首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DTD (D-Tyr-tRNA(Tyr) deacylase) is known to be able to deacylate D-aminoacyl-tRNAs into free D-amino acids and tRNAs and therefore contributes to cellular resistance against D-amino acids in Escherichia coli and yeast. We have found that h-DTD (human DTD) is enriched in the nuclear envelope region of mammalian cells. Treatment of HeLa cells with D-Tyr resulted in nuclear accumulation of tRNA(Tyr). D-Tyr treatment and h-DTD silencing caused tRNA(Tyr) downregulation. Furthermore, inhibition of protein synthesis by D-Tyr treatment and h-DTD silencing were also observed. D-Tyr, D-Asp and D-Ser treatment inhibited mammalian cell viability in a dose-dependent manner; overexpression of h-DTD decreased the inhibition rate, while h-DTD-silenced cells became more sensitive to the D-amino acid treatment. Our results suggest that h-DTD may play an important role in cellular resistance against D-amino acids by deacylating D-aminoacyl tRNAs at the nuclear pore. We have also found that m-DTD (mouse DTD) is specifically enriched in central nervous system neurons, its nuclear envelope localization indicates that D-aminoacyl-tRNA editing may be vital for the survival of neurons under high concentration of D-amino acids.  相似文献   

2.
The Saccharomyces cerevisiae YDL219w (DTD1) gene, which codes for an amino acid sequence sharing 34% identity with the Escherichia coli D-Tyr-tRNA(Tyr) deacylase, was cloned, and its product was functionally characterized. Overexpression in the yeast of the DTD1 gene from a multicopy plasmid increased D-Tyr-tRNA(Tyr) deacylase activity in crude extracts by two orders of magnitude. Upon disruption of the chromosomal gene, deacylase activity was decreased by more than 90%, and the sensitivity to D-tyrosine of the growth of S. cerevisiae was exacerbated. The toxicity of D-tyrosine was also enhanced under conditions of nitrogen starvation, which stimulate the uptake of D-amino acids. In relation with these behaviors, the capacity of purified S. cerevisiae tyrosyl-tRNA synthetase to produce D-Tyr-tRNA(Tyr) could be shown. Finally, the phylogenetic distribution of genes homologous to DTD1 was examined in connection with L-tyrosine prototrophy or auxotrophy. In the auxotrophs, DTD1-like genes are systematically absent. In the prototrophs, the putative occurrence of a deacylase is variable. It possibly depends on the L-tyrosine anabolic pathway adopted by the cell.  相似文献   

3.
Natural D-amino acid oxidases (DAAO) are not suitable for selective determination of D-amino acids due to their broad substrate specificity profiles. Analysis of the 3D-structure of the DAAO enzyme from the yeast Trigonopsis variabilis (TvDAAO) revealed the Phe258 residue located at the surface of the protein globule to be in the entrance to the active site. The Phe258 residue was mutated to Ala, Ser, and Tyr residues. The mutant TvDAAOs with amino acid substitutions Phe258Ala, Phe258Ser, and Phe258Tyr were purified to homogeneity and their thermal stability and substrate specificity were studied. These substitutions resulted in either slight stabilization (Phe258Tyr) or destabilization (Phe258Ser) of the enzyme. The change in half-inactivation periods was less than twofold. However, these substitutions caused dramatic changes in substrate specificity. Increasing the side chain size with the Phe258Tyr substitution decreased the kinetic parameters with all the D-amino acids studied. For the two other substitutions, the substrate specificity profiles narrowed. The catalytic efficiency increased only for D-Tyr, D-Phe, and D-Leu, and for all other D-amino acids this parameter dramatically decreased. The improvement of catalytic efficiency with D-Tyr, D-Phe, and D-Leu for TvDAAO Phe258Ala was 3.66-, 11.7-, and 1.5-fold, and for TvDAAO Phe258Ser it was 1.7-, 4.75-, and 6.61-fold, respectively.  相似文献   

4.
Trevor Robinson 《Life sciences》1976,19(8):1097-1102
Although there appear to be no exceptions to the rule that proteins are composed solely of the L-isomers of amino acids, D-amino acids and derivatives of them do occur rather widely in living organisms. In some cases they have well-understood functions, but in other cases their occurrence raises interesting questions. Several peptide antibiotics contain D-amino acids (1). The peptido-glycans of Gram-positive bacterial cell walls contain D-glutamic acid, D-alanine, and D-asparagine (2). D-amino acids are also found in animals, chiefly annelids and insects (3). In this paper some aspects of D-amino acids in higher plants will be reviewed.  相似文献   

5.
D-Tyr-tRNA(Tyr) deacylase is an editing enzyme that removes d-tyrosine and other d-amino acids from charged tRNAs, thereby preventing incorrect incorporation of d-amino acids into proteins. A model for the catalytic mechanism of this enzyme is proposed based on the crystal structure of the enzyme from Haemophilus influenzae determined at a 1.64-A resolution. Structural comparison of this dimeric enzyme with the very similar structure of the enzyme from Escherichia coli together with sequence analyses indicate that the active site is located in the dimer interface within a depression that includes an invariant threonine residue, Thr-80. The active site contains an oxyanion hole formed by the main chain nitrogen atoms of Thr-80 and Phe-79 and the side chain amide group of the invariant Gln-78. The Michaelis complex between the enzyme and D-Tyr-tRNA was modeled assuming a nucleophilic attack on the carbonyl carbon of D-Tyr by the Thr-80 O(gamma) atom and a role for the oxyanion hole in stabilizing the negatively charged tetrahedral transition states. The model is consistent with all of the available data on substrate specificity. Based on this model, we propose a substrate-assisted acylation/deacylation-catalytic mechanism in which the amino group of the D-Tyr is deprotonated and serves as the general base.  相似文献   

6.
D-Amino Acids in Living Higher Organisms   总被引:2,自引:0,他引:2  
The homochirality of biological amino acids (L-amino acids) andof the RNA/DNA backbone (D-ribose) might have become establishedbefore the origin of life. It has been considered that D-aminoacids and L-sugars were eliminated on the primitive Earth.Therefore, the presence and function of D-amino acids in livingorganisms have not been studied except for D-amino acids in thecell walls of microorganisms. However, D-amino acids wererecently found in various living higher organisms in the form offree amino acids, peptides, and proteins. Free D-aspartate andD-serine are present and may have important physiologicalfunctions in mammals. D-amino acids in peptides are well knownas opioid peptides and neuropeptides. In protein, D-aspartateresidues increase during aging. This review deals with recentadvances in the study of D-amino acids in higher organisms.  相似文献   

7.
D-氨基酸氧化酶(D-amino acid oxidase:oxidoreductase, DAAO, EC 1.4.3.3)是一种以黄素腺嘌呤(FAD)为辅基的典型黄素蛋白酶类,可氧化D-氨基酸的氨基生成相应的酮酸和氨。在体内D-氨基酸的代谢中起着重要作用。主要介绍了D-氨基酸氧化酶的生理功能和应用、表达条件优化及通过定点突变对酶学性质的研究。  相似文献   

8.
D-Amino acids play a key role in regulation of many processes in living cells. FAD-dependent D-amino acid oxidase (DAAO) is one of the most important enzymes responsible for maintenance proper level of D-amino acids. The most interesting and important data for regulation of the nervous system, hormone secretion, and other processes by D-amino acids as well as development of different diseases under changed DAAO activity are presented. The mechanism of regulation is complex and multi-parametric because the same enzyme simultaneously influences the level of different D-amino acids, which can result in opposing effects. Use of DAAO for diagnostic and therapeutic purposes is also considered.  相似文献   

9.
D-amino acid amidase (DAA) from Ochrobactrum anthropi SV3, which catalyzes the stereospecific hydrolysis of D-amino acid amides to yield the D-amino acid and ammonia, has attracted increasing attention as a catalyst for the stereospecific production of D-amino acids. In order to clarify the structure-function relationships of DAA, the crystal structures of native DAA, and of the D-phenylalanine/DAA complex, were determined at 2.1 and at 2.4 A resolution, respectively. Both crystals contain six subunits (A-F) in the asymmetric unit. The fold of DAA is similar to that of the penicillin-recognizing proteins, especially D-alanyl-D-alanine-carboxypeptidase from Streptomyces R61, and class C beta-lactamase from Enterobacter cloacae strain GC1. The catalytic residues of DAA and the nucleophilic water molecule for deacylation were assigned based on these structures. DAA has a flexible Omega-loop, similar to class C beta-lactamase. DAA forms a pseudo acyl-enzyme intermediate between Ser60 O(gamma) and the carbonyl moiety of d-phenylalanine in subunits A, B, C, D, and E, but not in subunit F. The difference between subunit F and the other subunits (A, B, C, D and E) might be attributed to the order/disorder structure of the Omega-loop: the structure of this loop cannot assigned in subunit F. Deacylation of subunit F may be facilitated by the relative movement of deprotonated His307 toward Tyr149. His307 N(epsilon2) extracts the proton from Tyr149 O(eta), then Tyr149 O(eta) attacks a nucleophilic water molecule as a general base. Gln214 on the Omega-loop is essential for forming a network of water molecules that contains the nucleophilic water needed for deacylation. Although peptidase activity is found in almost all penicillin-recognizing proteins, DAA lacks peptidase activity. The lack of transpeptidase and carboxypeptidase activities may be attributed to steric hindrance of the substrate-binding pocket by a loop comprised of residues 278-290 and the Omega-loop.  相似文献   

10.
Certain D-amino acids, such as D-methionine and D-cystine, were incorporated into cells of Escherichia coli under conditions inhibiting protein and cell wall synthesis. Part of the radioactivity of D-14C-amino acids incorporated into the cells was found in the isolated cell wall peptidoglycan. A covalent linkage between the amino group of the D-amino acids and the peptidoglycan was presumed to be the main cause of the binding of the D-amino acids to peptidoglycan, because the amino group of the D-amino acids in the incorporation product was substituted. Whether the carboxyl terminus was substituted was unknown. The formation of the D-amino acid-peptidoglycan linkage was insensitive to beta-lactam antibiotics such as benzylpenicillin and ampicillin (500 micrograms/ml) and therefore was not due to the reaction of DD-transpeptidation which is involved in the biosynthesis of peptidoglycan. The D-amino acids also strongly inhibited the formation of peptidoglycan-bound lipoprotein in the E. coli cells. The results may suggest the correlation between binding of D-amino acid to peptidoglycan and inhibition of formation of the bound form of lipoprotein.  相似文献   

11.
Homochirality is essential for life. L-Amino acids are exclusively used as substrates for the polymerization and formation of peptides and proteins in living systems. However, d-amino acids, which are enantiomers of L-amino acids, were recently detected in various living organisms in the form of free D-amino acids and D-amino acid residues in peptides and proteins. In particular, D-aspartyl (Asp) residues have been detected in various proteins from diverse tissues of elderly individuals. Here, we describe three important aspects of our research: (i) a method for detecting D-β-Asp at specific sites in particular proteins, (ii) a likely spontaneous mechanism by which Asp residues in proteins invert and isomerize to the D-β-form with age under physiological conditions, (iii) a discussion of factors that favor such a reaction.  相似文献   

12.
Dedkova LM  Fahmi NE  Golovine SY  Hecht SM 《Biochemistry》2006,45(51):15541-15551
While numerous biologically active peptides contain D-amino acids, the elaboration of such species is not carried out by ribosomal synthesis. In fact, the bacterial ribosome discriminates strongly against the incorporation of D-amino acids from D-aminoacyl-tRNAs. To permit the incorporation of D-amino acids into proteins using in vitro protein-synthesizing systems, a strategy has been developed to prepare modified ribosomes containing alterations within the peptidyltransferase center and helix 89 of 23S rRNA. S-30 preparations derived from colonies shown to contain ribosomes with altered 23S rRNAs were found to exhibit enhanced tolerance for D-amino acids and to permit the elaboration of proteins containing D-amino acids at predetermined sites. Five specific amino acids in Escherichia coli dihydrofolate reductase and Photinus pyralis luciferase were replaced with D-phenylalanine and D-methionine, and the specific activities of the resulting enzymes were determined.  相似文献   

13.
D-amino acids are commonly found in peptide antibiotics and the cell wall peptidoglycan of bacterial cell walls but have not been identified in proteins or enzymes. Here we report the presence of 6-7 A-alanine residues in an endopeptidase of Streptococcus pyogenes, a unique enzyme involved in surface protein attachment that we term LPXTGase. Using D-amino acid oxidase coupled with catalase for the deamination of D-alanine to pyruvic acid (a conversion unique to D-alanine), we were able to identify [14C]pyruvic acid in a [14C]alanine-labeled preparation of purified LPXTGase, which represents 27% of the amino acid composition. Because D-amino acids are not accommodated in ribosomal peptide synthesis, these results suggest that the same process used in assembling peptide antibiotics or a yet unidentified mechanism may synthesize the core protein of this endopeptidase.  相似文献   

14.
We measured all of the D- and L-amino acids in 141 bottles of sakes using HPLC. We used two precolumn derivatization methods of amino acid enantiomer detection with o-phthalaldehyde and N-acetyl-L-cysteine, as well as (+)-1-(9-fluorenyl)ethyl chloroformate/1-aminoadamantane and one postcolumn derivatization method with o-phthalaldehyde and N-acetyl-L-cysteine. We found that the sakes contained the D-amino acids forms of Ala, Asn, Asp, Arg, Glu, Gln, His, Ile, Leu, Lys, Ser, Tyr, Val, Phe, and Pro. We were not able to detect D-Met, D-Thr D-Trp in any of the sakes analyzed. The most abundant D-Ala, D-Asp, and D-Glu ranged from 66.9 to 524.3 μM corresponding to relative 34.4, 12.0, and 14.6% D-enantiomer. The basic parameters that generally determine the taste of sake such as the sake meter value (SMV; "Nihonshudo"), acidity ("Sando"), amino acid value ("Aminosando"), alcohol content by volume, and rice species of raw material show no significant relationship to the D-amino acid content of sake. The brewing water ("Shikomimizu") and brewing process had effects on the D-amino acid content of the sakes: the D-amino acid contents of the sakes brewed with deep-sea water "Kaiyoushinosousui", "Kimoto yeast starter", "Yamahaimoto", and the long aging process "Choukijukusei" are high compared with those of other sakes analyzed. Additionally, the D-amino acid content of sakes that were brewed with the adenine auxotroph of sake yeast ("Sekishoku seishu kobo", Saccharomyces cerevisiae) without pasteurization ("Hiire") increased after storage at 25 °C for three months.  相似文献   

15.
Three sulfur-free analogues of bovine parathyroid hormone (bPTH) containing D-amino acids were synthesized by the solid-phase method and their biological properties compared in an in vitro bioassay (rat renal adenylate cyclase assay), a receptor assay for parathyroid hormone (PTH) (canine renal membranes), and an in vivo bioassay (chick hypercalcemia assay). The analogue [Nle8,Nle18,D-Tyr34]-bPTH-(1-34)-amide, which was found to be more than 4 times as potent in vitro as unsubstituted PTH, is the most potent analogue of PTH yet synthesized. The enhanced potency was largely attributable to increased affinity for the PTH receptor. In vivo, however, this analogue was only one-third as potent as bPTH-(1-34). Cumulative evidence suggests that the nearly 15-fold decline in the relative potency when the compound was assayed in vivo is due to the substitution of norleucine for methionine. The other analogues, [D-Val2,Nle8,D-Tyr34]bPTH-(1-34)-amide and [D-Val2,Nle8,Nle18,D=Tyr34]bPTH-(2-34)-amide, were only weakly active in vitro and in vivo, indicating that substitution with D-amino acids at the NH2 terminus of PTH causes markedly diminished receptor affinity. In fact, the placement of a D-amino acid at the NH2 terminus is more deleterious to biological activity than is omission of amino acids at positions 1 and 2.  相似文献   

16.
The contents of D-enantiomers of serine, alanine, proline, glutamate (glutamine) and aspartate (asparagine) were examined in the membrane fractions, soluble proteins and free amino acids from some species of archaea, Pyrobaculum islandicum, Methanosarcina barkeri and Halobacterium salinarium. Around 2% (D/D+L) of D-aspartate was found in the membrane fractions. In the soluble proteins, the D-amino acid content was higher in P. islandicum than that in the other archaeal cells: the concentrations in P. islandicum were 3 and 4% for D-serine and D-aspartate, respectively. High concentrations of free D-amino acids were found in P. islandicum and H. salinarium; the concentrations of D-serine (12-13%), D-aspartate (4-7%) and D-proline (3-4%) were higher than those of D-alanine and D-glutamate. This result showed a resemblance between these archaea and not bacterial, but eukaryotic cells. The presence of D-amino acids was confirmed by their digestion with D-amino acid oxidase and D-aspartate oxidase. The occurrence of D-amino acids was also confirmed by the presence of activities catalyzing catabolism of D-amino acids in the P. islandicum homogenate, as measured by 2-oxo acid formation. The catalytic activities oxidizing D-alanine, D-aspartate and D-serine at 90 degrees C were considerably high. Under anaerobic conditions, dehydrogenase activities of the homogenate were 69, 84 and 30% of the above oxidase activities toward D-alanine, D-aspartate and D-serine, respectively. Comparable or higher dehydrogenase activities were also detected with these D-amino acids as substrate by the reduction of 2, 6-dichlorophenolindophenol. No D-amino acid oxidase activity was detected in the homogenates of M. barkeri and H. salinarium.  相似文献   

17.
It is generally believed that only L-amino acids are acceptable in protein synthesis, though some D-amino acids, including D-tyrosine, D-aspartate, and D-tryptophan are known to be bound enzymatically to tRNAs. In this report, we newly show that D-histidine and D-lysine are also able to be the substrates of respective Escherichia coli aminoacyl-tRNA synthetases.  相似文献   

18.
D-amino acids are largely excluded from protein synthesis, yet they are of great interest in biotechnology. Aspartyl-tRNA synthetase (AspRS) can misacylate tRNA(Asp) with D-aspartate instead of its usual substrate, L-Asp. We investigate how the preference for L-Asp arises, using molecular dynamics simulations. Asp presents a special problem, having pseudosymmetry broken only by its ammonium group, and AspRS must protect not only against D-Asp, but against an "inverted" orientation where the two substrate carboxylates are swapped. We compare L-Asp and D-Asp, in both orientations, and succinate, where the ammonium group is removed and the ligand has an additional negative charge. All possible ammonium positions on the ligand are thus scanned, providing information on electrostatic interactions. As controls, we simulate a Q199E mutation, obtaining a reduction in binding free energy in agreement with experiment, and we simulate TyrRS, which can misacylate tRNA(Tyr) with D-Tyr. For both TyrRS and AspRS, we obtain a moderate binding free energy difference DeltaDeltaG between the L- and D-amino acids, in agreement with their known ability to misacylate their tRNAs. In contrast, we predict that AspRS is strongly protected against inverted L-Asp binding. For succinate, kinetic measurements reveal a DeltaDeltaG of over 5 kcal/mol, favoring L-Asp. The simulations show how chiral discriminations arises from the structures, with two AspRS conformations acting in different ways and proton uptake by nearby histidines playing a role. A complex network of charges protects AspRS against most binding errors, making the engineering of its specificity a difficult challenge.  相似文献   

19.
内消旋-二氨基庚二酸脱氢酶不对称合成非天然的手性D-氨基酸是目前生物催化领域的研究热点。内消旋-二氨基庚二酸脱氢酶具有优良的立体选择性,利用其进行酶催化不对称合成光学纯的手性D-氨基酸,被广泛用于医药、食品、化妆品、精细化学品等领域。为了促进生物催化法在合成手性D-氨基酸方向的进一步发展,本文对内消旋-二氨基庚二酸脱氢酶催化合成D-氨基酸的现状进行了综述。重点介绍了Corynebacterium glutamicum、Ureibacillus thermosphaericus、Symbiobacterium thermophilum来源的内消旋-二氨基庚二酸脱氢酶在新酶的挖掘、催化性能、晶体结构解析、分子改造、功能与催化机制、合成D-氨基酸新途径等方面的研究进展,并对内消旋-二氨基庚二酸脱氢酶的未来研究方向及策略进行了展望。本综述将进一步加深人们对内消旋-二氨基庚二酸脱氢酶的认识,也为具有挑战性的生物合成任务提供信息借鉴。  相似文献   

20.
In vitro synthesis of D-amino acid oxidase [D-amino acid: O2 oxidoreductase (deaminating), EC 1.4.3.3], one of the peroxisomal flavin enzymes, was performed using a rabbit reticulocyte lysate system in order to elucidate the biosynthetic pathway of the enzyme. The apparent molecular weight of the synthesized enzyme protein was the same as that of D-amino acid oxidase purified from pig kidney. On the other hand, the enzyme protein was not detectable when a wheat germ lysate system was used for the translation. Denaturation of pig kidney poly(A)+ RNA with methylmercury hydroxide prior to the translation was found to enhance the synthesis of the enzyme protein. These results suggest a tight conformational structure of the mRNA used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号