共查询到20条相似文献,搜索用时 0 毫秒
1.
High-protein diets are effective in achieving weight loss which is mainly explained by increased satiety and thermogenic effects. Recent studies suggest that the effects of protein-rich diets on satiety could be mediated by amino acids like leucine or arginine. Although high-protein diets require increased intestinal amino acid absorption, amino acid and peptide absorption has not yet been considered to contribute to satiety effects. We here demonstrate a novel finding that links intestinal peptide transport processes to food intake, but only when a protein-rich diet is provided. When mice lacking the intestinal peptide transporter PEPT1 were fed diets containing 8 or 21 energy% of protein, no differences in food intake and weight gain were observed. However, upon feeding a high-protein (45 energy%) diet, Pept1(-/-) mice reduced food intake much more pronounced than control animals. Although there was a regain in food consumption after a few days, no weight gain was observed which was associated with a reduced intestinal energy assimilation and increased fecal energy losses. Pept1(-/-) mice on high-protein diet displayed markedly reduced plasma leptin levels during the period of very low food intake, suggesting a failure of leptin signaling to increase energy intake. This together with an almost two-fold elevated plasma arginine level in Pept1(-/-) but not wildtype mice, suggests that a cross-talk of arginine with leptin signaling in brain, as described previously, could cause these striking effects on food intake. 相似文献
2.
Parlevliet ET Heijboer AC Schröder-van der Elst JP Havekes LM Romijn JA Pijl H Corssmit EP 《American journal of physiology. Endocrinology and metabolism》2008,294(1):E142-E147
We evaluated the acute effects of OXM on glucose metabolism in diet-induced insulin-resistant male C57Bl/6 mice. To determine the effects on glucose tolerance, mice were intraperitoneally injected with OXM (0.75, 2.5, or 7.5 nmol) or vehicle prior to an ip glucose tolerance test. OXM (0.75 nmol/h) or vehicle was infused during a hyperinsulinemic euglycemic clamp to quantify insulin action on glucose production and disposal. OXM dose-dependently improved glucose tolerance as estimated by AUC for glucose (OXM: 7.5 nmol, 1,564 +/- 460, P < 0.01; 2.5 nmol, 1,828 +/- 684, P < 0.01; 0.75 nmol, 2,322 +/- 303, P < 0.05; control: 2,790 +/- 222 mmol.l(-1).120 min). Insulin levels in response to glucose administration were higher in 7.5 nmol OXM-treated animals compared with controls. In basal clamp conditions, OXM increased EGP (82.2 +/- 14.7 vs. 39.9 +/- 5.7 micromol.min(-1).kg(-1), P < 0.001). During insulin infusion, insulin levels were twice as high in OXM-treated mice compared with controls (10.6 +/- 2.8 vs. 4.4 +/- 2.2 ng/ml, P < 0.01). Consequently, glucose infusion rate (118.6 +/- 30.8 vs. 38.8 +/- 26.4 microl/h, P < 0.001) and glucose disposal (88.1 +/- 13.0 vs. 45.2 +/- 6.9 micromol.min(-1).kg(-1), P < 0.001) were enhanced in mice that received OXM. In addition, glucose production was more suppressed during OXM infusion (35.7 +/- 15.5 vs. 15.8 +/- 11.4% inhibition, P < 0.05). However, if these data were expressed per unit concentration of circulating insulin, OXM did not affect insulin action on glucose disposal and production. These results indicate that OXM beneficially affects glucose metabolism in diet-induced insulin-resistant C57Bl/6 mice. It ameliorates glucose intolerance, most likely because it elevates glucose-induced plasma insulin concentrations. OXM does not appear to impact on insulin action. 相似文献
3.
Effects of astaxanthin in obese mice fed a high-fat diet 总被引:2,自引:0,他引:2
Ikeuchi M Koyama T Takahashi J Yazawa K 《Bioscience, biotechnology, and biochemistry》2007,71(4):893-899
Astaxanthin is a natural antioxidant carotenoid that occurs in a wide variety of living organisms. We investigated the effects of astaxanthin supplementation in obese mice fed a high-fat diet. Astaxanthin inhibited the increases in body weight and weight of adipose tissue that result from feeding a high-fat diet. In addition, astaxanthin reduced liver weight, liver triglyceride, plasma triglyceride, and total cholesterol. These results suggest that astaxanthin might be of value in reducing the likelihood of obesity and metabolic syndrome in affluent societies. 相似文献
4.
Elisabetta Gianazza Cristina Sensi Ivano Eberini Federica Gilardi Marco Giudici Maurizio Crestani 《Amino acids》2013,44(3):1001-1008
To investigate the influence of diet on serum protein pattern, mice were fed for 8 weeks either control chow or a high-fat diet (containing 21 % w/w milk fat and 0.2 % w/w cholesterol); sera were collected and analyzed by 2-DE. The main positive acute-phase reactant proteins, haptoglobin and hemopexin, were significantly up-regulated in animals receiving the high-fat diet. Data on all other proteins also pointed to an inflammatory condition in these animals. The largest change in concentration was observed for carboxylesterase N, a circulating enzyme seldom connected with lipid metabolism in earlier reports. These observations agree with the notion of a link between diet-induced hyperlipidemia and the inflammatory component of its cardiovascular sequels in humans, but the effects in the experimental animals are massive and obviously affect most of the major serum proteins. 相似文献
5.
An exclusively milk formula diet stunted the growth of mice immediately following weaning. Milk-fed mice displayed a low-frequency profile of exploratory behavior, while pellet-fed mice showed high-frequency exploration. In contrast to exploratory behavior, feeding behavior did not differ significantly between milk- and pellet-fed mice. Despite showing low-frequency exploratory behavior, mice on an exclusively milk formula diet showed no difference in behavioral activities analyzed by an automatic hole-board apparatus compared to pellet-fed mice. These results suggest that the growth stunt caused by an exclusively milk formula diet retards the acquisition of active exploratory behavior without affecting the emotional state of mice. 相似文献
6.
Both sexes of BALB/c and B6C3F1 mice were divided into test groups and fed either a purified diet (AIN-76A) or a natural ingredient diet (NIH-07) containing graded levels of 2-acetylaminofluorine (2-AAF) for 90 days. A large number of dead or moribund B6C3F1 males fed the AIN diet were removed from the study prematurely. AIN-fed B6C3F1 mice removed early as well as some sacrificed at the end of the study showed myocardial damage with hemorrhage. A much smaller number of BALB/c males fed the AIN diet also exhibited these signs while none of the females from either stock were affected. Mice having these lesions were confined largely to 2 of 5 treatment groups. Increased levels of serum aspartate aminotransferase (GOT) (P less than .01) occurred in the AIN-fed B6C3F1 male mice that were sacrificed, supporting the histopathological observation of myocardial damage. There was no other significant difference in the GOT between diets or 2-AAF doses. No environmental factors could be associated with the problem and microbiological and chemical analyses of the diets showed no convincing evidence of specific pathogenic organisms or nutritional deficiencies that might have caused these lesions. Extended storage (up to 4 months) and one batch of feed in particular seemed to be associated with mice having myocardial damage. These associations were highly strain and sex dependent and suggest that great care must be taken in the manufacture and handling of the diet. Furthermore, it seems likely that the diet may be marginally adequate for some strains of mice and may require modification before it will become generally useful. 相似文献
7.
Rinaman L Vollmer RR Karam J Phillips D Li X Amico JA 《American journal of physiology. Regulatory, integrative and comparative physiology》2005,288(6):R1791-R1799
Evidence in rats suggests that central oxytocin (OT) signaling pathways contribute to suppression of food intake during dehydration (i.e., dehydration anorexia). The present study examined water deprivation-induced dehydration anorexia in wild-type and OT -/- mice. Mice were deprived of food alone (fasted, euhydrated) or were deprived of both food and water (fasted, dehydrated) for 18 h overnight. Fasted wild-type mice consumed significantly less chow during a 60-min refeeding period when dehydrated compared with their intake when euhydrated. Conversely, fasting-induced food intake was slightly but not significantly suppressed by dehydration in OT -/- mice, evidence for attenuated dehydration anorexia. In a separate experiment, mice were deprived of water (but not food) overnight for 18 h; then they were anesthetized and perfused with fixative for immunocytochemical analysis of central Fos expression. Fos was elevated similarly in osmo- and volume-sensitive regions of the basal forebrain and hypothalamus in wild-type and OT -/- mice after water deprivation. OT-positive neurons expressed Fos in dehydrated wild-type mice, and vasopressin-positive neurons were activated to a similar extent in wild-type and OT -/- mice. Conversely, significantly fewer neurons within the hindbrain dorsal vagal complex were activated in OT -/- mice after water deprivation compared with activation in wild-type mice. These findings support the view that OT-containing projections from the hypothalamus to the hindbrain are necessary for the full expression of compensatory behavioral and physiological responses to dehydration. 相似文献
8.
We evaluated the influence of a diet supplemented with olive oil (20% by weight) (OO) on the activity of glutamyl aminopeptidase (GluAP) and aspartyl aminopeptidase (AspAP), which are involved in angiotensin metabolism. Serum concentrations of total cholesterol and fatty acids were also measured. Animals fed on the OO diet gained significantly more weight than did controls from the second week until the end of the feeding period. Serum total cholesterol concentration was significantly higher in the OO group than in control mice. Total monounsaturated fatty acids increased in OO-fed animals, but total saturated fatty acids decreased. No differences between the two groups were observed for total polyunsaturated fatty acids. Serum from animals fed on the OO diet contained significantly lower proportions of myristic, pentadecanoic, palmitic, palmitoleic, vaccenic, alpha-linolenic, gamma-linolenic, and 11,14-eicosadienoic acids than did serum from control animals. In contrast, the OO group had higher levels of oleic, stearic, and gondoic acids. GluAP activity decreased significantly in the serum of OO-fed animals. In these animals soluble AspAP activity was significantly higher in the testis, and significantly lower in the lung and adrenal, in comparison to controls. Membrane-bound AspAP activity was higher in the testis and atrium, and lower in lung, in the OO group. Soluble GluAP activity was significantly lower in the testis of OO-fed animals. Membrane-bound GluAP activity did not differ between the two groups in any of the tissues analyzed. Serum AspAP and GluAP activities correlated negatively with palmitoleic and vaccenic acid respectively in the OO group. However, no significant correlations were found in the control group. These results may reflect functional changes in the renin-angiotensin system in the serum, adrenal, testis, lung and atrium after feeding with a diet enriched in olive oil. 相似文献
9.
D Richard P Boily M C Dufresne M Lecompte 《Canadian journal of physiology and pharmacology》1988,66(10):1297-1302
The present study was aimed at studying energy balance in mice fed a high-fat diet. Albino mice were divided into three groups. One group had free access to the stock diet, whereas the two other groups consumed a high-fat diet. One of the high-fat fed groups was fed ad libitum, whereas the other was offered a restricted amount of the same diet so that its energy intake was comparable to the group of mice given the stock diet. Energy balance measurements, which included indirect calorimetry and carcass analysis, were performed. Brown adipose tissue (BAT) properties were also investigated. The results show that gains in both body weight and fat were higher in mice that had free access to high-fat diet than in mice fed the stock diet. In animals given a restricted amount of the high-fat diet, fat gain increased, whereas protein gain was reduced in comparison with animals fed the stock diet. Unrestricted access to the high-fat diet led to an increase in both energy intake and energy gain. As revealed by both slaughter and indirect calorimetry techniques energy expenditure was, in high-fat fed mice, 40% higher than in animals fed either stock or a restricted amount of high-fat diet. Nadolol was shown to suppress a large part of the elevated metabolic rate seen in mice fed an unrestricted high-fat diet. In those mice, BAT mitochondrial GDP binding was also increased. In summary, the present results confirm that adaptive diet-induced thermogenesis (DIT) develops in mice made hyperphagic by an energy-dense palatable diet.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
10.
Shin SJ 《Journal of biochemistry and molecular biology》2003,36(2):190-195
The Vitamin E (VE) effect was examined on oxidative damage to DNA, lipids, and protein in mice that were fed various levels of lipid diets after total body irradiation (TBI) with X-rays at 2 Gy. No increase of 8-hydroxydeoxyguanosine (8OHdG) by TBI was observed in the + VE group; however, in the case of the -VE group, a significantly higher 8OHdG level was observed in the high-lipid group than in the low- or basal-lipid group. In the groups with TBI, the concentration of thiobarbituric reactive substances (TBARS) only significantly increased in the high-lipid (-VE) group. These changes in TBARS, due to TBI, were not detected in other groups. The contents of protein carbonyls only increased in the (-VE) group. The contents of protein carbonyls was significantly different between the (+VE) and the (-VE) groups, regardless of the lipid levels. The concentrations of GSH, vitamins C and E in the liver were lower, and the concentration of non-heme iron in the liver was higher in the high-lipid group than in the low- and basal-lipid groups. These concentrations in the high-lipid group were significantly different between the (+VE) and the (-VE) groups. These results strongly suggest that mice that are fed a high-lipid diet are susceptible to TBI-induced oxidative damage. Also, decreases in the GSH levels and an increase in the iron level are involved in the mechanism of this susceptibility. 相似文献
11.
Haraguchi T Yanaka N Nogusa Y Sumiyoshi N Eguchi Y Kato N 《Bioscience, biotechnology, and biochemistry》2006,70(7):1798-1802
A differential display was performed to analyze differential gene expression in the brains of mice in association with dietary high beef-tallow. Consumption of a high beef-tallow diet downregulated the expression of ADP-ribosylation factor-like protein 8B (Arl8B) mRNA in the brain. Arl8B mRNA was widely expressed in the mouse brain, including primary neuronal cells. The current study indicates that green fluorescent protein-fused Arl8B protein accumulated at the growth cones in primary neuronal cells, and that protrusions of human embryonic kidney 293 (HEK293) cells were significantly elongated by overexpression of Arl8B, suggesting an important role of Arl8B in neurite formation. 相似文献
12.
13.
Dudley MA Schoknecht PA Dudley AW Jiang L Ferraris RP Rosenberger JN Henry JF Reeds PJ 《American journal of physiology. Gastrointestinal and liver physiology》2001,280(4):G621-G628
The in vivo effects of protein malnutrition and protein rehabilitation on lactase phlorizin hydrolase (LPH) synthesis were examined. Five-day-old pigs were fed isocaloric diets containing 10% (deficient, n = 12) or 24% (sufficient, n = 12) protein. After 4 wk, one-half of the animals in each dietary group were infused intravenously with [(13)C(1)]leucine for 6 h, and the jejunum was analyzed for enzyme activity, mRNA abundance, and LPH polypeptide isotopic enrichment. The remaining animals were fed the protein-sufficient diet for 1 wk, and the jejunum was analyzed. Jejunal mass and lactase enzyme activity per jejunum were significantly lower in protein-deficient vs. control animals but returned to normal with rehabilitation. Protein malnutrition did not affect LPH mRNA abundance relative to elongation factor-1alpha, but rehabilitation resulted in a significant increase in LPH mRNA relative abundance. Protein malnutrition significantly lowered the LPH fractional synthesis rate (FSR; %/day), whereas the FSR of LPH in rehabilitated and control animals was similar. These results suggest that protein malnutrition decreases LPH synthesis by altering posttranslational events, whereas the jejunum responds to rehabilitation by increasing LPH mRNA relative abundance, suggesting pretranslational regulation. 相似文献
14.
van Diepen JA Vroegrijk IO Berbée JF Shoelson SE Romijn JA Havekes LM Rensen PC Voshol PJ 《American journal of physiology. Endocrinology and metabolism》2011,301(6):E1099-E1107
Systemic inflammation is strongly involved in the pathophysiology of the metabolic syndrome, a cluster of metabolic risk factors that includes hypertriglyceridemia. Aspirin treatment lowers inflammation via inhibition of NF-κB activity but also reduces hypertriglyceridemia in humans. The aim of this study was to investigate the mechanism by which aspirin improves hypertriglyceridemia. Human apolipoprotein CI (apoCI)-expressing mice (APOC1 mice), an animal model with elevated plasma triglyceride (TG) levels, as well as normolipidemic wild-type (WT) mice were fed a high-fat diet (HFD) and treated with aspirin. Aspirin treatment reduced hepatic NF-κB activity in HFD-fed APOC1 and WT mice, and in addition, aspirin decreased plasma TG levels (-32%, P < 0.05) in hypertriglyceridemic APOC1 mice. This TG-lowering effect could not be explained by enhanced VLDL-TG clearance, but aspirin selectively reduced hepatic production of VLDL-TG in both APOC1 (-28%, P < 0.05) and WT mice (-33%, P < 0.05) without affecting VLDL-apoB production. Aspirin did not alter hepatic expression of genes involved in FA oxidation, lipogenesis, and VLDL production but decreased the incorporation of plasma-derived FA by the liver into VLDL-TG (-24%, P < 0.05), which was independent of hepatic expression of genes involved in FA uptake and transport. We conclude that aspirin improves hypertriglyceridemia by decreasing VLDL-TG production without affecting VLDL particle production. Therefore, the inhibition of inflammatory pathways by aspirin could be an interesting target for the treatment of hypertriglyceridemia. 相似文献
15.
The consumption of a high-fat diet modifies both the morphology of the small intestine and experimentally tested effects of schistosomiasis mansoni. However, whether a schistosomiasis infection associated with a high-fat diet causes injury to the small intestine has never been investigated. Mice were fed either a high-fat or a standard-fat diet for 6 months and were then infected with Schistosoma mansoni cercariae. Physical characteristics of the intestinal tissue (mucosal thickness, small intestinal villi length and height, and abundance of goblet cells and enterocytes on the villous surface) and the distribution of granulomas along the intestinal segments and their developmental stage were measured at the time of sacrifice (9 or 17 weeks post-infection). The group fed a high-fat diet exhibited different granuloma stages, whereas the control group possessed only exudative granulomas. The chronically infected mice fed a high-fat diet exhibited higher granuloma and egg numbers than the acutely infected group. Exudative, exudative/exudative-productive and exudative-productive granulomas were present irrespective of diet. Computer-aided morphometric analysis confirmed that villus length, villus width, muscular height and submucosal height of the duodenal and jejunal segments were affected by diet and infection. In conclusion, a high-fat diet and infection had a significant impact on the small intestine morphology and morphometry among the animals tested. 相似文献
16.
The hypocholesterolemic effect of taurine was examined in mice fed a high-cholesterol diet containing 1% cholesterol and 0.25% sodium cholate. Male C57BL/6 mice were divided into 3 groups: control group (HC), 1% taurine-supplemented group (HCT+), and taurine-deficient group (HCT-) produced by supplying 0.5% guanidinoethyl sulfonate (GES) solution ad libitum instead of water. After they were fed with the respective diet or drinking water for 4 weeks, the liver taurine level was reduced 80% in the HCT- group compared with that in the HC group, although there was no difference in the serum taurine amount between the two groups. The formation ratio of cholesterol gallstones increased from 71% to 100% by taurine deficiency, and decreased to 0% by taurine supplementation. Compared with the HC group, serum and liver cholesterol significantly decreased, and the excretion of fecal bile acid notably rose in the HCT+ group but tended to lower in the HCT- group. There were no differences in LDL receptor protein level among the three groups. In the subsequent experiment, triglycerides (TG) secretion rate was determined and found to be significantly suppressed by taurine supplementation. In conclusion, it is suggested that taurine does not up-regulate LDL receptor protein level, and the decrease in cholesterol in the circulation is mainly due to its suppressive effect on TG secretion from the liver. 相似文献
17.
BALB/c and CBA/CA mice fed a protein-deficient diet developed a plasma hypoferremia corresponding to a 30 percent lowering of serum iron concentration. This hypoferremia persisted as long as the diet was maintained. Hypoferremic CBA/CA mice had increased resistance to Salmonella typhimurium C5 infection, as shown by the reduced lethal activity and the decreased growth of the bacteria in the spleen and in the peritoneal exudate of the deficient animals. This induced resistance was abolished after injection of iron or Desferal into the restricted animals. Such resistance was not observed with BALB/c mice fed a protein-deficient diet, in spite of the plasma hypoferremia. The growth of S. typhimurium C5 in the spleen and in the peritoneal exudate of these animals did not differ from the growth observed in control animals fed a protein-sufficient diet. This study suggests that hypoferremia induced by a protein-deficient diet is probably involved in the enhancement of resistance of CBA/CA mice to Salmonella infection, and that the phenomenon is host-strain dependent. 相似文献
18.
Sundaram SS Whitington PF Green RM 《American journal of physiology. Gastrointestinal and liver physiology》2005,288(6):G1321-G1327
Nonalcoholic fatty liver disease is the most common reason for abnormal liver chemistries in the United States. The factors that lead from benign steatosis to nonalcoholic steatohepatitis are poorly understood. Transthyretin-Abcb11 (TTR-Abcb11) transgenic mice overexpress the bile salt transporter Abcb11 and hypersecrete biliary lipids. Thus the aim of this study is to employ feeding of the methionine-choline-deficient (MCD) diet to TTR-Abcb11 transgenic mice to further determine the mechanisms responsible for the development of steatohepatitis. FVB/NJ and TTR-Abcb11 mice were fed control or MCD diets for up to 30 days. Serum aminotransferase levels, serum and hepatic triglyceride content, cytokines, markers of oxidative stress, and expression of selective genes were examined. MCD diet-fed TTR-Abcb11, but not wild-type, mice have elevated serum aminotransferase levels when compared after 7 days. They also have significantly lower hepatic triglyceride levels at all time points studied. After 14 days on the MCD diet, TTR-Abcb11 mice have 3-fold increases in TNF-alpha mRNA and 3.9-fold increases in IL-6 mRNA compared with FVB/NJ mice. TTR-Abcb11 mice also had a greater increase in cytochrome P-450 2E1 expression. A greater decrease in sterol regulatory element binding protein-1c and fatty acid synthase mRNA expression was also seen in TTR-Abcb11 compared with wild-type mice fed an MCD diet. They also have enhanced TNF-alpha, IL-6, and cytochrome P-450 2E1 expression. We conclude that TTR-Abcb11 mice develop a more rapid hepatitis with less steatosis. 相似文献
19.
Mice that lack phosphatidylethanolamine-N-methyltransferase (PEMT) and are fed a choline-deficient (CD) diet suffer severe liver damage and do not survive. Since phosphatidyldimethylethanolamine (PDME) has physical properties similar to those of phosphatidylcholine (PC), we hypothesized that dimethylethanolamine (DME) would be converted into PDME that might substitute for PC, and therefore abrogate the liver damage in the Pemt -/- mice fed a CD diet. We fed Pemt -/- mice either a CD diet, a CD diet supplemented with choline, or a CD diet supplemented with DME (CD + DME). Pemt -/- mice fed the CD diet developed severe liver failure by 4 days while CD + DME-fed mice developed severe liver failure by 5 days. The hepatic PC level in choline-supplemented (CS) mice was 67 +/- 4 nmol/mg protein, whereas the PC content was reduced in CD- and CD + DME-fed mice (49 +/- 3 and 30 +/- 3 nmol/mg protein, respectively). Upon supplementation of the CD diet with DME the amount of hepatic PDME was 81 +/- 9 nmol/mg protein so that the hepatic content of PC + PDME combined was 111 nmol/mg protein. Moreover, plasma apolipoprotein B100 and Al levels were markedly lower in mice fed the CD + DME diet compared to mice fed the CS diet, as was the plasma content of PC. Thus, despite replacement of the deficit in hepatic PC with PDME in Pemt -/- mice fed a CD diet, normal liver function was not restored. We conclude that although PC and PDME exhibit similar physical properties, the three methyl groups of choline are required for hepatic function in mice. 相似文献
20.
Kamada Y Kiso S Yoshida Y Chatani N Kizu T Hamano M Tsubakio M Takemura T Ezaki H Hayashi N Takehara T 《American journal of physiology. Gastrointestinal and liver physiology》2011,301(6):G1031-G1043
Recent studies indicate an accelerated progression of nonalcoholic steatohepatitis (NASH) in postmenopausal women. Hypercholesterolemia, an important risk factor for NASH progression, is often observed after menopause. This study examined the effects of estrogen on NASH in ovariectomized (OVX) mice fed a high-fat and high-cholesterol (HFHC) diet. To investigate the effects of estrogen deficiency, OVX mice and sham-operated (SO) mice were fed normal chow or HFHC diet for 6 wk. Next, to investigate the effects of exogenous estrogen replenishment, OVX mice fed with HFHC diet were treated with implanted hormone release pellets (containing 17β-estradiol or placebo vehicle) for 6 wk. OVX mice on the HFHC diet showed enhanced liver injury with increased liver macrophage infiltration and elevated serum cholesterol levels compared with SO-HFHC mice. Hepatocyte monocyte chemoattractant protein-1 (MCP1) protein expression in OVX-HFHC mice was also enhanced compared with SO-HFHC mice. In addition, hepatic inflammatory gene expressions, including monocytes chemokine (C-C motif) receptor 2 (CCR2), were significantly elevated in OVX-HFHC mice. Estrogen treatment improved serum cholesterol levels, liver injury, macrophage infiltration, and inflammatory gene expressions in OVX-HFHC mice. Moreover, the elevated expression of liver CCR2 and MCP1 were decreased by estrogen treatment in OVX-HFHC mice, whereas low-density lipoprotein dose dependently enhanced CCR2 expression in THP1 monocytes. Our study demonstrated that estrogen deficiency accelerated NASH progression in OVX mice fed HFHC diet and that this effect was improved by estrogen therapy. Hypercholesterolemia in postmenopausal women would be a potential risk factor for NASH progression. 相似文献