首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Members of the protein kinase C (PKC) isozyme family are important signal transducers in virtually every mammalian cell type. Within the heart, PKC isozymes are thought to participate in a signaling network that programs developmental and pathological cardiomyocyte hypertrophic growth. To investigate the function of PKC signaling in regulating cardiomyocyte growth, adenoviral-mediated gene transfer of wild-type and dominant negative mutants of PKC alpha, beta II, delta, and epsilon (only wild-type zeta) was performed in cultured neonatal rat cardiomyocytes. Overexpression of wild-type PKC alpha, beta II, delta, and epsilon revealed distinct subcellular localizations upon activation suggesting unique functions of each isozyme in cardiomyocytes. Indeed, overexpression of wild-type PKC alpha, but not betaI I, delta, epsilon, or zeta induced hypertrophic growth of cardiomyocytes characterized by increased cell surface area, increased [(3)H]-leucine incorporation, and increased expression of the hypertrophic marker gene atrial natriuretic factor. In contrast, expression of dominant negative PKC alpha, beta II, delta, and epsilon revealed a necessary role for PKC alpha as a mediator of agonist-induced cardiomyocyte hypertrophy, whereas dominant negative PKC epsilon reduced cellular viability. A mechanism whereby PKC alpha might regulate hypertrophy was suggested by the observations that wild-type PKC alpha induced extracellular signal-regulated kinase1/2 (ERK1/2), that dominant negative PKC alpha inhibited PMA-induced ERK1/2 activation, and that dominant negative MEK1 (up-stream of ERK1/2) inhibited wild-type PKC alpha-induced hypertrophic growth. These results implicate PKC alpha as a necessary mediator of cardiomyocyte hypertrophic growth, in part, through a ERK1/2-dependent signaling pathway.  相似文献   

3.
HIV-1 Tat protein stimulates the production of both TNF-alpha and IL-10 in human monocytes. Taking into account the ability of TNF-alpha to induce IL-10 production, we evaluated the link between Tat, TNF-alpha and IL-10 and the implication of PKC and p38 MAP kinase pathways. Our data showed that (i) in the presence of neutralizing anti-TNF-alpha antibodies, IL-10 production is only partially inhibited; (ii) in a calcium-free medium, while TNF-alpha production is totally inhibited, Tat continues to induce IL-10; (iii) under these conditions, Tat-mediated IL-10 production is associated with PKC-delta activation; and (iv) downstream of PKC, p38 MAP kinase is crucial for TNF-alpha independent IL10 production. Overall, our data suggest a new mechanism, implicating Tat protein, by which HIV-1 may maintain a constant production of the immunosuppressive IL-10 cytokine, even in the absence of TNF-alpha production. In consequence, HIV-1 may escape immune surveillance and thus promote the establishment of an immunosuppressive state.  相似文献   

4.
In this study, we examined the effects of T cell activators on the regulation of protein kinase C (PKC) isozymes present in thymocytes. Using affinity-purified anti-PKC antisera, we determined that the major PKC isoforms in murine thymocytes are PKC beta and PKC epsilon. The CD4+/CD8+ thymocyte subset expressed high levels of both PKC beta and PKC epsilon, whereas the CD4-/CD8- subset expressed much less of both. PKC beta was down-regulated following treatment of thymocytes with phorbol 12-myristate acetate (PMA) (2 x 10(-8) M) or ionomycin (0.4 microM). In contrast, PMA did not induce the down-regulation of PKC epsilon. Ionomycin alone, however, induced PKC epsilon down-regulation, similar to its effect on PKC beta. Similar observations were made on a promonocytic cell line, U937, which expresses PKC alpha, PKC beta (Strulovici, B., Daniel-Issakani, S., Oto, E., Nestor, J., Jr., Chan, H., and Tsou, A.-P. (1989) Biochemistry 28, 3569-3576), and PKC epsilon. To facilitate the study of PKC beta and PKC epsilon, we established a Chinese hamster ovary cell line which expresses murine PKC epsilon in addition to endogenous PKC alpha and PKC beta. Both PKC isoforms (beta and epsilon) were mostly in particulate form. PMA treatment left the majority of immunoreactive PKC epsilon intact. By contrast, thrombin treatment caused the disappearance of particulate and cytosolic PKC epsilon (60% by 10 min and 80% by 1 h). PMA and thrombin promoted the down-regulation of PKC beta with similar kinetics (100% down-regulation by 3 h). These results indicate that: 1) thymocytes express PKC epsilon; and 2) this isozyme exhibits a novel form of regulation distinct from the other PKC isozymes.  相似文献   

5.
By the use of cloned cDNAs for protein kinase C isozymes alpha, beta I, beta II, gamma, and those for novel protein kinase C, epsilon and zeta, the expression of the corresponding mRNA species was examined in various mouse tissues, human lymphoid cell lines, and mouse cell lines of neuronal origin. In adult brain, mRNAs for all the isozymes of PKC family are expressed. However, the expression of these mRNA species in brain is low at birth. A similar pattern of expression was also observed for beta I/beta II mRNAs in spleen. These expression patterns are in clear contrast to that for beta I/beta II mRNAs in thymus where the mRNAs are expressed at birth and the levels of expression decrease with age. Human lymphoid cell lines express large amounts of PKC beta mRNAs in addition to PKC alpha. Further, nPKC epsilon mRNA is expressed in some of these cell lines. On the other hand, all the mouse cell lines of neuronal origin tested express nPKC epsilon and zeta in addition to PKC alpha. In a mouse neuroblast cell line, Neuro 2a, down modulation of mRNAs for both PKC alpha and nPKC epsilon was observed in association with in vitro differentiation.  相似文献   

6.
7.
Individual protein kinase C (PKC) isoforms fulfill distinct roles in the regulation of the commitment to differentiation, cell cycle arrest, and apoptosis in both monocytes and T-cells. The human monocyte like cell line U937 and T-cells were exposed to microgravity, during spaceflight and the translocation (a critical step in PKC signaling) of individual isoforms to cell particulate fraction examined. PKC activating phorbol esters induced a rapid translocation of several PKC isoforms to the particulate fraction of U937 monocytes under terrestrial gravity (1 g) conditions in the laboratory. In microgravity, the translocation of PKC beta II, delta, and epsilon in response to phorbol esters was reduced in microgravity compared to 1 g, but was enhanced in weak hypergravity (1.4 g). All isoforms showed a net increase in particulate PKC following phorbol ester stimulation, except PKC delta which showed a net decrease in microgravity. In T-cells, phorbol ester induced translocation of PKC delta was reduced in microgravity, compared to 1 g, while PKC beta II translocation was not significantly different at the two g-levels. These data show that microgravity differentially alters the translocation of individual PKC isoforms in monocytes and T-cells, thus providing a partial explanation for the modifications previously observed in the activation of these cell types under microgravity.  相似文献   

8.
To determine if selective activation of individual isozymes of protein kinase C (PKC) might explain the apparently divergent effects of PKC stimulation on platelets, we purified and characterized the isozymes from both platelets and human erythroleukemia (HEL) cells, a cell line that has many features of megakaryocytes. Two peaks of platelet PKC activity were resolved by hydroxylapatite chromatography; immunoblot analysis revealed that these two peaks represented the alpha and beta isozymes of PKC. In contrast, HEL cells produced only a single peak that contained the beta isozyme. None of the other PKC isozymes were detected in these fractions. The cytosol of platelets and HEL cells, however, were both found to contain the PKC-delta isozyme. Northern hybridization analyses and mRNA amplification by the polymerase chain reaction demonstrated the presence of mRNA encoding the alpha, beta, and delta PKC isozymes in platelets, but only the beta and delta isozymes in HEL cells. Phorbol myristate acetate (PMA), thrombin, or an endoperoxide analog induced the phosphorylation of the 47-kDa substrate of PKC (pleckstrin) found in platelets and HEL cells; preincubation of either HEL cells or platelets with PMA reduced the intracellular Ca2+ rise induced by thrombin. Thus, although both HEL cells and platelets contain PKC-beta and the recently described PKC-delta isozymes, the widely distributed alpha isozyme of PKC is absent in HEL cells; however, isozymes other than PKC-alpha are sufficient for some PMA-mediated functions that are similar to those seen in stimulated platelets.  相似文献   

9.
In this study, the role of interdomain interactions involving the C1 and C2 domains in the mechanism of activation of PKC was investigated. Using an in vitro assay containing only purified recombinant proteins and the phorbol ester, 4 beta-12-O-tetradecanoylphorbol-13-acetate (TPA), but lacking lipids, it was found that PKC alpha bound specifically, and with high affinity, to a alpha C1A-C1B fusion protein of the same isozyme. The alpha C1A-C1B domain also potently activated the isozyme in a phorbol ester- and diacylglycerol-dependent manner. The level of this activity was comparable with that resulting from membrane association induced under maximally activating conditions. Furthermore, it was found that alpha C1A-C1B bound to a peptide containing the C2 domain of PKC alpha. The alpha C1A-C1B domain also activated conventional PKC beta I, -beta II, and -gamma isoforms, but not novel PKC delta or -epsilon. PKC delta and -epsilon were each activated by their own C1 domains, whereas PKC alpha, -beta I, -beta II, or -gamma activities were unaffected by the C1 domain of PKC delta and only slightly activated by that of PKC epsilon. PKC zeta activity was unaffected by its own C1 domain and those of the other PKC isozymes. Based on these findings, it is proposed that the activating conformational change in PKC alpha results from the dissociation of intra-molecular interactions between the alpha C1A-C1B domain and the C2 domain. Furthermore, it is shown that PKC alpha forms dimers via inter-molecular interactions between the C1 and C2 domains of two neighboring molecules. These mechanisms may also apply for the activation of the other conventional and novel PKC isozymes.  相似文献   

10.
Using isoenzyme-specific antisera, protein kinase C (PKC) alpha and PKC delta were detected in total liver homogenate and in isolated nuclei. PKC beta I, beta II, epsilon, epsilon', and zeta were not detected. During liver regeneration, nuclear PKC alpha levels decreased while PKC delta levels increased. These studies demonstrate, for the first time, the presence of a calcium-independent PKC isoenzyme in liver nuclei and suggest that PKC alpha and PKC delta may have different roles in liver regeneration and cell proliferation.  相似文献   

11.
12.
13.
Protein kinase C (PKC), the major receptor for tumor-promoting phorbol esters, consists of a family of at least eight distinct lipid-regulated enzymes. How the various PKC isozymes are regulated in vivo and how they couple to particular cellular responses is largely unknown. We have examined the expression and regulation of PKC isoforms in R6 rat embryo fibroblasts. Northern and Western blot analyses indicate that these cells express four PKC isoforms, cPKC alpha, nPKC epsilon, nPKC delta, and nPKC zeta; of which nPKC epsilon and nPKC delta are the most abundant. In agreement with the simultaneous presence of cPKC and nPKC isozymes, both Ca(2+)-dependent and -independent PKC activities were detected in extracts of these cells. cPKC alpha and nPKC zeta were predominantly localized in the cytosol when subcellular fractionation was carried out in the presence of [ethylenebis(oxyethylenenitrilo)]tetraacetic acid. When cell lysis was carried out in the presence of Ca2+, greater than 50% of cPKC alpha redistributed to the particulate fraction, whereas nPKC zeta remained in the cytosol. In contrast to cPKC alpha and nPKC zeta, 60-80% of nPKC epsilon and nPKC delta were located in a Ca(2+)-insensitive, membrane-bound form. Treatment of R6 cells with 12-O-tetradecanoyl phorbol 13-acetate (TPA), resulted in the translocation of all four PKC isozymes to the membrane fraction, and the subsequent down-regulation of cPKC alpha, nPKC zeta, and nPKC delta, nPKC epsilon, however, was only partially down-regulated in response to long-term TPA exposure. Overproduction of exogenous cPKC beta I in R6 cells conferred partial resistance of nPKC delta to TPA-induced down-regulation and potentiated the resistance of nPKC epsilon to down-regulation. These results demonstrate that the multiple isoforms of PKC which coexist within a single cell type are differentially regulated by extra- and intracellular stimuli and may thereby influence growth control and transformation via distinct mechanisms.  相似文献   

14.
The receptor for tumor-promoting phorbol esters has been shown to be the Ca+2/phospholipid dependent enzyme protein kinase C (PKC). There are two major groups of PKC, the conventional PKC isotypes alpha, beta I, beta II, gamma) and the novel Ca+2-independent PKC (delta, epsilon, zeta, eta). Phorbol esters previously have been demonstrated to increase human IFN-gamma gene expression after treatment of a murine T cell line (Cl 9) that has been transfected with human IFN-gamma genomic DNA. In contrast, treatment with Ca+2 ionophore alone or in combination with phorbol ester did not enhance IFN-gamma production in a synergistic manner above the level obtained with phorbol ester treatment alone. To determine whether the lack of effect of Ca+2 ionophore is due to a defect in PKC, we compared the level of PKC autophosphorylation in the mouse T cell line (Cl 9), a mouse epidermal cell line (JB6), and purified rat brain PKC by in vitro kinase assays. The results demonstrate that instead of the expected 80-kDa autophosphorylated PKC band seen in purified rat brain PKC or mouse JB6 cell lysates, only a novel 97-kDa Ca+2-independent phosphoprotein was observed in Cl 9 cells. To ascertain if there was any nucleic acid sequence similarity to PKC epsilon, we hybridized Cl 9 poly(A+) RNA with a cloned fragment of the PKC epsilon gene and observed two hybridizing RNA bands (4.4 and 4.0 kb). Our results suggest that the 97-kDa phosphoprotein is similar to, but not identical with, PKC epsilon and is the major PKC expressed in the Cl 9 murine T cell line. These data suggested that the 97-kDa PKC may be responsible for the induction of both the transfected human IFN-gamma gene and the endogenous murine IL-2R alpha-chain.  相似文献   

15.
Polyclonal isoenzyme-specific antisera were developed against four calcium-independent protein kinase C (PKC) isoenzymes (delta, epsilon, epsilon', and zeta) as well as the calcium-dependent isoforms (alpha, beta I, beta II, and gamma). These antisera showed high specificities, high titers, and high binding affinities (3-370 nM) for the peptide antigens to which they were raised. Each antiserum detected a species of the predicted molecular weight by Western blot that could be blocked with the immunizing peptide. PKC was sequentially purified from rat brain, and the calcium-dependent forms were finally resolved by hydroxyapatite chromatography. Peak I reacted exclusively with antisera to PKC gamma, peak II with PKC beta I and -beta II, and peak III with PKC alpha. These same fractions, however, were devoid of immunoreactivity for the calcium-independent isoenzymes. The PKC isoenzymes demonstrated a distinctive tissue distribution when evaluated by Western blot and immunocytochemistry. PCK delta was present in brain, heart, spleen, lung, liver, ovary, pancreas, and adrenal tissues. PKC epsilon was present in brain, kidney, and pancreas, whereas PKC epsilon' was present predominantly in brain. PKC zeta was present in most tissues, particularly the lung, brain, and liver. Both PKC delta and PKC zeta showed some heterogeneity of size among the different tissues. PKC alpha was present in all organs and tissues examined. PKC beta I and -beta II were present in greatest amount in brain and spleen. Although the brain contained the most PKC gamma immunoreactivity, some immunostaining was also seen in adrenal tissue. These studies provide the first evidence of selective organ and tissue distributions of the calcium-independent PKC isoenzymes.  相似文献   

16.
The mechanisms underlying control of cell growth and differentiation in epithelial tissues are poorly understood. Protein kinase C (PKC) isozymes, members of a large family of serine/threonine kinases of fundamental importance in signal transduction, have been increasingly implicated in the regulation of cell growth, differentiation, and function. Using the rat intestinal epithelium as a model system, we have examined PKC-specific activity as well as individual PKC isozyme expression and distribution (i.e., activation status) in epithelial cells in situ. Increased PKC activity was detected in differentiating and functional cells relative to immature proliferating crypt cells. Immunofluorescence and Western blot analysis using a panel of isozyme- specific antibodies revealed that PKC alpha, beta II, delta, epsilon, and zeta are expressed in rat intestinal epithelial cells and exhibit distinct subcellular distribution patterns along the crypt-villus unit. The combined morphological and biochemical approach used permitted analysis of the activation status of specific PKC isozymes at the individual cell level. These studies showed that marked changes in membrane association and level of expression for PKC alpha, beta II, delta, and zeta occur as cells cease division in the mid-crypt region and begin differentiation. Additional changes in PKC activation status are observed with acquisition of mature function on the villus. These studies clearly demonstrate naturally occurring alterations in PKC isozyme activation status at the individual cell level within the context of a developing tissue. Direct activation of PKC in an immature intestinal crypt cell line was shown to result in growth inhibition and coincident translocation of PKC alpha from the cytosolic to the particulate subcellular fraction, paralleling observations made in situ and providing further support for a role of intestinal PKC isozymes in post-mitotic events. PKC isozymes were also found to be tightly associated with cytoskeletal elements, suggesting participation in control of the structural organization of the enterocyte. Taken together, the results presented strongly suggest an involvement of PKC isoforms in cellular processes related to growth cessation, differentiation, and function of intestinal epithelial cells in situ.  相似文献   

17.

Background

In HIV-1 infected patients, production of interleukin-10 (IL-10), a highly immunosuppressive cytokine, is associated with progression of infection toward AIDS. HIV-1 Tat protein, by interacting with TLR4-MD2 at the membrane level, induces IL-10 production by primary human monocytes and macrophages. In the present study we evaluated the effect of the TLR4 antagonist Eritoran tetrasodium (E5564) on HIV-1 Tat-induced IL-10 production.

Findings

Here, we confirm that the recombinant HIV-1 Tat protein and the GST-Tat 1–45 fusion protein efficiently stimulate IL-10 production by primary monocytes and macrophages and that this stimulation is inhibited by blocking anti-TLR4 mAbs. We show that a similar inhibition is observed by preincubating the cells with the TLR4 antagonist E5564.

Conclusion

This study provides compelling data showing for the first time that the TLR4 antagonist E5564 inhibits the immunosuppressive cytokine IL-10 production by primary human monocytes and macrophages incubated in the presence of HIV-1 Tat protein.
  相似文献   

18.
19.
We have previously demonstrated that the low number of interleukin-4 receptors (IL-4Rc) on HL-60 leukemia cells render this population susceptible to differentiation by IL-4. As it occurs with normal human monocytes, IL-4 induces the expression of HLA-DR surface antigens on HL-60 cells as well. The second messenger pathway(s) involved after the IL-4 stimulation leading to class II up-regulation has not been fully examined. Here we show that IL-4-induced class II antigen expression on the HL-60 cell line or normal human monocytes is calcium/calmodulin-independent since theophylline (TPH, a calmodulin inhibitor) does not block the IL-4 effect. In addition, the pyruvate kinase C (PKC) pathway does not seem to participate in the process either because in our system activation of PKC by 4 beta-phorbol 12 beta-myristate 13 alpha-acetate (PMA) is insufficient by itself to induce HLA-DR. We found, however, that a second messenger pathway can be mediated by a G protein system since IL-4 concomitantly induces class II and p21ras expression which can be successfully blocked by a highly specific anti-p21ras monoclonal antibody. In addition, using another p21ras inducer, the 5-azacytidine C (5-AzaC), we showed that this agent can also induce the expression of p21ras and class II, both of which can be inhibited by the same antibody. Thus, it appears that IL-4 selects the G protein system as a signaling pathway in order to exert its action for the induction of HLA-DR on human normal monocytes or M2 leukemia target cells. Since monocytes and macrophages participate in virtually all immune reactions, the regulation of class II induction is of obvious importance.  相似文献   

20.
Treatment of human promyelocytic leukemia cells U937 with phorbol 12-myristate 13-acetate (TPA) induces them to differentiate into monocytic cells [Harris, P., & Ralph, P. (1985) J. Leukocyte Biol. 37, 407-422]. Here we investigated the effects of TPA on interleukin 1 gene expression and the possible role of protein kinase C (PKC) in this process. Addition of TPA to serum-starved U937 cells induced the expression of the interleukin 1 beta (IL-1 beta) gene. This effect was apparent as early as 2 h and peaked at 24 h in the presence of 5 X 10(-8) M TPA. Higher concentrations of TPA, which partially or totally depleted protein kinase C levels in the cells (10(-9)-2 X 10(-5) M), had an inhibitory effect on IL-1 beta mRNA expression. Cell-permeable 1,2-dioctanoyl-sn-glycerol (diC8), a diacylglycerol that activates PKC in intact cells and cell-free systems, did not mimic the effect of TPA on the IL-1 beta mRNA induction. To determine the protein kinase C isozymes present in the control and TPA- (5 X 10(-8) M) treated U937 cells, we prepared antipeptide antibodies that specifically recognize the alpha, beta, and gamma isoforms of protein kinase C in rat brain cytosol and U937 cell extracts. In "control" U937 cells, 30% of PKC alpha was particulate, and PKC beta was cytosolic, while there was no detectable PKC gamma.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号