首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The in vitro proliferative response to purified allergens of the grass, Lolium perenne pollens was studied using PBMC from individuals allergic to grass pollens and Ag-specific T cell lines and T cell clones derived from them. The PBMC from all 10 subjects studied showed a strong response to Lol p I and most of them (8 of 10) also responded to Lol p III. Although Lol p II induced a moderate response in 4 of 10 individuals, it did not induce any response in others at all the Ag concentrations tested. However, one of the subjects (JH) responded to, besides Lol p I, both Lol p II and Lol p III equally well. Analysis of Ag-specific T cell lines and clones derived from three individuals showed varied pattern of reactivity to the Lol p allergens. Some of the Lol p III-specific T cell lines and clones were also stimulated by Lol p I and similarly, some of the Lol p I-specific T cell clones (derived from four other subjects) were stimulated by Lol p III; thus showing a two-way cross-reactivity between those T cells. In both cases, the cross-reactivity to Lol p II, when observed, was lower than that seen with Lol p I and Lol p III. Comparison of amino acid sequences of the three Lol p proteins revealed a significant level of structural similarity among them, including several segments of identical sequences. Although one of the synthetic peptides of Lol p III sharing appreciable sequence homology with other proteins stimulated PBMC from two subjects, three other peptides did not. Nevertheless, these studies indicated the possible existence of cross-reactive T cell epitope(s) among the grass pollen allergens. Based on these results, the relationship between amino acid sequence homology among the Lol p proteins and their recognition by T cells is discussed.  相似文献   

2.
The complete amino acid sequence of a Lolium perenne (rye grass) pollen allergen, Lol p III, determined by the automated Edman degradation of the protein and its selected fragments, is reported in this paper. Cleavage by enzymatic and chemical techniques established unambiguously the sequence for this 97-residue protein (Mr = 10,909), which lacks cysteine and shows no evidence of glycosylation. The sequence of Lol p III is very similar to that of another L. perenne allergen, Lol p II, which was sequenced recently; of the 97 positions in the two proteins, 57 are occupied by identical amino acids (59% identity). In addition, both allergens share a similar structure with an antibody-binding fragment of a third L. perenne allergen, Lol p I. Since human antibody responsiveness to all these three allergens is associated with HLA-DR3, and since the structure common to the three molecules shows high degrees of amphipathicity in Lol p II and III, we speculate that this common segment in the three molecules might contain or contribute to the respectively Ia/T-cell sites.  相似文献   

3.
The use of mAb allowed us to further analyze the cross-reactivity between purified Dac g I and Lol p I, the major allergens of Dactylis glomerata (cocksfoot) and Lolium perenne (Rye grass), respectively. It was first shown, using IEF, followed by immunoprinting, that serum IgE antibodies from most grass-sensitive patients recognize both Dac g I and Lol p I. Second, three different anti-Lol p I mAb, 290A-167, 348A-6, and 539A-6, and one anti-Dac g I mAb, P3B2 were all shown to react with Dac g I and Lol p I, indicating that the two molecules share common epitopes. Epitope specificity of the mAb was determined by competitive binding inhibition of a given labeled mAb to solid phase fixed Dac g I or Lol p I by the mAb. The results indicated that the four mAb are directed against four different and non-overlapping epitopes present on both allergens. Using double-binding RIA, our data strongly suggest that the common epitopes are not repetitive on both molecules. In addition to their similar physicochemical characteristics, such as isolectric points and m.w., Dac g I and Lol p I share four identical epitopes. Binding inhibition of human IgE to Lol p I and Dac g I by the mAb was also assessed. The results indicated that each mAb was able to inhibit such reactions to variable degree but no additive inhibition was observed when two mAb of different specificities were used in combination, suggesting that the human IgE binding site is partially shared by each epitope recognized by the four mAb.  相似文献   

4.
The complete amino acid sequence of a Lolium perenne (rye grass) pollen allergen, Lol p II was determined by automated Edman degradation of the protein and selected fragments. Cleavage of the protein by enzymatic and chemical techniques established an unambiguous sequence for the protein. Lol p II contains 97 amino acid residues, with a calculated molecular weight of 10,882. The protein lacks cysteine and glutamine and shows no evidence of glycosylation. Theoretical predictions by Fraga's (Fraga, S. (1982) Can. J. Chem. 60, 2606-2610) and Hopp and Woods' (Hopp, T. P., and Woods, K. R. (1981) Proc. Natl. Acad. Sci. U.S.A. 78, 3824-3828) methods indicate the presence of four hydrophilic regions, which may contribute to sequential or parts of conformational B-cell epitopes. Analysis of amphipathic regions by Berzofsky's method indicates the presence of a highly amphipathic region, which may contain, or contribute to, an Ia/T-cell epitope. This latter segment of Lol p II was found to be highly homologous with an antibody-binding segment of the major rye allergen Lol p I and may explain why immune responsiveness to both the allergens is associated with HLA-DR3.  相似文献   

5.
The allergens of different grass species share similar physicochemical and immunological features that account for the high incidence of allergenic cross-reactivity. We aimed to gain more information on the correlation between Poaceae airborne pollen and allergen concentration and hence make a reliable assessment of true pollen exposure in different bioclimatic areas. The release of Lol p 1 allergen from grass pollen differs between years and areas depending on variables like meteorological factors, biological sources, and cross-reactions with homologous allergens. This study monitored airborne pollen concentrations of grasses and Lol p 1 aeroallergen in León and Ourense, two cities with different climatic conditions located in northwestern Spain. Lol p 1 content in aerosol samples was quantified using specific ELISA antibody plates. Some our results show that Lol p 1 concentration increases when the atmospheric relative humidity is below 70%. This could explain the appearance of protein peaks at times when little or no grass pollen is present, especially after a short and heavy storm.  相似文献   

6.
7.
The relationship between HLA type and specific immune responsiveness toward ultrapure Ambrosia artemisiifolia (short ragweed) pollen allergen Amb a VI (Ra6) was explored in a genetic-epidemiologic study of groups of 116 and 81 Caucasoid subjects who were skin-test \ positive (ST) toward common environmental allergens. Specific immune responsiveness to Amb a VI was assessed by measuring serum IgE and IgG antibodies (Abs) by double Ab radioimmunoassay in both ST groups. Significant associations were found between IgE Ab responsiveness to Amb a VI and the possession of HLA-DR5; P values for the two groups were, respectively, 7 × 10–7 and 1 × 10–3 by nonparametric analyses, and 4 × 10–11 and 5 × 10–8 by parametric analyses. The levels of significance for the associations between HLA-DR5 and IgG Ab responsiveness were highly dependent on the extent of ragweed immunotherapy (Rx) within the patient group; by parametric statistics, the associations were 10–11 for the group that had received relatively little Rx and 2 × 10–3 for the group that had received more intensive Rx. These results provide further striking evidence for the existence of specific HLA-linked human Ir genes involved in responsiveness toward inhaled allergens and illustrate the usefulness of the allergy model in studies of the genetic basis of human immune responsiveness. Extension of these studies to investigation of structure-function relationships involved in antigen recognition by Ia molecules and the T-cell receptor will lead to a better understanding of human susceptibility toward immunologic diseases.Abbreviations used in this paper Ab antibody - Amb a VI Amb a V, new IUIS nomenclature for Ambrosia artemisiifolia pollen allergens nos. 6 and 5 (short ragweed Ra6 and Ra5) (Marsh et al. 1986b) - Lol p II, III new IUIS nomenclature for Lolium perenne pollen allergens II and III (perennial rye grass, Rye II and Rye III) (Marsh et al. 1986b) - BBS borate-buffered physiologic saline - BSA bovine serum albumin - DARIA double-antibody radioimunoassay - Ia immune-associated - PAGE polyacrylamide gel electrophoresis - RIST radioimmunosorbent test - Rx immunotherapy - SDS sodium dodecyl sulfate - ST skin test  相似文献   

8.
The present study disclosed the cross-reactivity between Bermuda grass pollen (BGP) and other grass pollens using monoclonal antibodies (MAbs) and polyclonal antiserum. MAb 9–13, directed against a group of minor allergens of BGP (Cyn d Bd68K, 48K, 38K) was found to cross-react with extracts of ten other grass pollens. Immunoblotting assays illustrated that MAb 9–13 cross-reacted with multiple components of most of these pollens, and the major cross-reactive components had molecular weights of 29–36 kD. The cross-reactivity between BGP andLol pI, the group I allergen of rye grass pollen, was further evaluated;Lol pI was recognized by MAb 9–13, but not by our MAbs/polyclonal antiserum againstCyn dI, the major allergen of BGP. These results suggest that the epitope recognized by MAb 9–13 is a common (C) epitope shared byLol pI andCyn d Bd68K, 48K, 38K, andCyn dI does not share significant antigenicity withLol pI. In a modified radio-allergosorbent test, IgE antibodies in the serum of BGP-allergic patients reacted mildly with C-epitope-bearing components of both BGP and rye grass pollens, and this binding could be blocked specifically by MAb 9–13. This suggests that in addition to an antigenic cross-reaction, the C epitope can also lead to an allergenic cross-reaction.  相似文献   

9.

Background

Grass pollen, in particular from Lolium multiflorum is a major allergen source in temperate climate zones of Southern Brazil. The IgE sensitization profile of Brazilian grass pollen allergic patients to individual allergen molecules has not been analyzed yet.

Objective

To analyze the IgE sensitization profile of a Brazilian grass pollen allergic population using individual allergen molecules.

Methods

We analyzed sera from 78 grass pollen allergic patients for the presence of IgE antibodies specific for 103 purified micro-arrayed natural and recombinant allergens by chip technology. IgE-ELISA inhibition experiments with Lolium multiflorum, Phleum pratense extracts and a recombinant fusion protein consisting of Phl p 1, Phl p 2, Phl p 5 and Phl p 6 were performed to investigate cross-reactivities.

Results

Within the Brazilian grass pollen allergic patients, the most frequently recognized allergens were Phl p 1 (95%), Phl p 5 (82%), Phl p 2 (76%) followed by Phl p 4 (64%), Phl p 6 (45%), Phl p 11 (18%) and Phl p 12 (18%). Most patients were sensitized only to grass pollen allergens but not to allergens from other sources. A high degree of IgE cross-reactivity between Phleum pratense, Lolium multiflorum and the recombinant timothy grass fusion protein was found.

Conclusions

Component-resolved analysis of sera from Brazilian grass pollen allergic patients reveals an IgE recognition profile compatible with a typical Pooideae sensitization. The high degree of cross-reactivity between Phleum pratense and Lolium multiflorum allergens suggests that diagnosis and immunotherapy can be achieved with timothy grass pollen allergens in the studied population.  相似文献   

10.
Cross-reactions among carbonic anhydrases (CAs) I, II, and III were studied using a variety of antisera: (1) a rabbit antiserum to bovine CA III, (2) mouse antisera to human CA I, CA II, and CA III; and (3) five monoclonal antibodies prepared by the hybridoma technique using splenocytes from a mouse immunized with human CAs I and II and bovine CA III. Cross-reactions between CAs were readily found by binding assays using these antisera. Human CA I, but not human CA II, inhibited the reaction of the rabbit anti-CA III with its homologous antigen. Mouse antisera to CA I or CA II bound the homologous I or II with nearly as great efficiency as the autologous isozyme and sometimes weakly bound CA III. Mouse antisera to CA III frequently bound CA I or II. These cross-reactions were confirmed by the first use of hybridoma-prepared, monoclonal antibodies to CAs. The mouse monoclonal antibodies to CA isozymes varied in the amount of cross-reactivity among I, II, and III: at one extreme, one monoclonal was highly specific for the autologous CA III; at the other extreme, one monoclonal weakly reacted with some examples of CAs I, II, and III.This work was supported by NIH Grant GM-24681 and a grant from the National Foundation-March of Dimes.  相似文献   

11.
Summary In Melbourne, Australia, grass pollen allergens, especially from ryegrass, are a major cause of allergic hayfever and asthma. This review outlines recent developments in our understanding of how grass pollen allergens find their way into the atmosphere and how they are transported in particulate form. Much of this work has relied on antibody technology in immunological and immunocytochemical investigations. The localisation of allergens in situ has proved difficult due to their water-soluble character. Recently, allergens have been localised in developing ryegrass pollen by dryfixation, rapid-freeze and freeze-substitution techniques. This involved anthers being substituted in a mixture of aldehydes, organic solvents, and 2,2-dimethoxypropane. Incubation in dimethylsulfoxide prior to embedding in LR Gold resin provided good infiltration with freeze-substituted material. Immunogold-labelled sections show that the major allergens, Lol p 1 and Lol p 5, are synthesised in the pollen cytoplasm from the early bicellular stage, soon after the first starch granules are formed. From the early tricellular stage, Lol p 5 moves into the starch granules where it remains until maturity. Lol p 1 is localised in the cytoplasm of mature pollen grains. The incidence of airborne grass pollen, as measured in pollen traps, correlates with hayfever symptoms. Forecasting models which rely on rainfall and temperature data have been produced for the grass pollen (daily and seasonal) counts in Melbourne. Research over the past six years has shed light on the causes of grass-pollen-induced asthma. Micronic particles in the atmosphere may be starch granules originating from pollen grains osmotically ruptured by rainwater. Ultrastructural and immunological characterisation of micronic particles collected from outdoor air filters confirm the presence of airborne starch granules. These are loaded with grass pollen allergens, occur in the atmosphere especially after rainfall, and correlate significantly with instances of allergic asthma. Diesel particles might also play a role in the transmission of grass pollen allergens and thus become an extra asthma trigger. A variation in the mode of release of micronic particles occurs in other species, such as birch, where such particles are derived from burst birch pollen tubes. These particles are positive for Bet v 1 and are starch granules which are released into the atmosphere after light rain as a result of pollen germination on, e.g., leaves. After subsequent rupture of pollen tubes their contents are released when conditions become drier.Abbreviations DECP diesel exhaust carbon particles - DMP 2,2-dimethoxypropane - GPC grass pollen count - IgE immunoglobulin E - IgG immunoglobulin G - OGPS onset of the grass pollen season  相似文献   

12.
Ryegrass pollen (Lolium species) is a widespread source of air-borne allergens and is a major cause of hayfever and seasonal allergic asthma, which affect approximately 25% of the population in cool temperate climates. The main allergens of ryegrass pollen are the proteins Lol p 1 and Lol p 2. These proteins belong to two major classes of grass pollen allergens to which over 90% of pollen-allergic patients are sensitive. The functional role in planta of these pollen allergen proteins remains largely unknown. Here we describe the generation and analysis of transgenic plants with reduced levels of the main ryegrass pollen allergens, Lol p 1 and Lol p 2 in the most important worldwide cultivated ryegrass species, L. perenne and L. multiflorum. These transgenic plants will allow the study of the functional role in planta of these pollen proteins and the determination of potential for development of hypo-allergenic ryegrass cultivars.  相似文献   

13.
14.
We reported previously the primary structure of three full-length cDNA clones that encode a new group of IgE-binding proteins of Kentucky bluegrass (KBG) pollen, designated as Poa p IX. In the present study we have further characterized the cloned Poa p IX proteins, identified the corresponding proteins in KBG pollen extract, and determined their antigenic relationships with other known grass pollen allergens. A recombinant IgE-binding polypeptide rKBG7.2 that represents the C-terminal fragment, conserved in Poa p IX proteins, appeared to contain epitopes unique to these proteins and served as an immunosorbent for the isolation of the corresponding human IgE antibodies. On two-dimensional PAGE blots these IgE antibodies bound selectively to five distinct KBG pollen proteins with molecular mass 28 to 34 kDa and isoelectric point greater than 9.5. These proteins differ in size and charge from known allergens, but are very similar to those of the recombinant Poa p IX proteins. The rKBG3.1, which represents the N-terminal region of the Poa p IX clone KBG31, as well as the corresponding natural allergens were shown to possess epitopes that crossreact with the acidic group V allergens of Timothy. Comparison of amino acid sequences of recombinant Poa p IX proteins with those of Lol p I isoallergens revealed no significant sequence similarities. In contrast, partial homology was demonstrated between the N-terminal sequences of these proteins and the Phl p V proteins. Our results confirm that the Poa p IX clones represent a distinct and major group of allergens of KBG pollen, and demonstrate structural similarities and antigenic cross-reactivities among different groups of allergenic proteins in grass pollens.  相似文献   

15.
The complete amino acid sequence of two "isoallergenic" forms of Lol p I, the major rye grass (Lolium perenne) pollen allergen, was deduced from cDNA sequence analysis. cDNA clones isolated from a Lolium perenne pollen library contained an open reading frame coding for a 240-amino acid protein. Comparison of the nucleotide and deduced amino acid sequence of two of these clones revealed four changes at the amino acid level and numerous nucleotide differences. Both clones contained one possible asparagine-linked glycosylation site. Northern blot analysis shows one RNA species of 1.2 kilobases. Based on the complete amino acid sequence of Lol p I, overlapping peptides covering the entire molecule were synthesized. Utilizing these peptides we have identified a determinant within the Lol p I molecule that is recognized by human leukocyte antigen class II-restricted T cells obtained from persons allergic to rye grass pollen.  相似文献   

16.
Upon immunization of mice with a mAb (290A-167) directed against an epitope of Lol p I (the major allergenic determinant of Lolium perenne), both anti-idiotypic (aId) mAb (Ab2) and anti-aId mAb (Ab3) were produced. The Ab2 displayed the following internal image properties of Lol p I: it can be affinity-purified on an immobilized Id column; its binding to the anti-Lol p I mAb (290A-167) is inhibited by Lol p I; it inhibits in a dose-response fashion the binding of the specific Id to Ag. It is recognized by anti-Lol p I antisera from different species such as mouse, human, and goat. The Ab3 which binds to Lol p I was also produced from the same fusion. This binding was inhibited significantly by aId mAb (Ab2), anti-Lol p I mAb (290A-167) and Lol p I. These data indicate that the two mAb with specificity for Lol p I (290A-167 and Ab3) share similar reactivity to the Ag and that aId mAb is the internal image of the epitope recognized by the Id. We showed also that the capacity of rabbit aId Ab directed against the 290A-167 Id to inhibit the binding of Ab1 and Ab3 to Ag was almost abolished by passage over a Ab3-coated Sepharose column. This would suggest that not only are the two mAb with reactivity to Lol p I (Ab1 and Ab3) directed against identical epitopes, but that they in fact shared identical idiotopes as well. The production of identical mAb upon immunization with either the Ag or the aId mAb supports that the conceptual framework proposed by Jerne finds its biologic application in the course of an immune response.  相似文献   

17.
The grass pollen allergen Lol p III (M r11 000) is a well-characterized antigen that has been found useful in immunogenetic studies of human immune responsiveness. Since immune responsiveness to this allergen is associated with HLA-DR3, we investigated whether there was any sequence in the HLA-D region that would render a person susceptible [antibody (Ab)-positive] to the allergen. By sequence-specific oligonucleotide (SSO) slot-blot and sequence analyses of polymerase chain reaction (PCR)-amplified genomic DNA from Lol p III responder and nonresponder subjects, Ab responsiveness was found to be strongly associated with the sequence Glu-Tyr-Ser-Thr-Ser (EYSTS), present in the first polymorphic regions of DRI polypeptide chains of DR3, DR11 (split of DR5), and DRw6. Of the 41 grass-allergic subjects investigated, 19 had the EYSTS sequence, of whom 18 (95%) were Lol p III immunoglobulin G (IgG) Ab responder; among the 22 EYSTS- subjects, ten were Lol p III responders (P=0.0001, relative risk=21.6). No such association was found with any polymorphic sequences in othe DR chains,or in DQI and DQI chains. These findings suggest that the EYSTS sequence is important in the presentation of an epitope of Lol p III; other sequence(s) may be involved in the presentation of othe epitope(s). To our knowledge, this is the first demonstration of a strong association between a specific HLA sequence and immune responsiveness to a well-defined antigen. The paper shows that presence of the EYSTS sequence classifies subjects as Lol p III responders in 18/19 cases.  相似文献   

18.
A novel isoform of a major rye grass pollen allergen Lol p 5 was isolated from a cDNA expression library. The new isoform, Lol p 5C, shares 95% amino acid sequence identity with Lol p 5A. Both isoforms demonstrated shared antigenic activity but different allergenic activities. Recombinant Lol p 5C demonstrated 100% IgE reactivity in 22 rye grass pollen sensitive patients. In comparison, recombinant Lol p 5A showed IgE reactivity in less than 64% of the patients. Therefore, Lol p 5C represents a novel and highly IgE-reactive isoform allergen of rye grass pollen.  相似文献   

19.
1. Three zymogens have been isolated from human gastric mucosae and two from the stomachs of the toad Caudiverbera caudiverbera. 2. Human zymogens I and III were immunologically related and cross-reacted with antisera prepared against porcine pepsinogen. The third, (II), showed no cross-reactivity. 3. Human zymogens I and III and toad zymogen ZII gave rise to two human pepsins and to a pepsin-like enzyme, respectively. 4. Human zymogen II (gastricsinogen) and toad zymogen ZI gave rise to human gastricsin and to a gastricsin-like enzyme respectively. 5. The toad enzymes showed much greater stability at neutral and alkaline pH values than the human enzymes.  相似文献   

20.
Pollen allergens interact with the human immune system and the resulting IgE antibodies provide specific probes for their identification and characterisation. In one case, grass allergenic proteins are expressed late in pollen development coincident with the laying down of reserves. Sequence similarity of allergens has indicated possible functions for some allergens. The major birch pollen allergen shows sequence similarity with pathogenesis-related proteins, which form a secondary response in plant host-pathogen interactions and show anti-microbial activity. Some allergens of unknown function are cysteine-rich proteins, while some others have cysteine-rich regions; for example, the major allergen from rye-grass pollen, Lol p 1, has a cysteine-rich N-terminal region, while at the C-terminal region four tryptophan residues together with tyrosine and phenylalanine residues resemble those of cellulose- or sugar-binding domains of other proteins. Several pollen allergens show sequence similarity to cell wall-associated enzymes, while others show hydrolytic enzyme activity often associated with cell walls.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号