首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have developed specific antibodies against fragments of anaplastic lymphoma kinase (ALK) in order to develop tools for characterizing the expression and biological function of this orphan receptor. The first fragment consisted of residues 280 to 480 of the murine extracellular domain, was expressed in Escherichia coli (E. coli), purified in the presence of urea from the pellet of mechanically lysed cells and injected into rabbits as an unfolded protein in urea. The second fragment consisted of residues 1519 to 1619 of the murine sequence, corresponding to the C-terminal side of the kinase domain. It was expressed in E. coli as a soluble glutathione-S-transferase fusion protein, purified from the supernatant of broken cells and injected into rabbits as a folded protein. Both antisera were purified using antigen affinity chromatography, with the polyclonal antibodies eluted stepwise using three different buffers, 0.1 M glycine, pH 2.9, followed by 7 M urea, pH 4, followed by 6 M guanidine–HCl (GdnHCl), pH 4. Antisera prepared against either antigen contained antibodies that eluted in each of the three pools, indicating that solvents more chaotropic than acid were required to elute antibody populations that were tightly bound to the antigen column. All three antibody pools were reactive towards their respective antigens upon Western blot analysis. Purified polyclonal antibodies (pAbs) to both fragments also recognized the full-length protein expressed in Chinese hamster ovary cells. In every case, the pAbs eluting in GdnHCl were the most sensitive for detecting full-length ALK.  相似文献   

2.
《Gene》1997,190(1):31-35
α-Sarcin is a ribonucleolytic protein secreted by the mold Aspergillus giganteus. DNA encoding α-sarcin was isolated from the host and cloned into T7 promoter based E. coli expression vectors. Using bacterial outer membrane protein A (OmpA) signal sequence, properly processed recombinant (re-) protein was secreted into the culture medium while in the absence of a signal sequence protein remained insoluble in the bacterial inclusion bodies. The re-α-sarcin was purified to homogeneity by simple chromatographic techniques both from the insoluble and soluble sources with respective yields of 40–50 μg/ml and 2–3 μg/ml. The re-ribotoxin was functionally as active as the native toxin and preserved its specificity. The re-α-sarcin was used in the construction of an active immunotoxin targeted at the human cancer cells overexpressing transferrin receptor (TFR).  相似文献   

3.
A recombinant pSC13D6 plasmid DNA was constructed based on cDNA fragments of genes encoding variable domains of heavy and light chains of the MKA13D6 monoclonal antibody against glycoprotein of the tick-borne encephalitis (TBE) virus. This plasmid provided expression in Escherichia coli cells of the scl3D6 single-chain antibody against the TBE virus. The produced antibodies could bind to the TBE virus, strain 205, and the TBE virus recombinant E protein. The affinity constant of purified scl3D6 was (3.0 ± 0.2) × 107 M?1 for the equilibrium state and (2.8 ± 0.3) × 107 M?1 in the case of antigen-antibody formation on the surface. The obtained single-chain antibody could inhibit the infection potency of the TBE virus on a monolayer of eukaryotic cells. The calculated IC50 value for scl3D6 was 16.7 μg/ml.  相似文献   

4.
Abstract

In efforts to speed up the assessment of microorganisms, researchers have sought to use bacteriophages as a biosensing tool, due to their host-specificity, wide abundance, and safety. However, the lytic cycle of the phage has limited its efficacy as a biosensor. Here, we cloned a fragment of tail protein J from phage lambda and characterized its binding with the host, E. coli K-12, and other microorganism. The N-terminus of J was fused with a His-tag (6HN-J), overexpressed, purified, and characterized using anti-His monoclonal antibodies. The purified protein demonstrated a size of ~38?kDa upon SDS-PAGE and bound with the anti-His monoclonal antibodies. ELISA, dot blot, and TEM data revealed that it specifically bound to E. coli K-12, but not to Pseudomonas aeruginosa. The observed protein binding occurred over a concentration range of 0.01–5?μg/ml and was found to inhibit the in vivo adsorption of phage to host cells. This specific binding was exploited by surface plasmon resonance (SPR) to generate a novel 6HN-J-functionalized SPR biosensor. This biosensor showed rapid label-free detection of E. coli K-12 in the range of 2?×?104 ?2?×?109 CFU/ml, and exhibited a lower detection limit of 2?×?104 CFU/ml.  相似文献   

5.
A high molecular weight protein aggregate, which agglutinates yeast cells, human epithelial cells and mouse lymphocytes, was isolated from extracts of Escherichia coli by differential centrifugation and gel filtration. The agglutination is specifically inhibited by d-mannose and its derivatives, the best inhibitor being p-nitrophenyl α-d-mannoside. Sodium dodecyl sulfate gel electrophoresis showed that the lectin consists of protein subunits with identical Mr of ~36500. The amino acid composition of the purified lectin is different from that reported for the type I pili protein, the K99 antigen and the major outer membrane protein Ia of E. coli. The protein appears to be located on the bacterial surface, and is probably involved in the mannose-specific adherence of E. coli to eukaryotic cells.  相似文献   

6.
Chikungunya, a mosquito-borne viral disease caused by Chikungunya virus (CHIKV), has drawn substantial attention after its reemergence causing massive outbreaks in tropical regions of Asia and Africa. The recombinant envelope 2 (rE2) protein of CHIKV is a potential diagnostic as well as vaccine candidate. Development of cost-effective cultivation media and appropriate culture conditions are generally favorable for large-scale production of recombinant proteins in Escherichia coli. The effects of medium composition and cultivation conditions on the production of recombinant Chikungunya virus E2 (rCHIKV E2) protein were investigated in shake flask culture as well as batch cultivation of Escherichia coli. Further, the fed-batch process was also carried out for high cell density cultivation of E. coli expressing rE2 protein. Expression of rCHIKV E2 protein in E. coli was induced with 1 mM isopropyl-beta-thiogalactoside (IPTG) at ~23 g dry cell weight (DCW) per liter of culture and yielded an insoluble protein aggregating to form inclusion bodies. The final DCW after fed-batch cultivation was ~35 g/l. The inclusion bodies were isolated, solubilized in 8 M urea and purified through affinity chromatography to give a final product yield of ~190 mg/l. The reactivity of purified E2 protein was confirmed by Western blotting and enzyme-linked immunosorbent assay. These results show that rE2 protein of CHIKV may be used as a diagnostic reagent or for further prophylactic studies. This approach of producing rE2 protein in E. coli with high yield may also offer a promising method for production of other viral recombinant proteins.  相似文献   

7.
The first step in branched-chain amino acid biosynthesis is catalyzed by acetohydroxyacid synthase (EC 2.2.1.6). This reaction involves decarboxylation of pyruvate followed by condensation with either an additional pyruvate molecule or with 2-oxobutyrate. The enzyme requires three cofactors, thiamine diphosphate (ThDP), a divalent ion, and flavin adenine dinucleotide (FAD). Escherichia coli contains three active isoenzymes, and acetohydroxyacid synthase I (AHAS I) large subunit is encoded by the ilvB gene. In this study, the ilvB gene from E. coli K-12 was cloned into expression vector pETDuet-1, and was expressed in E. coli BL21 (DH3). The purified protein was identified on a 12% SDS–PAGE gel as a single band with a mass of 65 kDa. The optimum temperature, buffer, and pH for E. coli K-12 AHAS I were 37 °C, potassium phosphate buffer, and 7.5. Km values for E. coli K-12 AHAS I binding to pyruvate, Mg+2, ThDP, and FAD were 4.15, 1.26, 0.2 mM, and 0.61 μM respectively. Inhibition of purified AHAS I protein was determined with herbicides and new compounds.  相似文献   

8.
Bovine diabetogenic protein has been further purified by gel filtration yielding a fraction (Mr 25 000–28 000) having increased diabetogenic and in vitro lipolytic activity. Using rat epididymal fat pads, this fraction was shown to be lipolytic at concentrations as low as 1–10 μg/ml. The in vitro lipolytic effect was unaffected by the nutritional state of the animals, was not potentiated by dexamethasone, could be demonstrated in the presence and absence of glucose and was not mediated by α- and β-adrenergic receptors. A lag phase of > 1 h was observed before diabetogenic protein induced lipolysis occurred, suggesting that protein synthesis might be involved. Cycloheximide (10 μg/ml), added initially, prevented the diabetogenic protein-induced lipolysis. This direct effect of the purified protein on adipose tissue helps explain the elevation of free fatty acids seen when bovine diabetogenic hormone is administered in vivo and suggests that this anterior pituitary protein may be a new lipid-mobilizing hormone.  相似文献   

9.
The coding sequence, which corresponds to the mature antimicrobial peptide ranalexin from the frog Rana catesbeiana, was chemically synthesized with preferred codons for expression in Escherichia coli. It was cloned into the vector pET32c (+) to express a thioredoxin-ranalexin fusion protein which was produced in soluble form in E. coli BL21 (DE3) induced under optimized conditions. After two purification steps through affinity chromatography, about 1 mg of the recombinant ranalexin was obtained from 1 L of culture. Mass spectrometrical analysis of the purified recombinant ranalexin demonstrated its identity with ranalexin. The purified recombinant ranalexin is biologically active. It showed antibacterial activities similar to those of the native peptide against Staphylococcus aureus, Streptococcus pyogenes, E. coli, and multidrug-resistant strains of S. aureus with minimum inhibitory concentration values between 8 and 128 μg/ml. The recombinant ranalexin is also cytotoxic in HeLa and COS7 human cancer cells (IC50?=?13–15 μg/ml).  相似文献   

10.
The enzyme β-galactosidase from Bacillus megaterium, strain KM has been purified by affinity chromatography. The enzyme was found to have a dimeric subunit structure, with the monomer having a molecular weight of 120,000. The Keq of the monomer-dimer equilibrium was strongly shifted towards dissociation in the isolated state. Inclusion of 5% sucrose in the buffer (and maintenance of the temperature at 5 °) minimized this dissociation. Molecularly homogeneous monomer and dimer could be prepared on sucrose gradients. The dimer was determined to have an S20,w of 8, while the monomer had an S20,w of 3. The amino acid composition was found to be similar to that of the E. coli β-galactosidase although significant differences occur. The activity of the monomer was studied by both urea-denaturation experiments and by immobilization of the monomer on Sepharose-4B. The monomer, bound to Sepharose-4B, was found to be inactive but still capable of binding the inhibitor thio-methyl galactoside. Activity was reconstituted by adding free monomer, in 8 M urea, to the Sepharose-bound monomer, followed by removal of the urea by dialysis. In addition, free monomers from E. coli β-galactosidase were found to form active hybrids with Sepharose-bound B. megaterium β-galactosidase monomers. We conclude on the basis of these studies that the free monomer is inactive, and that the dimer is the active species, in marked contrast to E. coli β-galactosidase where only the tetrameric form is active.  相似文献   

11.
The superbug infection caused by New Delhi metallo-β-lactamase (NDM-1) has grown into an emerging threat, labelling and inhibition of NDM-1 has proven challenging due to its shuttling between pathogenic bacteria. Here, we report a potent covalent scaffold, ebsulfur, for targeting the protein in vitro and in vivo. Enzymatic kinetic study indicated that eighteen ebsulfurs gained except 1ab and 1f inhibited NDM-1, exhibiting an IC50 value ranging of 0.16–9 μM, and 1g was found to be the best, dose- and time-dependent inhibitor with an IC50 of 0.16 μM. Also, these ebsulfurs effectively restored the antibacterial activity of cefazolin against E. coli expressing NDM-1, and the best effect was observed to be from 1g, 1i and 1n, resulting in an 256-fold reduction in MIC of the antibiotic at a dose of 16 μg/mL. The equilibrium dialysis study implied that the ebsulfur disrupted the coordination of one Zn(II) ion at active site of NDM-1. Labelling of NDM-1 using a constructed fluorescent ebsulfur Ebs-R suggested that the inhibitor covalently bound to the target through SDS-PAGE analysis in vitro. Also, labelling NDM-1 in living E. coli cells with Ebs-R by confocal microscopic imaging showed the real-time distribution change process of intracellular recombinant protein NDM-1. Moreover, the cytotoxicity of these ebsulfurs against L929 mouse fibroblastic cells was tested, and their capability to restore antibacterial activity of antibiotic against clinical strains E. coli EC08 producing NDM-1 was determined. The ebsulfur scaffold proposed here is valuable for development of the covalent irreversible inhibitors of NDM-1, and also for labelling the target in vitro and in vivo.  相似文献   

12.
1. Stimulation of the Escherichia coli ATPase activity by urea and trypsin shows that the ATPase activity both in the membrane-bound and the solubilized form is partly masked.2. A protein, inhibiting the ATPase activity of Escherichia coli, can be isolated by sodium dodecyl sulphate polyacrylamide gel electrophoresis of purified ATPase. The inhibitor was identified with the smallest of the subunits of E. coli ATPase.3. The molecular weight of the ATPase inhibitor is about 10 000, as determined by sodium dodecyl sulphate polyacrylamide gel electrophoresis and deduced from the amino acid composition.4. The inhibitory action is independent of pH, ionic strength or the presence of Mg2+ or ATP.5. The ATPase inhibitor is heat-stable, insensitive to urea but very sensitive to trypsin degradation.6. The Escherichia coli ATPase inhibitor does not inhibit the mitochondrial or the chloroplast ATPase.  相似文献   

13.
Yeast cell wall fractions have been proposed to bind enteropathogenic bacteria. The aim of this study was to develop a quantitative assay by measuring the optical density as growth parameter of adhering bacteria. The exponential growth phase of adhering bacteria was determined by optical density reading and compared with the colony count (CFU/mL). A linear regression was compiled and the bacterial number bound to the yeast cell wall product could be determined. Further focus was the investigation of a yeast cell wall from strain Trichosporon mycotoxinivorans (MTV) for its ability to bind gram negative Salmonella, E. coli and Campylobacter strains and gram positive probiotic bacteria of the genera lactobacilli and bifidobacteria as well as gram positive Clostridium perfringens quantitatively. The gram negative probiotic strain E. coli Nissle 1917 was also investigated. Seven out of 10 S. Typhimurium and S. Enteritidis strains adhered to the cell wall product with an amount between 103 and 104 CFU/10 μg. Four out of 7 E. coli strains showed an average binding capability (102 CFU/10 µg) whereas 4 × 103E. coli F4 cells bound per 10 μg yeast cell wall. E. coli 0149 K91, E. coli 0147 K89, C. jejuni and C. perfringens as well the genera lactobacilli and bifidobacteria did not bind to the yeast cell wall. E. coli Nissle 1917 was bound with 2 × 102 CFU/10 μg. These results demonstrate that cell wall from MTV can be used to differentially bind E. coli spp. and Salmonella spp. up to 8 × 104 CFU/10 μg. Thus certain yeast cell walls may prevent enteric infections caused by selective bacteria. This methodical approach would be an accurate tool in the feed industry for quality control of yeast cell wall products.  相似文献   

14.
ABSTRACT. We studied galactose (Gal)-specific binding of the soluble purified 260-kDa Entamoeba histolytica adherence protein to glycosylation deficient Chinese hamster ovary (CHO) cell mutants. Our goal was to further define the lectin's functional activity and carbohydrate receptor specificity. The adherence protein was purified by acid elution from an immunoaffnity column; however, exposure of the surface membrane lectin on viable trophozoites to identical acid pH conditions had no effect on carbohydrate binding activity. Saturable Gal-specific binding of soluble lectin to parental CHO cells was demonstrated at 4°C by radioimmunoassay; the dissociation coefficient (Kd was 2.39 × 10?8 M?1 with 5.97 × 104 lectin receptors present per CHO cell. Gal-specific binding of lectin to Lec2 CHO cell mutants, which have increased N- and O-linked terminal Gal residues on cell surface carbohydrates, was increased due to an enhanced number of receptors (2.41 × 105/cell) rather than a significantly reduced dissociation constant (4.93 × 10?8 M?1). At 4°C, there was no measurable Gal-specific binding of the adherence protein to the Lec and IdlD.Lecl CHO mutants, which contain surface carbohydrates deficient in terminal Gal residues. Binding of lectin (20 μg/ml) to CHO cells was equivalent at 4°C and 37°C and unaltered by adding the microfilament inhibitor, Cytochalasin D (10 μg/ml). Gal-specific binding of the lectin at 4°C was calcium independent and reduced by 81% following adsorption of only 0.2% of the lectin to CHO cells. In summary, these findings indicate that the purified E. histolytica adherence lectin demonstrates saturable Gal-specific binding to 1–6 branched-N-linked and not O-linked galactose terminal cell surface carbohydrates; however, apparently only a small percentage of purified amebic lectin molecules actually possess galactose binding activity.  相似文献   

15.
By replacing a native promoter with lac and tac promoters, the gene encoding an ethylene-forming enzyme (EFE) from Pseudomonas syringae pv. phaseolicola PK2 was overexpressed in Escherichia coli. The EFE protein expressed by a multicopy plasmid accounted for more than 30% of the total cellular protein, resulting in ethylene-forming activities higher than 10 μl of ethylene (mg cell)−1h−1 in recombinant E. coli cells. However, most of the EFE protein accumulated as inactive inclusion bodies particularly at elevated temperatures (>30°C). We present an efficient procedure for reconstituting an active enzyme from inclusion bodies by solubilization with 8 M urea and dialysis. The reconstituted EFE has specific activity identical to that of the native enzyme from P. syringae, suggesting that the EFE protein has an intrinsic folding capability in vitro.  相似文献   

16.
It has been identified that a TEV protease (TEVp) variant, TEVp5M, displays improved solubility. Here, we constructed fifteen TEVp5M variants with one or more of six rare arginine codons in the coding sequence replaced with abundant E. coli arginine codons. These codon variants expressed in either E. coli BL21 (DE3) or Rossetta (DE3) showed different solubility and activity. Supply of rare tRNAs increased the tendency of certain codon variants to form insoluble aggregates at early induction stage, as determined by the fused S-tag. About 32% increase in soluble protein production of M5 variant with four synonymously mutated arginine codons was identified in Rossetta (DE3) cells using GFP fusion reporter, comparable to that of TEVp5M. After purification, two other codon variants from both E. coli strains exhibited less activity than TEVp5M on cleaving the native or modified recognition sequence incorporated between GST and E. coli diaminopropionate ammonialyase by enzyme-coupled assay, whereas purified M5 variant showed activity similar to the TEVp5M. Supply of rare tRNAs caused the decrease of activity of TEVp5M and M5 by about 21%. Our results revealed that engineering of highly soluble TEVp variants can be achieved by the combined mutations of amino acid residues and optimization of specific rare codons, whereas simple augment of rare tRNAs abundance resulted in partial loss of activity.  相似文献   

17.
  • 1.1. Mammalian major apurinic/apyrimidinic (AP) endonuclease, APEX nuclease (Mr 35.4 kDa) was purified from HeLa cells. A hybrid protein (Mr 36.4 kDa), which was expressed in BW2001 strain cells of E. coli, comprising human APEX nuclease headed by 10 additional amino acids was also purified.
  • 2.2. The purified preparations were frequently associated with 31-, 33- and 35-kDa peptides having AP endonuclease activity.
  • 3.3. The 33- and 35-kDa peptides were suggested to be formed from the hybrid protein or APEX nuclease during their purification processes by proteolytic cleavage with subtilisin-like protease. The 31-kDa peptide was thought to be produced by chemical cleavage of the aspartyl-prolyl bond of APEX nuclease.
  • 4.4. The results support the notion that some of AP endonuclease heterogeneity based on the molecular weight difference are caused by proteolytic (and chemical) cleavage of a species of AP endonucleases during the extraction and purification.
  相似文献   

18.
Colicin E1 protein was labeled with 125I to specific activities of up to 2 × 108 cpm/mg of protein and with no loss of the colicin biological activity. The labeled colicin bound to colicin E1-sensitive, tolerant, and immune E1-colicinogenic Escherichia coli. An E. coli mutant resistant to colicin E1 exhibited a much lower colicin-binding capacity. The average number of bound colicin molecules per sensitive cell increased as a function of the colicin concentration in the colicin cell interaction mixture and continued to increase even after loss of viability of the entire culture. Up to 2,400 colicin E1 molecules bound per cell, but saturation was not reached. Binding kinetics showed that maximum binding occurred within 2 to 5 min of colicin addition. Survival and binding assays indicated that one colicin killing unit corresponded to an average of about 100 colicin molecules bound per bacterial cell. This number, however, decreased to about 8 in more extensively washed cells. Trypsin digestion of the colicin-treated cells removed the majority of the cell-bound colicin, but in general provided little rescue from colicin killing. At low colicin concentrations, a linear relationship existed between survival and the number of trypsin-inaccessible colicin molecules. Under these circumstances and in agreement with single-hit kinetics, the relationship between the number of colicin killing units and the number of trypsin-inaccessible colicin molecules was close to 1. After trypsin digestion, cells that were nearly saturated with colicin retained about 200 trypsin-inaccessible colicin molecules per cell. The trypsin-inaccessible colicin might represent those colicin molecules that bound to the specific E colicin receptors of E. coli cells.  相似文献   

19.
Phosphoenolpyruvate carboxylase (PEPC) of Photobacterium profundum SS9 can be expressed and purified using the Escherichia coli expression system. In this study, a codon-optimized PEPC gene (OPPP) was used to increase expression levels. We confirmed OPPP expression and purified it from extracts of recombinant E. coli SGJS117 harboring the OPPP gene. The purified OPPP showed a specific activity value of 80.3 U/mg protein. The OPPP was stable under low temperature (5–30 °C) and weakly basic conditions (pH 8.5–10). The enzymatic ability of OPPP was investigated for in vitro production of oxaloacetate using phosphoenolpyruvate (PEP) and bicarbonate. Only samples containing the OPPP, PEP, and bicarbonate resulted in oxaloacetate production. OPPP production system using E. coli could be a platform technology to produce high yields of heterogeneous gene and provide the PEPC enzyme, which has high enzyme activity.  相似文献   

20.
Flavanone 3β-hydroxylase plays very important role in the biosynthesis of flavonoids. A putative flavanone 3β-hydroxylase gene (Pef3h) from Populus euphratica was cloned and over-expressed in Escherichia coli. Induction performed with 0.1 mM IPTG at 20°C led to localization of PeF3H in the soluble fraction. Recombinant enzyme was purified by Ni-NTA affinity. The optimal activity of PeF3H was revealed at pH 7.6 and 35°C. The purified enzyme was stable over pH range of 7.6–8.8 and had a half-life of 1 h at 50°C. The activity of PeF3H was significantly enhanced in the presence of Fe2+ and Fe3+. The K M and V max for the enzyme using naringenin as substrate were 0.23 mM and 0.069 μmoles mg–1min-1, respectively. The K m and V max for eriodictyol were 0.18 mM and 0.013 μmoles mg–1min–1, respectively. The optimal conditions for naringenin bioconversion in dihydrokaempferol were obtained: OD600 of 3.5 for cell concentration, 0.1 mM IPTG, 5 mM α-ketoglutaric acid and 20°C. Under the optimal conditions, naringenin (0.2 g/L) was transformed into 0.18 g/L dihydrokaempferol within 24 h by the recombinant E. coli with a corresponding molar conversion of 88%. Thus, this study provides a promising flavanone 3β-hydroxylase that may be used in biosynthetic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号