首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Streptomyces clavuligerus produced simultaneously cephamycin C and clavulanic acid in defined medium in long-term fermentations and in resting-cell cultures. Biosynthesis of cephamycin by phosphate-limited resting cells was dissociated from clavulanic acid formation by removing either glycerol or sulphate from the culture medium. In absence of glycerol no clavulanic acid was formed but cephamycin production occurred, whereas in absence of sulphate no cephamycin was synthesized but clavulanic biosynthesis took place. Sulphate, sulphite and thiosulphate were excellent sulphur sources for cephamycin biosynthesis while l-methionine and l-cysteine were poor precursors of this antibiotic. Increasing concentrations of sulphate also stimulated clavulanic acid formation. The biosynthesis of clavulanic acid was much more sensitive to phosphate (10–100 mM) regulation than that of cephamycin. Therefore, the formation of both metabolites was pertially dissociated at 25 mM phosphate. By contrast, nitrogen regulation by ammonium salts or glutamic acid strongly reduced the biosynthesis of both cephamycin and clavulanic acid.  相似文献   

2.
The biosynthesis of secondary metabolites is closely linked to primary metabolism via the supply of precursors, cofactors, and cellular energy. The availability of these precursors and cofactors can potentially be rate-limiting for secondary metabolism. A combined experimental and kinetic modeling approach was used to examine the regulation of flux in the cephamycin biosynthetic pathway in Streptomyces clavuligerus. The kinetic parameters of lysine 6-aminotransferase (LAT), the first enzyme leading to cephamycin biosynthesis and one which was previously identified as being a rate-limiting enzyme, were characterized. LAT converts lysine to alpha-aminoadipic acid using alpha-ketoglutarate as a cosubstrate. The K(m) values for lysine and alpha-ketoglutarate were substantially higher than those for their intracellular concentrations, suggesting that lysine and alpha-ketoglutarate may play a key role in regulating the flux of cephamycin biosynthesis. The important role of this precursor/cosubstrate was supported by simulated results using a kinetic model. When the intracellular concentrations and high K(m) values were taken into account, the predicted intermediate concentration was similar to the experimental measurements. The results demonstrate the controlling roles that precursors and cofactors may play in the biosynthesis of secondary metabolites.  相似文献   

3.
Summary Streptomyces clavuligerus produces cephamycin C while growing on chemically defined basal medium. Cephamycin C production takes place during the exponential growth phase and is accompanied by vigorous activity of the cephamycin C synthetase system and of expandase. An excessive amount of glycerol decreases cephamycin C production. Its negative effect appears to be greatest when it is added in the first phase of fermentation either alone or in the presence of starch. Starch excess also reduces cephamycin C production, but its effect is slight compared with glycerol. Glycerol hinders cephamycin C production by the repression of the cephamycin C synthetase system and particularly expandase biosynthesis. Starch and glycerol inhibit neither cephamycin C synthetase nor expandase activities. However, the phosphorylated intermediates of the glycolytic pathway, glucose 6-phosphate and fructose 1,6-phosphate, strongly inhibit expandase activity.  相似文献   

4.
A Streptomyces clavuligerus gene (designated pcbR) which is located immediately downstream from the gene encoding isopenicillin N synthase in the cephamycin gene cluster was characterized. Nucleotide sequence analysis and database searching of PcbR identified a significant similarity between PcbR and proteins belonging to the family of high-molecular-weight group B penicillin-binding proteins (PBPs). Eight of nine boxes (motifs) conserved within this family of proteins are present in the PcbR protein sequence in the same order and with approximately the same spacing between them. When a mutant disrupted in pcbR was constructed by gene replacement, the resulting pcbR mutant exhibited a significant decrease in its resistance to benzylpenicillin and cephalosporins, indicating that pcbR is involved in beta-lactam resistance in this organism. Western blot (immunoblot) analysis of S. clavuligerus cell membranes using PcbR-specific antibodies suggested that PcbR is a membrane protein. PcbR was also present in cell membranes when expressed in Escherichia coli and was able to bind radioactive penicillin in a PBP assay, suggesting that PcbR is a PBP. When genomic DNAs from several actinomycetes were probed with pcbR, hybridization was observed to some but not all beta-lactam-producing actinomycetes.  相似文献   

5.
Cephamycin C-producing microorganisms use two enzymes to convert cephalosporins to their 7alpha-methoxy derivatives. Here we report the X-ray structure of one of these enzymes, CmcI, from Streptomyces clavuligerus. The polypeptide chain of the enzyme folds into a C-terminal Rossmann domain and a smaller N-terminal domain, and the molecule packs as a hexamer in the crystal. The Rossmann domain binds S-adenosyl-L-methionine (SAM) and the demethylated product, S-adenosyl-L-homocysteine, in a fashion similar to the common binding mode of this cofactor in SAM-dependent methyltransferases. There is a magnesium-binding site in the vicinity of the SAM site with a bound magnesium ion ligated by residues Asp160, Glu186 and Asp187. The expected cephalosporin binding site near the magnesium ion is occupied by polyethyleneglycol (PEG) from the crystallisation medium. The geometry of the SAM and the magnesium binding sites is similar to that found in cathechol O-methyltransferase. The results suggest CmcI is a methyltransferase, and its most likely function is to catalyse the transfer of a methyl group from SAM to the 7alpha-hydroxy cephalosporin in the second catalytic reaction of cephamycin formation. Based on the docking of the putative substrate, 7alpha-hydroxy-O-carbamoyldeacetylcephalosporin C, to the structure of the ternary CmcI-Mg2+-SAM complex, we propose a model for substrate binding and catalysis. In this model, the 7-hydroxy group of the beta-lactam ring ligates the Mg2+ with its alpha-side facing the methyl group of SAM at a distance that would allow methylation of the hydroxyl-group.  相似文献   

6.
Kinetic analysis of cephalosporin biosynthesis in Streptomyces clavuligerus   总被引:1,自引:0,他引:1  
A kinetic model describing the cephalosporin biosynthesis in Streptomyces clavuligerus was developed. Using previously reported kinetic data of biosynthetic enzymes, we examined the kinetics of cephalosporin production. The predicted time profile of the specific production rate during a batch culture parallels that of experimental observation. Sensitivity analysis reveals that delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine (ACV) synthetase is the rate-limiting enzyme. The effect of amplifying ACV synthetase on the specific production rate was analyzed theoretically. Increasing ACV synthetase enhances the production rate initially until ACV synthetase enhances the production rate initially until deacetocycephalosporin C hydroxylase becomes rate-limiting. Such kinetic analysis can provide a rational basis for modifying the biosynthetic machinery of cephalosporin through gene cloning.  相似文献   

7.
8.
《Process Biochemistry》1999,34(4):325-328
Solid state cultivation of Streptomyces clavuligerus for cephamycin C production was carried out in a system consisting of wheat rawa 5 g; cotton seed deoiled cake 5 g; sunflower cake 0·5 g; corn steep liquor 1 g; MgSO4.7H2O 0·06 g; CaCO3 0·1 g; K2HPO4 4·4 g; with initial moisture content of 80%, initial pH 6·5 and a fermentation temperature in the range 28–30°C. The fermentation cycle was about 5 days. Streptomyces clavuligerus growth was observed on the 2nd day and production of cephamycin C was initiated on 3rd day. Abundant mycelial growth was observed from the 3rd day and reached stationary phase by the 5th day. Cephamycin C was produced maximally at a rate of 15 mg/g substrate on the 5th day and was stable until the 30th day with only marginal decrease in titre.  相似文献   

9.
Summary In order to study the mechanism of cephamycin production by streptomycetes and to use genetic recombination in strain development, we undertook genetic studies inStreptomyces lipmanii andS. clavuligerus. S. lipmanii crosses gave 0.005–1.3% prototroph-like colonies, but all segregated back to parental genotypes. Crosses ofS. clavuligerus resulted in lower frequencies of prototroph-like colonies, i.e., 0.00002–0.9%. In ade x ura and ade x his crosses, the recombinant progeny did not segregate back. In arg x ade and arg x his crosses, segregation occurred in about 50% of the progeny. These data demonstrate that true haploid recombinants occur in crosses ofS. clavuligerus. S. lipmanii yielded only heterokaryons and, therefore, is less suitable thanS. clavuligerus for further genetic study.  相似文献   

10.
Biosynthesis of cephamycin C in Streptomyces clavuligerus involves the initial conversion of lysine to alpha-aminoadipic acid. Lysine-6-aminotransferase and piperideine-6-carboxylate dehydrogenase carry out this two-step reaction, and genes encoding each of these enzymes are found within the cephamycin C gene cluster. However, while mutation of the lat gene causes complete loss of cephamycin production, pcd mutants still produce cephamycin at 30% to 70% of wild-type levels. Cephamycin production by pcd mutants could be restored to wild-type levels either by supplementation of the growth medium with alpha-aminoadipic acid or by complementation of the mutation with an intact copy of the pcd gene. Neither heterologous PCR nor Southern analyses showed any evidence for the presence of a second pcd gene. Furthermore, cell extracts from pcd mutants lack detectable PCD activity. Cephamycin production in the absence of detectable PCD activity suggests that S. clavuligerus must have some alternate means of producing the aminoadipyl-cysteinyl-valine needed for cephamycin biosynthesis.  相似文献   

11.
Summary Seven mutants of Streptomyces clavuligerus blocked in the biosynthesis of clavulanic acid, cephamycin C, or both antibiotics, have been isolated and characterized. Mutants nca1 and nca2 were unable to synthesize clavulanic acid but produced cephamycin C. Mutants nce1 and nce2 were completely blocked in cephamycin C production but formed clavulanic acid. A third group (mutants ncc1, ncc4 and ncc5) failed to produce both antibiotics. Arginase activity (forming ornithine) was very low in mutants ncc1 and ncc5. All the mutants blocked in clavulanic acid biosynthesis showed a normal ornithine--aminotransferase activity. Mutant ncc1, blocked in cephamycin biosynthesis, lacked completely lysine--aminotransferase (forming -aminoadipic acid) and isopenicillin N synthase. Two other mutants (nce2 and nce5) lacked isopenicillin N synthase. There was a good correlation between the isopenicillin N synthase and the lysine--aminotransferase activities of the nca mutants and the ability of those strains to produce cephamycin C. The condensing enzyme involved in the formation of the clavulanic acid nucleus appears to be different from the isopenicillin N synthase.Dedicated to Professor H.-J. Rehm on the occasion of his 60th birthday  相似文献   

12.
The aspartate pathway of Streptomyces clavuligerus is an important primary metabolic pathway which provides substrates for β-lactam synthesis. In this study, the hom gene which encodes homoserine dehydrogenase was cloned from the cephamycin C producer S. clavuligerus NRRL 3585 and characterized. The fully sequenced open reading frame encodes 433 amino acids with a deduced M r of 44.9 kDa. The gene was heterologously expressed in the auxotroph mutant Escherichia coli CGSC 5075 and the recombinant protein was purified. The cloned gene was used to construct a plasmid containing a hom disruption cassette which was then transformed into S. clavuligerus. A hom mutant of S. clavuligerus was obtained by insertional inactivation via double crossover, and the effect of hom gene disruption on cephamycin C yield was investigated by comparing antibiotic levels in culture broths of this mutant and in the parental strain. Disruption of hom gene resulted in up to 4.3-fold and twofold increases in intracellular free l-lysine concentration and specific cephamycin C production, respectively, during stationary phase in chemically defined medium.  相似文献   

13.
Summary Production of cephamycin and clavulanic acid by Streptomyces clavuligerus is controlled by the phosphate concentration. Phosphate represses the biosynthesis of cephamycin synthetase, expandase and clavulanic acid synthetase. In the presence of 2 mM phosphate, the specific activities of expandase, cephamycin synthetase and clavulanic acid synthetase were higher than in the presence of 75 mM phosphate. The specific activity of cephamycin synthetase is maximal with an initial phosphate concentration of 10 mM, whereas the specific activity of expandase is maximal with 1 mM phosphate. A correlation between cephamycin synthetase specific activity and expandase specific activity was established at phosphate concentrations higher than 10 mM. This shows that the expandase is an important enzyme in the mechanism by which the phosphate concentration affects the biosynthesis of cephamycin.  相似文献   

14.
Production of cephamycin c and clavulanic acid by Streptomyces clavuligerus was investigated using different media in shake flask condition. Highest cell growth (3.8 g/L) was observed in glycerol, sucrose, proline and glutamic acid (GSPG) medium. Although, GSPG medium supported maximum growth, it was least effective for the synthesis of both cephamycin and clavulanic acid. Yield of cephamycin and clavulanic acid was maximum in dextrin and K medium, respectively. High and low level of constituents of dextrin medium, affected production of both cephamycin and clavulanic acid. Biosynthesis of clavulanic acid was associated with production of cephamycin c.  相似文献   

15.
Palm and palm-kernel oils and their olein and stearin fractions were suitable as the main carbon sources for growth and production of clavulanic acid by Streptomyces clavuligerus. However, oleic and lauric acids were not utilized for growth. A spontaneous mutant, which was selected for higher cephamycin C production, also produced more clavulanic acid with these oils in the medium.  相似文献   

16.
In this study, the effect of homologous multiple copies of the ask gene, which encodes aspartokinase catalyzing the first step of the aspartate pathway, on cephamycin C biosynthesis in S. clavuligerus NRRL 3585 and its hom mutant was investigated. The intracellular pool levels of aspartate pathway amino acids accorded well with the Ask activity levels in TB3585 and AK39. When compared with the control strain carrying vector alone without any gene insert, amplification of the ask gene in the wild strain resulted in a maximum of 3.1- and 3.3-fold increase in specific, 1.7- and 1.9-fold increase in volumetric cephamycin C production when grown in trypticase soy broth (TSB) and a modified chemically defined medium (mCDM), respectively. However, expression of multicopy ask gene in a hom-deleted background significantly decreased cephamycin C yields when the cells were grown in either TSB or mCDM, most probably due to physiological disturbance resulting from enzyme overexpression and high copy number plasmid burden in an auxotrophic host, respectively.  相似文献   

17.
In order to know the effect of supports on cephamycin C production, under similar experimental conditions, S. clavuligerus cells were immobilized with--sponge, 2% agar, 2% and 4% alginate support materials. An experimental set of free cell was also maintained as control. Cephamycin C production by these immobilized and free cells was estimated at 48, 96 and 120 hr of fermentation. In all the cases cephamycin C production was found to be high at 120 hr of fermentation. Sponge was found to be a better support material than other supports used for immobilization.  相似文献   

18.
In Streptomyces clavuligerus, three groups of genes are known to be involved in the biosynthesis of the clavam metabolites. Since antibiotic biosynthetic genes are invariably clustered on the chromosome in prokaryotes, chromosome walking was undertaken in an attempt to show that the three groups of clavam genes would resolve into a single super-cluster when analyzed at larger scale. However, no evidence of linkage between the three groups was obtained. Furthermore, Southern analysis of macro-restriction fragments of genomic DNA separated by pulsed-field gel electrophoresis also indicated that the three groups of genes are not linked. Despite the structural and biosynthetic relatedness of the clavam metabolites, our results suggest that the genes involved in their production lie in three unlinked gene clusters. We believe that this represents the first instance in bacteria of genes involved in the biosynthesis of a single family of antibiotics sharing a common biosynthetic pathway and yet residing in three separate locations on the chromosome.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号