At 500 mg/L of zinc, bovine casein bound 32.0 +/- 1.8 and human casein 10.0 +/- 0.9 mg zinc/g protein. At 500 mg/L of calcium, calcium was preferentially bound over zinc. Adding calcium and zinc resulted in 32.0 +/- 1.8 mg zinc/g bound to bovine casein and 17.0 +/- 0.8 mg zinc/g to human casein, while calcium binding was low. Suckling rat pups dosed with 65Zn labelled infant diets were killed and individual tissues were gamma counted. Lower zinc bioavailability was found for bovine milk at pH = 4.0 (%65Zn in liver = 18.7+1.4) when compared to WPF (22.8 +/- 1.6) or human milk (26.9 +/- 0.8). Lowering the pH further decreased zinc bioavailability from human milk, but not from cow's milk or WPF. Knowledge of the compounds binding minerals and trace elements in infant formulas is essential for optimizing zinc bioavailability.  相似文献   

8.
Aims:  To determine the survival and growth characteristics of Cronobacter species ( Enterobacter sakazakii ) in infant wheat-based formulas reconstituted with water, milk, grape juice or apple juice during storage.
Methods and Results:  Infant wheat-based formulas were reconstituted with water, ultra high temperature milk, pasteurized grape or apple juices. The reconstituted formulas were inoculated with Cronobacter sakazakii and Cronobacter muytjensii and stored at 4, 25 or 37°C for up to 24 h. At 25 and 37°C, Cronobacter grew more (>5 log10) in formulas reconstituted with water or milk than those prepared with grape or apple juices ( c. 2–3 log10). The organism persisted, but did not grow in any formulas stored at 4°C. Formulas reconstituted with water and milk decreased from pH 6·0 to 4·8–5·0 after 24 h, whereas the pH of the formulas reconstituted with fruit juices remained at their initial pH values, c. pH 4·8–5·0.
Conclusions:  Cronobacter sakazakii and C. muytjensii can grow in reconstituted wheat-based formulas. If not immediately consumed, these formulas should be stored at refrigeration temperatures to reduce the risk of infant infection.
Significance and Impact of the Study:  The results of this study will be of use to regulatory agencies and infant formula producers to recommend storage conditions that reduce the growth of Cronobacter in infant wheat-based formulas.  相似文献   

9.
Background The literature regarding milk composition in non‐human primates collected across offspring development is limited. We assayed milk samples from bonnet macaque (Macaca radiata) mothers as part of studies characterizing development of this species. Methods Milk was obtained when possible longitudinally from seven lactating bonnet macaque mothers. Samples were frozen until analysis. Individual samples were analyzed to determine the concentrations of electrolytes including sodium, potassium, calcium, chloride, and magnesium, as well as urea, protein, lipids, glucose, and lactose. Results A trend for increased lipids as well as protein percentage was noted with increasing infant age. Chloride and calcium showed an increase with age, whereas other electrolytes remained relatively stable across development. Conclusions The composition of the milk of this particular macaque species was similar to other Old World primates as well as humans. These data add to the limited information available on milk constituents among mammals.  相似文献   

10.
In the past few years, there has been an upsurge of interest in aluminum (Al) and human health. The well-recognized manifestations of systemic Al toxicity include fracturing osteomalacia, dialysis encephalopathy, and microcytic hypochromic anemia. The role of Al in causing childhood diseases is also becoming clearer, but the safe plasma level still remains to be determined in newborns, especially in premature newborns, implying that it should be kept low. Premature infants receiving iv fluid therapy show evidence of Al loading. Additionally, the infant-feeding mixtures, especially the soy-based infant formulas, tested may be a significant additional source of Al in the diet of infants with low birthweights, and in infants and in young children with impaired renal function. Careful clinical and biochemical monitoring is warranted to determine whether it will be necessary to eliminate Al contamination of both oral and parenteral preparations used in infants and children who may be at risk for Al intoxication. In this present study, the Al content of infant feeds was measured by electrothermal atomic absorption spectrophotometry, and also compared with those of breast milk, cow’s milk, milk powder, and some starches that are commonly used for preparation of infant feed in Turkey. Our results show that Al content of commercially available powdered infant formulas, most of which are imported from Europe, ranged from 1.211 to 10.925 μg/g. The mean value was higher than that of breast milk. It was also found that the Al content of cow’s milk in various containers was higher than that of breast milk. The highest Al level among cow’s milk samples was in the aluminized carton box. In the other products tested, such as milk powder, the starches contained Al at various levels. Among these, milk powder and rice flour contained a high level of Al.  相似文献   

11.
A solid-phase immunoassay was used to detect xanthine oxidase in fractions from bovine mammary glands after electrophoresis in polyacrylamide gels containing sodium dodecyl sulphate. Under these conditions the major proportion of xanthine oxidase in either mammary tissue or mild could be recovered as a protein of mol.wt. 150 000. In mammary tissue approx. 80% of the enzyme was in a soluble form and the remainder was accounted for in either 'mitochondrial' or microsomal fractions after tissue homogenization and fractionation. Affinity chromatography of either detergent-solubilized microsomal membranes or postmicrosomal supernatants on immobilized antibody to xanthine oxidase yielded a single protein that cross-reacted with antibody to the enzyme. In milk presumptive degradation products of the enzyme were detected in minor quantities with mol.wts. of 43 000 in the whey fraction and 90 000 in fat-globule membrane. Only the undegraded enzyme was present in the skim-milk membrane fraction. Xanthine oxidase is therefore synthesized and secreted as a protein with a monomeric mol.wt. of 150 000 and is not subjected to extensive proteolytic degradation during the storage of milk in mammary alveoli. The significance of the results is discussed in relation to the overall protein composition of the membranes of milk-fat globules and skim milk.  相似文献   

12.
The bioavailability of trace elements in infant formulas is affected by different physiological and dietetic factors. In vitro methods based on element dialyzability have been proposed to estimate the bioavailability. Infant formulas of the same type but from different manufacturers can differ in the salt used for supplementation and in the contents of other components that can affect mineral bioavailability. The aim of our study is to estimate the dialyzability of iron, zinc, and copper of formulas marketed in Spain, in order to detect possible differences in formulas of the same type coming from different manufacturers. At the same time, the effects of the type of formula, the composition of the protein fraction, and the mineral content on the element dialyzability are also studied. Differences are found in the dialysis percentages of the elements studied in formulas of the same type but from different manufacturers. The formulas giving the highest dialysis percentages for the three considered elements are the hypoallergenic ones based on protein hydrolysates. No differences are observed in formulas having whey or casein as the main protein fraction. Significant correlations are obtained between the element contents and the dialyzability of the elements.  相似文献   

13.
A survey of the databanks Medline and Web of science identified studies dealing with maternal and infant iodine nutrition during breast feeding. The iodine concentration of human milk varies widely due to maternal iodine intake. Mean breast milk iodine concentrations are reported as ranging from 5.4 to 2170 μg/L (median 62 μg/L) in worldwide studies. In the few studies that compared length of lactation, gestation length, and parity number, these factors did not significantly affect milk-iodine concentrations. In studies of maternal iodine deficiency, untreated goiter had no impact on breast milk iodine when compared with controls. Iodine in human milk responds quickly to dietary iodine intake, either supplemented or consumed in natural foods. Easily absorbable iodine from foods, supplemental sources, iodine-based medication or iodine-based antiseptic solutions used during parturition, is taken up by the maternal thyroid and mammary glands through the Na+/I symporter system. This transmembrane carrier protein transports iodine against a high concentration gradient. Hormonal iodine in breast milk occurs mainly as T-4, but depending on maternal iodine intake, high concentrations of the inorganic form (iodide) are found. In less developed countries, where natural-food-iodine intake is low, adequate maternal iodine nutritional status depends exclusively on enforcement of food iodination. In industrialized countries, maternal iodine intake has increased as a function of increasing consumption of dairy products. The human infant is sensitive to maternal iodine nutrition during fetal development and later during breast feeding. Environmental factors, not directly related to maternal iodine intake, such as intake of selenium and organochlorine pollutants, can affect thyroid hormone homeostasis in breast-fed infants. In spite of low iodine concentrations found in milk of mothers consuming low-iodine natural foods, long lasting or even life-lasting benefits to the breast-fed infant are demonstrable.  相似文献   

14.
Summary Aside from its role as one of the limiting essential amino acids in protein metabolism, tryptophan (TRP) serves as precursor for the synthesis of the neurotransmitters serotonin and tryptamine as well as for the synthesis of the antipellagra vitamin nicotinic acid and the epiphyseal hormone melatonin.By involvement in so manifold pathways, TRP and its metabolites regulate neurobehavioral effects such as appetite, sleeping-waking-rhythm and pain perception. TRP is the only amino acid which binds to serum albumin to a high degree. Its transport through cell membranes is competetrvely inhibited by large neutral amino acids (NAA). The TRP/NAA ratio in plasma is essential for the TRP availability and thus for the serotonin synthesis in the brain.Due to its high TRP-concentration, human milk protein provides optimal conditions for the availability of the neurotransmitter serotonin. Low protein cow's milk-based infant formulas supplemented with-lactalbumin — a whey protein fraction containing 5.8% TRP — present themselves as a new generation of formulas, with an amino acid pattern different from the currently used protein mixtures of adapted formulas, resembling that of human milk to a much higher degree.  相似文献   

15.
Maternal reproductive investment includes both the energetic costs of gestation and lactation. For most humans, the metabolic costs of lactation will exceed those of gestation. Mothers must balance reproductive investment in any single offspring against future reproductive potential. Among mammals broadly, mothers may differentially invest in offspring based on sex and maternal condition provided such differences investment influence future offspring reproductive success. For humans, there has been considerable debate if there are physiological differences in maternal investment by offspring sex. Two recent studies have suggested that milk composition differs by infant sex, with male infants receiving milk containing higher fat and energy; prior human studies have not reported sex‐based differences in milk composition. This study investigates offspring sex‐based differences in milk macronutrients, milk energy, and nursing frequency (per 24 h) in a sample of 103 Filipino mothers nursing infants less than 18 months of age. We found no differences in milk composition by infant sex. There were no significant differences in milk composition of mothers nursing first‐born versus later‐born sons or daughters or between high‐ and low‐income mothers nursing daughters or sons. Nursing frequency also showed no significant differences by offspring sex, sex by birth order, or sex by maternal economic status. In the Cebu sample, there is no support for sex‐based differences in reproductive investment during lactation as indexed by milk composition or nursing frequency. Further investigation in other populations is necessary to evaluate the potential for sex‐based differences in milk composition among humans. Am J Phys Anthropol 152:209–216, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

16.
The Maillard reaction between lactose and proteins occurs during thermal treatment of milk and lactosylated β-lactoglobulin, α-lactalbumin and caseins have widely been used to monitor the quality of dairy products. We recently demonstrated that a number of other whey milk proteins essential for nutrient delivery, defense against bacteria/virus and cellular proliferation become lactosylated during milk processing. The extent of their modification is associated with the harshness of product manufacturing. Since fat globule proteins are also highly important for the health-beneficial properties of milk, an evaluation of their lactosylation is crucial for a complete understanding of aliment nutritional characteristics. This is more important when milk is the unique dietary source, as in the infant diet. To this purpose, a sequential proteomic procedure involving an optimized milk fat globule (MFG) preparation/electrophoretic resolution, shot-gun analysis of gel portions for protein identification, selective trapping of lactosylated peptides by phenylboronate chromatography and their analysis by nanoLC-ESI-electron transfer dissociation (ETD) tandem MS was used for systematic characterization of fat globule proteins in milk samples subjected to various manufacturing procedures. Significant MFG protein compositional changes were observed between samples, highlighting the progressive adsorption of caseins and whey proteins on the fat globule surface as result of the technological process used. A significant lactosylation of MFG proteins was observed in ultra-high temperature sterilized and powdered for infant nutrition milk preparations, which well paralleled with the harshness of thermal treatment. Globally, this study allowed the identification of novel 157 non-redundant modification sites and 35 MFG proteins never reported so far as being lactosylated, in addition to the 153 ones ascertained here as present on other 21 MFG-adsorbed proteins whose nature was already characterized. Novel MFG proteins include components involved in nutrient delivery, defense response against pathogens and cellular proliferation/differentiation. Nutritional, biological and toxicological consequences of these findings are here discussed, highlighting their possible impact on children's diet.  相似文献   

17.
The importance of a high fat intake in the increasing prevalence of childhood and adult obesity remains controversial. Moreover, qualitative changes (i.e. the fatty acid composition of fats) have been largely disregarded. Herein is reviewed the role of polyunsaturated fatty acids (PUFAs) of the n-6 series in promoting adipogenesis in vitro and favouring adipose tissue development in rodents during the gestation/suckling period. Epidemiological data from infant studies as well as the assessment of the fatty acid composition of mature breast milk and infant formulas over the last decades in the Western industrialized world are revisited and appear consistent with animal data. Changes over decades in the intake of n-6 and n-3 PUFAs, with a striking increase in the linoleic acid/alpha-linolenic ratio, are observed. In adults, using a consumption model based upon production data, similar changes in the PUFA content of ingested lipids have been found for France, and are associated with an increase of fat consumption over the last 40 years. These profound quantitative and qualitative alterations can be traced in the food chain and shown to be due to changes in human dietary habits as well as in the feeding pattern of breeding stock. If prevention of obesity is a key issue for future generations, agricultural and food industry policies should be thoroughly reevaluated.  相似文献   

18.
Deep-fat frying at 180°C or above is one of the most common food processing methods used for preparing of human kind foods worldwide. However, a serial of complex reactions such as oxidation, hydrolysis, isomerization, and polymerization take place during the deep-fat frying course and influence quality attributes of the final product such as flavor, texture, shelf life and nutrient composition. The influence of these reactions results from a number of their products including volatile compounds, hydrolysis products, oxidized triacylglycerol monomers, cyclic compounds, trans configuration compounds, polymers, sterol derivatives, nitrogen- and sulphur-containing heterocyclic compounds, acrylamide, etc. which are present in both frying oil and the fried food. In addition, these reactions are interacted and influenced by various impact factors such as frying oil type, frying conditions (time, temperature, fryer, etc.) and fried material type. Based on the published literatures, three main organic chemical reaction mechanisms namely hemolytic, heterolytic and concerted reaction were identified and supposed to elucidate the complex chemical alterations during deep-fat frying. However, well understanding the mechanisms of these reactions and their products under different conditions helps to control the deep-fat frying processing; therefore, producing healthy fried foods. By means of comprehensively consulting the papers which previously studied on the chemical changes occurred during deep-fat frying process, the major reaction products and corresponding chemical alterations were reviewed in this work.  相似文献   

19.
Milk processing leads to severe protein damage caused by the formation of nonenzymatic posttranslational modifications (nePTMs), such as glycation and glycoxidation. As a result, the technological and nutritional function of milk proteins can be critically altered. The present study investigated the protein-specific distribution of the glycoxidation product N(ε) -carboxymethyllysine (CML) in the proteome of processed milk. For this purpose, raw milk and heated milk were separated by 1-D or 2-DE. The distribution of CML in the milk proteome was examined by immunoblotting. The changes in the protein composition that occurred during heating were monitored by Coomassie staining. Relative modification rates were measured for the major milk protein fractions after 30 and 60 min of heating at 120°C and normalized to the content of the respective protein fraction in the samples. The highest glycoxidation rates were detected in the high molecular weight aggregates that are generated during heating. The casein fraction and the whey protein β-lactoglobulin were affected in a similar manner. The relevance of the results for industrial milk processing was confirmed by analyzing several commercial milk products accordingly. The presented approach allows nonenzymatic posttranslational modification mapping of the entire milk proteome.  相似文献   

20.
人乳中氨基酸的含量及分析方法研究进展   总被引:1,自引:0,他引:1  
人乳中含有丰富的氨基酸,其中赖氨酸、苏氨酸、亮氨酸、缬氨酸、异亮氨酸、苯丙氨酸、甲硫氨酸和组氨酸等必需氨基酸构成比例合理,牛磺酸和谷氨酸等条件必需氨基酸含量丰富,丙氨酸、丝氨酸、天冬氨酸和甘氨酸等非必需氨基酸含量也较为丰富;人乳中含有的氨基酸在维持婴儿生长发育、增强免疫力、肠道保护等方面发挥重要作用.本文综述了人乳中主要氨基酸的含量及分析方法,以期为婴儿食品的开发及母乳成分数据库的建立提供一定的依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号