首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Levels of parasitism are continuously distributed in nature. Models of host-parasite coevolution, however, typically assume that species can be easily characterized as either parasitic or non-parasitic. Consequently, it is poorly understood which factors influence the evolution of parasitism itself. We investigate how ploidy level and the genetic mechanisms underlying infection influence evolution along the continuum of parasitism levels. In order for parasitism to evolve, selective benefits to the successful invasion of hosts must outweigh the losses when encountering resistant hosts. However, we find that exactly where this threshold occurs depends not only on the strength of selection, but also on the genetic model of interaction, the ploidy level in each species, and the nature of the costs to virulence and resistance. With computer simulations, we are able to incorporate more realistic dynamics at the loci underlying species interactions and to extend our analyses in a number of directions, including finite population sizes, multiple alleles and different generation times.  相似文献   

2.
I present a simple model that considers how three factors—change,regularity, and value— influence the evolution of animallearning. Change and regularity are considered by introducingtwo terms that measure environmental persistence. One term,"between-generation persistence, " defines the extent to whichstates in the parental generation predict states in the offspringgeneration; the other term, "within-generation persistence,"defines the extent to which today predicts tomorrow within anindividual's lifetime. Within-generation persistence is shownto be the most important of these two terms. When there is somechange, increasing the within-generation persistence promotesthe evolution of learning, and the between-generation persistenceterm has no effect. However, when the environment is almostcompletely fixed, then increasing change, either within or betweengenerations, promotes the evolution of learning. This occursbecause (1) the change required to promote the evolution oflearning can occur either within or between generations eventhough (2) the regularity required to promote the evolutionof learning must come within an animal's lifetime. The regionof absolute fixity, in which learning does not generally evolve,is relatively small. The results for value, or payoffs, suggestthat learning is most useful when all the alternatives to learningyield about the same payoff. [Behav Ecol 1991; 2: 77–89]  相似文献   

3.
Cotter SC  Edwards OR 《Heredity》2006,96(5):396-402
If a novel, resistant host-plant genotype arises in the environment, insect populations utilising that host must be able to overcome that resistance in order that they can maintain their ability to feed on that host. The ability to evolve resistance to host-plant defences depends upon additive genetic variation in larval performance and adult host-choice preference. To investigate the potential of a generalist herbivore to respond to a novel resistant host, we estimated the heritability of larval performance in the noctuid moth, Helicoverpa armigera, on a resistant and a susceptible variety of the chickpea, Cicer arietinum, at two different life stages. Heritability estimates were higher for neonates than for third-instar larvae, suggesting that their ability to establish on plants could be key to the evolution of resistance in this species; however, further information regarding the nature of selection in the field would be required to confirm this prediction. There was no genetic correlation between larval performance and oviposition preference, indicating that female moths do not choose the most suitable plant for their offspring. We also found significant genotype by environment interactions for neonates (but not third-instar larvae), suggesting that the larval response to different plant genotypes is stage-specific in this species.  相似文献   

4.
Tumours are comprised of populations of mutant cells that are undergoing rapid cell division. The high mutation rate and rapid cell growth results in rapid evolution of the phenotypes required for tumour growth. Short cell cycles, angiogenesis, chemotherapy resistance and metastasis quickly evolve. Here I suggest that the genetic system of cancer cells may be exploited as a potential cancer treatment. If a cancer cell population is supplemented with agents that render some of the genes conditionally neutral, then eventually, through the process of neutral or near neutral evolution and genetic drift, all the cells in the tumour may become dependent on supplementation and the tumour may consequently be controllable through removal of the supplement. I suggest possible methods of suppressing mutations and detail factors that may influence the rate of fixation of the conditionally neutral mutations and the mean time taken for all cells to become dependent on supplementation. In addition I discuss some possible interactions between this method and traditional approaches to cancer therapy.  相似文献   

5.
M Boots  A White  A Best  R Bowers  P Thrall 《Ecology letters》2012,15(10):1104-1111
Variation for resistance to infectious disease is ubiquitous and critical to host and parasite evolution and to disease impact, spread and control. However, the processes that generate and maintain this diversity are not understood. We examine how ecological feedbacks generate diversity in host defence focussing on when polymorphism can evolve without co-evolution of the parasite. Our key result is that when there is heritable variation in hosts in both their transmissibility and susceptibility along with costs to resistance, there is the possibility of the evolution of polymorphism. We argue that a wide range of behavioural or physiological mechanisms may lead to relationships between transmissibility and susceptibility that generate diversity. We illustrate this by showing that a tendency for higher contacts between related individuals leads to polymorphism. Only dimorphisms can evolve when infection is determined only by an individuals' susceptibility or when transmissibility and susceptibility are simply positively or negatively correlated.  相似文献   

6.
The evolution of multicellularity is a major transition that is not yet fully understood. Specifically, we do not know whether there are any mechanisms by which multicellularity can be maintained without a single‐cell bottleneck or other relatedness‐enhancing mechanisms. Under low relatedness, cheaters can evolve that benefit from the altruistic behaviour of others without themselves sacrificing. If these are obligate cheaters, incapable of cooperating, their spread can lead to the demise of multicellularity. One possibility, however, is that cooperators can evolve resistance to cheaters. We tested this idea in a facultatively multicellular social amoeba, Dictyostelium discoideum. This amoeba usually exists as a single cell but, when stressed, thousands of cells aggregate to form a multicellular organism in which some of the cells sacrifice for the good of others. We used lineages that had undergone experimental evolution at very low relatedness, during which time obligate cheaters evolved. Unlike earlier experiments, which found resistance to cheaters that were prevented from evolving, we competed cheaters and noncheaters that evolved together, and cheaters with their ancestors. We found that noncheaters can evolve resistance to cheating before cheating sweeps through the population and multicellularity is lost. Our results provide insight into cheater–resister coevolutionary dynamics, in turn providing experimental evidence for the maintenance of at least a simple form of multicellularity by means other than high relatedness.  相似文献   

7.
We present a general host–parasite model that unifies previous theory by investigating the coevolution of virulence, resistance, and tolerance, with respect to multiple physiological, epidemiological, and environmental parameters. Four sets of new predictions emerge. First, compared to virulence coevolving with resistance or tolerance, three‐trait coevolution promotes more virulence and less tolerance, and broadens conditions under which pure defenses evolve. Second, the cost and efficiency of virulence and the epidemiological rates are the key factors of virulence coevolving with resistance and tolerance. Maximum virulence evolves for intermediate infection rate, at which coevolved levels of resistance and tolerance are both high. The influence of host and parasite background mortalities is strong on the evolution of defenses and weak on the coevolution of virulence. Third, evolutionary correlations between defenses can switch sign along single‐parameter gradients. The evolutionary trade‐off between resistance and tolerance may coevolve with virulence that either increases or decreases monotonically, depending on the underlying parameter gradient. Fourth, despite global attractiveness and stability of coevolutionary equilibria, not‐so‐rare and not‐so‐small mutations can beget large variation in virulence and defenses around equilibrium, in the form of transient “evolutionary spikes.” Implications for evolutionary management of infections are discussed and directions for future research are outlined.  相似文献   

8.
We model the coevolution of behavioral strategies and social learning rules in the context of a cooperative dilemma, a situation in which individuals must decide whether or not to subordinate their own interests to those of the group. There are two learning rules in our model, conformism and payoff-dependent imitation, which evolve by natural selection, and three behavioral strategies, cooperate, defect, and cooperate, plus punish defectors, which evolve under the influence of the prevailing learning rules. Group and individual level selective pressures drive evolution.We also simulate our model for conditions that approximate those in which early hominids lived. We find that conformism can evolve when the only problem that individuals face is a cooperative dilemma, in which prosocial behavior is always costly to the individual. Furthermore, the presence of conformists dramatically increases the group size for which cooperation can be sustained. The results of our model are robust: they hold even when migration rates are high, and when conflict among groups is infrequent.  相似文献   

9.
Recent years have seen renewed interest in phage therapy – the use of viruses to specifically kill disease‐causing bacteria – because of the alarming rise in antibiotic resistance. However, a major limitation of phage therapy is the ease at with bacteria can evolve resistance to phages. Here, we determined whether in vitro experimental coevolution can increase the efficiency of phage therapy by limiting the resistance evolution of intermittent and chronic cystic fibrosis Pseudomonas aeruginosa lung isolates to four different phages. We first pre‐adapted all phage strains against all bacterial strains and then compared the efficacy of pre‐adapted and nonadapted phages against ancestral bacterial strains. We found that evolved phages were more efficient in reducing bacterial densities than ancestral phages. This was primarily because only 50% of bacterial strains were able to evolve resistance to evolved phages, whereas all bacteria were able to evolve some level of resistance to ancestral phages. Although the rate of resistance evolution did not differ between intermittent and chronic isolates, it incurred a relatively higher growth cost for chronic isolates when measured in the absence of phages. This is likely to explain why evolved phages were more effective in reducing the densities of chronic isolates. Our data show that pathogen genotypes respond differently to phage pre‐adaptation, and as a result, phage therapies might need to be individually adjusted for different patients.  相似文献   

10.
Using an individual-based and genetically explicit simulation model, we explore the evolution of sociality within a population-ecology and nonlinear-dynamics framework. Assuming that individual fitness is a unimodal function of group size and that cooperation may carry a relative fitness cost, we consider the evolution of one-generation breeding associations among nonrelatives. We explore how parameters such as the intrinsic rate of growth and group and global carrying capacities may influence social evolution and how social evolution may, in turn, influence and be influenced by emerging group-level and population-wide dynamics. We find that group living and cooperation evolve under a wide range of parameter values, even when cooperation is costly and the interactions can be defined as altruistic. Greater levels of cooperation, however, did evolve when cooperation carried a low or no relative fitness cost. Larger group carrying capacities allowed the evolution of larger groups but also resulted in lower cooperative tendencies. When the intrinsic rate of growth was not too small and control of the global population size was density dependent, the evolution of large cooperative tendencies resulted in dynamically unstable groups and populations. These results are consistent with the existence and typical group sizes of organisms ranging from the pleometrotic ants to the colonial birds and the global population outbreaks and crashes characteristic of organisms such as the migratory locusts and the tree-killing bark beetles.  相似文献   

11.
Glycans, oligo- and polysaccharides secreted or attached to proteins and lipids, cover the surfaces of all cells and have a regulatory capacity and structural diversity beyond any other class of biological molecule. Glycans may have evolved these properties because they mediate cellular interactions and often face pressure to evolve new functions rapidly. We approach this idea two ways. First, we discuss evolutionary innovation. Glycan synthesis, regulation, and mode of chemical interaction influence the spectrum of new forms presented to evolution. Second, we describe the evolutionary conflicts that arise when alleles and individuals interact. Glycan regulation and diversity are integral to these biological negotiations. Glycans are tasked with such an amazing diversity of functions that no study of cellular interaction can begin without considering them. We propose that glycans predominate the cell surface because their physical and chemical properties allow the rapid innovation required of molecules on the frontlines of evolutionary conflict.  相似文献   

12.
Microevolution in biological control: Mechanisms, patterns, and processes   总被引:4,自引:2,他引:2  
Microevolution may determine both the safety and efficacy of classical biological control. Despite a growing body of literature, there are several key unanswered questions regarding the role of evolution in biological control: (1) How common is local adaptation of natural enemies to their hosts or the environment in the native range? How critical is it for success of biological control to find locally adapted agents for importation? (2) Does adaptive evolution following introductions play an important role in biological control? (3) Do introductions of biological control agents impose bottlenecks in population size that reduce genetic variation, and is reduced genetic variation associated with low fitness and poor performance? (4) How great is the risk of evolution of host range of biological control agents? (5) What is the risk of target pests evolving resistance to biological control agents? If pests evolve increased resistance, will biological control agents evolve mechanisms to overcome that resistance? Here, we review the four fundamental processes of microevolution, and discuss how they interact in the context of biological control. We discuss our current state of knowledge regarding the outstanding questions, highlight the types of experiments that can address them, and suggest ways to use microevolution to define risks, and enhance efficacy and safety of biological control.  相似文献   

13.
Interactions between hosts and parasites provide an ongoing source of selection that promotes the evolution of a variety of features in the interacting species. Here, we use a genetically explicit mathematical model to explore how patterns of gene expression evolve at genetic loci responsible for host resistance and parasite infection. Our results reveal the striking yet intuitive conclusion that gene expression should evolve along very different trajectories in the two interacting species. Specifically, host resistance loci should frequently evolve to co-express alleles, whereas parasite infection loci should evolve to express only a single allele. This result arises because hosts that co-express resistance alleles are able to recognize and clear a greater diversity of parasite genotypes. By the same token, parasites that co-express antigen or elicitor alleles are more likely to be recognized and cleared by the host, and this favours the expression of only a single allele. Our model provides testable predictions that can help interpret accumulating data on expression levels for genes relevant to host-parasite interactions.  相似文献   

14.
Parasite evolution and extinctions   总被引:1,自引:1,他引:0  
We examine the evolution of diseases that show the frequency‐dependent transmission process that is commonly applied to sexually and vector‐transmitted infections. As is commonly found, the basic reproductive ratio (R0) of the parasite is maximized by evolution. This has important implications, as it implies that for a wide range of circumstances diseases that show frequency‐dependent transmission may be selected to evolve towards driving their hosts to extinction. This contrasts with the results obtained in spatially explicit models where although parasite‐driven host extinction may occur, it is unlikely to evolve. We further show that an evolutionary constraint between transmission and virulence is required for evolution to lead to an endemic coexistence of both the host and the disease. Furthermore, this constraint needs to be saturating, such that transmission is ‘bought’ at an increasing cost in terms of virulence, to avoid evolution to extinction.  相似文献   

15.
Mutation and selection are the essential steps of evolution. Researchers have long used in vitro mutagenesis, expression, and selection techniques in laboratory bacteria and yeast cultures to evolve proteins with new properties, termed directed evolution. Unfortunately, the nature of mammalian cells makes applying these mutagenesis and whole-organism evolution techniques to mammalian protein expression systems laborious and time consuming. Mammalian evolution systems would be useful to test unique mammalian cell proteins and protein characteristics, such as complex glycosylation. Protein evolution in mammalian cells would allow for generation of novel diagnostic tools and designer polypeptides that can only be tested in a mammalian expression system. Recent advances have shown that mammalian cells of the immune system can be utilized to evolve transgenes during their natural mutagenesis processes, thus creating proteins with unique properties, such as fluorescence. On a more global level, researchers have shown that mutation systems that affect the entire genome of a mammalian cell can give rise to cells with unique phenotypes suitable for commercial processes. This review examines the advances in mammalian cell and protein evolution and the application of this work toward advances in commercial mammalian cell biotechnology.  相似文献   

16.
The characteristics governing the dynamics of populations can evolve and this evolution can either be towards stability or chaos. Yet it is not obvious how or why such population characteristics can evolve through selection on individuals. In this paper we construct a mathematical model, inspired by experimental results, illustrating the dynamics of a population of competing Drosophila. We demonstrate how selection of life history characteristics and stability influence one another as a population interacts with its environment. We generalize this result and show that population stability can evolve as a consequence of selection on individuals.  相似文献   

17.
Directed molecular evolution in plant improvement   总被引:4,自引:0,他引:4  
Directed molecular evolution is a powerful tool to evolve genes with commercial applications. Its most common application is to evolve enzymes with improved kinetics, altered substrate or product specificities, or improved function in different cellular environments. The technique is beginning to be applied to goals relevant to agriculture. Recent examples include the generation of novel carotenoids, enhanced herbicide detoxification, and the improvement of insect resistance genes.  相似文献   

18.
Expected rates and modes of evolution of enhancer sequences   总被引:11,自引:1,他引:10  
  相似文献   

19.
Parasite host range plays a pivotal role in the evolution and ecology of hosts and the emergence of infectious disease. Although the factors that promote host range and the epidemiological consequences of variation in host range are relatively well characterized, the effect of parasite host range on host resistance evolution is less well understood. In this study, we tested the impact of parasite host range on host resistance evolution. To do so, we used the host bacterium Pseudomonas fluorescens SBW25 and a diverse suite of coevolved viral parasites (lytic bacteriophage Φ2) with variable host ranges (defined here as the number of host genotypes that can be infected) as our experimental model organisms. Our results show that resistance evolution to coevolved phages occurred at a much lower rate than to ancestral phage (approximately 50% vs. 100%), but the host range of coevolved phages did not influence the likelihood of resistance evolution. We also show that the host range of both single parasites and populations of parasites does not affect the breadth of the resulting resistance range in a naïve host but that hosts that evolve resistance to single parasites are more likely to resist other (genetically) more closely related parasites as a correlated response. These findings have important implications for our understanding of resistance evolution in natural populations of bacteria and viruses and other host–parasite combinations with similar underlying infection genetics, as well as the development of phage therapy.  相似文献   

20.
Information of the patterns of genetic variation in plant resistance and tolerance against herbivores and genetic trade‐offs between these two defence strategies is central for our understanding of the evolution of plant defence. We found genetic variation in resistance to two specialist herbivores and in tolerance to artificial damage but not to a specialist leaf herbivore in a long‐lived perennial herb. Seedlings tended to have genetic variation in tolerance to artificial damage. Genetic variation in tolerance of adult plants to artificial damage was not consistent in time. Our results suggest that the level of genetic variation in tolerance and resistance depends on plant life‐history stage, type of damage and timing of estimating the tolerance relative to the occurrence of the damage, which might reflect the pattern of selection imposed by herbivory. Furthermore, we found no trade‐offs between resistance and tolerance, which suggests that the two defence strategies can evolve independently.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号