首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new HPLC method has been developed for the quantitative determination of methotrexate (MTX) and its 7-hydroxyl metabolite in human plasma. Samples were purified by protein precipitation with acetone and methanol, and a sample clean-up with a mixture of n-butanol and diethyl ether. The analytes were separated on an RP Inertsil ODS-80A column and eluted in a solvent system containing 5% (v/v) tetrahydrofuran in water (pH 2.0). UV absorption measurement was performed at 313 nm, and the detector response was linear in a concentration range of 10–10 000 ng/ml. The lower limit of quantitation of MTX was 10 ng/ml using 1 ml sample aliquots. Values for accuracy and (within-run and between-run) precision were between 95.5–111% and 3.69–11.0%, respectively, at four concentrations analyzed in quintuplicate on four separate occasions. The assay was applied to study the effects of docetaxel co-administration on the pharmacokinetics and metabolism of MTX in cancer patients.  相似文献   

2.
A new HPLC method for the simultaneous determination of celecoxib, carboxycelecoxib and hydroxycelecoxib in human plasma samples has been developed. Following a solid-phase extraction procedure, the samples were separated by gradient reversed-phase HLPC (C(18)) and quantified using UV detection at 254 nm. The method was linear over the concentration range 10-500 ng/ml. The intra-assay variability for the three analytes ranged from 4.0 to 12.6% and the inter-assay variability from 4.9 to 14.2%. The achieved limits of quantitation (LOQ) of 10 ng/ml for each analyte allowed the determination of the pharmacokinetic parameters of the analytes after administration of 100 mg celecoxib.  相似文献   

3.
A simple, sensitive and reproducible HPLC method is presented for the simultaneous determination of mycophenolic acid (MPA) and its metabolites phenolic MPA-glucuronide (MPAG) and acyl glucuronide (AcMPAG) in human plasma. Sample purification requires protein precipitation with 0.1 M phosphoric acid/acetonitrile in the presence of Epilan D as an internal standard (IS). Separation was performed by reversed-phase HPLC, using a Zorbax SB-C18 column, 32% acetonitrile and a 40 mM phosphoric acid buffer at pH 3.0 as mobile phase; column temperature was 50 degrees C, flow rate 1.4 ml/min, and measurement by UV detection was at 215 nm (run time 12 min). The method requires only 50 microl plasma. Detection limits were 0.1 microg/ml for MPA and AcMPAG, and 2.0 microg/ml for MPAG, respectively. Mean absolute recovery of all three analytes was >95%. This analytical method for the determination of MPA and its metabolites is a reliable and convenient procedure that meets the criteria for application in routine clinical drug monitoring and pharmacokinetic studies.  相似文献   

4.
A fully automated semi-microbore high performance liquid chromatographic (HPLC) method with column-switching using UV detection was developed for the determination of glimepiride from human plasma samples. Plasma sample (900 microl) was deproteinated and extracted with ethanol and acetonitrile. The extract (70 microl) was directly injected into a Capcell Pak MF Ph-1 pre-column where the primary separation occurred to remove proteins and retain drugs using a mixture of acetonitrile and 10mM phosphate buffer (pH 2.18) (20:80, v/v). The analytes were transferred from the pre-column to an intermediate column using a switching valve and then subsequently separated on an analytical column and monitored with UV detection at 228 nm. Glimepiride was eluted with retention time 34.9 min without interference of endogenous substance from plasma. The limit of quantification (LOQ) was 10 ng/ml for glimepiride. The calibration curves were linear over the concentration range of 10-400 ng/ml (r(2) = 0.9997). Moreover, inter- and intra-day precisions of the method were less than 15% and accuracies were higher than 99%. The developed method was successfully applied for the quantification of glimepiride in human plasma and was used to support a human pharmacokinetic study following a single oral administration of 2 mg glimepiride.  相似文献   

5.
A sensitive and selective bioanalytical liquid chromatographic method for diclofenac is described. The drug was detected as a fluorescent derivative, which was demonstrated by 1H NMR and mass spectrometric studies to be carbazole acetic acid. Diclofenac was derivatized by UV irradiation of the substance performed as a post-column photoreaction. The reactor was a PTFE capillary wound around a 254-nm UV lamp. Diclofenac was isolated from the plasma samples by precipitation of the proteins with acetonitrile. A 50-μl volume of the supernatant was injected onto a Nucleosil C18 column. The mobile phase was 32% acetonitrile in pH 6.6 buffer. Carbazole acetic acid was detected by a fluorescence detector using an excitation wavelength of 288 nm and an emission wavelength of 360 nm. The recovery was 92%, the standard curve was linear in the range 10–5500 ng diclofenac per ml plasma, and the relative standard deviation at 10 and 5000 ng of diclofenac per ml plasma was 9.0% and 3.3%, respectively. The limit of detection was 6 ng/ml at an injection volume of 50 μl. Chromatograms of human and rat plasma containing diclofenac are shown.  相似文献   

6.
7.
A rapid, sensitive and specific high-performance liquid chromatographic (HPLC) method using UV detection was developed for the determination of nine antiretroviral compounds commonly found in plasma from patients receiving antiretroviral therapy. Analytes include indinavir, saquinavir, ritonavir, amprenavir, lopinavir, delavirdine, efavirenz, nelfinavir and its M8 metabolite. Analytes were isolated from plasma using tert.-butyl methyl ether and separation achieved via reversed-phase liquid chromatography on a C(8) column with a gradient mobile phase. Detection at 210 nm provided adequate sensitivity. Limit of quantification is 50 ng/ml and all analytes demonstrated linearity across 50-10000 ng/ml from a single 200-microliter plasma sample. Recovery from plasma was consistently high (>80%). This novel HPLC methodology allows us to simultaneously determine plasma concentrations of nine antiretrovirals, including lopinavir, in HIV-infected patients on a single HPLC system.  相似文献   

8.
A new method for simultaneous quantification of trimethoprim, sulfadiazine and N4-acetylsulfadiazine in plasma of broilers at levels down to 13-16 ng/ml has been developed. Samples were deproteinized with acetonitrile, defatted with hexane, and extracted with dichloromethane. Chromatographic analysis was carried out on a C18 column in the presence of tetrabutylammonium hydrogen sulfate, a competing base, while detection was performed at 240 nm for trimethoprim, and 270 nm for both sulfadiazine and N4-acetylsulfadiazine. Accuracy and precision data showed recoveries and relative standard deviation values better than 87.3% and 3.1%, respectively, for all three analytes. The good analytical characteristics of the method could allow limits of detection in the low ng/ml range to be realised. The method was successfully applied to determine drug concentrations in plasma samples from broilers administered a combination of sulfadiazine and trimethoprim.  相似文献   

9.
A sensitive and selective high-performance liquid chromatographic method for the simultaneous determination of a new angiotensin II receptor blocking agent, losartan (DuP 753, MK-954, I), and its active metabolite, EXP3174 (II), in human plasma or urine is described. The two analytes and internal standard are extracted from plasma and urine at pH 2.5 by liquid—liquid extraction and analyzed on a cyano column with ultraviolet detection at 254 nm. The mobile phase is composed of acetonitrile and phosphate buffer at pH 2.5. The limit of quantification for both compounds in plasma is 5 ng/ml. The limit in urine is 20 and 10 ng/ml for I and II, respectively. The assay described has been successfully applied to samples from pharmacokinetic studies.  相似文献   

10.
A novel, highly sensitive method was developed for simultaneous determination of tramadol and its main active metabolite O-demethyltramadol (ODMT) in rat plasma. The method involves a single-step extraction procedure and a specific determination by high-performance liquid chromatography with electrochemical detection, using an ethoxy analogue of tramadol (L-233) as internal standard. The dual-electrode detector was operated in the oxidation-screening mode. Absolute recoveries of tramadol and ODMT were about 80%. Calibration curves were linear over a concentration range of 10–1000 ng/ml for ODMT and 10–10 000 ng/ml for tramadol with intra- and inter-day coefficients of variation not exceeding 10% and 15%, respectively. The limit of quantification for tramadol and ODMT was lower than 15 ng/ml and 10 ng/ml using 100 μl of plasma, respectively. The described method allows an adequate characterization of the plasma vs. time profiles for both compounds.  相似文献   

11.
A new high-performance liquid chromatographic method for the simultaneous determination of indinavir, saquinavir and ritonavir in human plasma is described. Quantitative recovery following liquid–liquid extraction with diethyl ether from 500 μl of human plasma was achieved. Subsequently, the assay was performed with a linear gradient starting at 67 mM potassium dihydrogenphosphate–acetonitrile (65:35 to 40:60, v/v) as a mobile phase, a Phenomenex C18 column and UV detection at 240 and 258 nm, respectively. Linear standard curves were obtained for concentrations ranging from 75 to 20 000 ng/ml for indinavir, from 10 to 6000 ng/ml for saquinavir, and from 45 to 30 000 ng/ml for ritonavir. The calculated intra- and inter-day coefficients of variation were below 6%.  相似文献   

12.
Achiral and chiral HPLC methods were developed for clinafloxacin, a quinolone antimicrobial agent. For achiral assay, analytes were isolated from plasma by precipitating plasma proteins. Separation was achieved on a C18 column using an isocratic eluent of ion pairing solution–acetonitrile (80:20, v/v) at 1.0 ml/min with UV detection at 340 nm. The ion pairing solution was 0.05 M citric acid, 1.15 mM tetrabutylammonium hydroxide and 0.1% ammonium perchlorate. Inter-assay accuracy was within 4.9% with an inter-assay precision of 3.7% over a quantitation range of 0.025 to 10.0 μg/ml. For chiral assay, analytes were isolated from plasma by solid-phase extraction. Separation was achieved on a Crownpak CR(+) column using an isocratic eluent of water–methanol (88:12, v/v) containing 0.1 mM decylamine at 1.0 ml/min with UV detection at 340 nm. Perchloric acid was added to adjust pH to 2. Inter-assay accuracy was within 3.5% with a inter-assay precision of 5.4% over a quantitation range of 0.040 to 2.5 μg/ml.  相似文献   

13.
A new, simple and rapid high-performance liquid chromatography (HPLC) method with UV detection has been developed for the determination of apovincaminic acid in human plasma. Apovincaminic acid and internal standard were isolated from plasma samples by solid-phase extraction with OASIS HLB cartridges. The chromatographic separation was accomplished on a reversed-phase C(18) column and UV detection was set at 311 nm. The calibration curves were linear in the concentration range of 2.4-240.0 ng/ml, and the limits of quantification was 2.4 ng/ml. The precision and accuracy ranged from 0.84 to 8.54% and 91.5 to 108.3%, respectively. The developed method was subsequently applied to study the pharmacokinetics of apovincaminic acid in a group of 20 human subjects at a single oral dose of 10mg of vinpocetine tablet.  相似文献   

14.
A sensitive HPLC method for the quantification of praziquantel enantiomers in human serum is described. The method involves the use of a novel disc solid-phase extraction for sample clean-up prior to HPLC analysis and is also free of interference from trans-4-hydroxypraziquantel, the major metabolite of praziquantel. Chromatographic resolution of the enantiomers was performed on a reversed-phase cellulose-based chiral column (Chiralcel OJ-R) under isocratic conditions using a mobile phase consisting of 0.1 M sodium perchlorate–acetonitrile (66:34, v/v) at a flow-rate of 0.5 ml/min. Recoveries for R-(−)- and S-(+)-praziquantel enantiomers were in the range of 84–89% at 50–500 ng/ml levels. Intra-day and inter-day precisions calculated as R.S.D. were in the ranges of 3–8% and 1–8% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percent error were in the 0.2–5% and 0.3–8% ranges for both enantiomers, respectively. Linear calibration curves were in the concentration range 10–600 ng/ml for each enantiomer in serum. The limit of quantification of each enantiomer was 10 ng/ml. The detection limit for each enantiomer in serum using a UV detector set at 210 nm was 5 ng/ml (S/N=2).  相似文献   

15.
Simultaneous determination of mycophenolic acid (MPA) and mycophenolic acid glucuronide (MPAG) in plasma was accomplished by isocratic HPLC with UV detection. After protein precipitation and phase separation with saturated sodium dihydrogenphosphate, chromatographic separation was achieved on a monolithic column "Chromolith Performance RP-18e", with acetonitrile/0.01 M phosphate buffer, pH 3, (25:75, v/v), as the mobile phase; flow rate 3.3 ml/min and measurement at 214 nm. Linearity was verified up to 40 mg/l for MPA and up to 400 mg/l for MPAG. Detection limits based on the analysis of 50 microl plasma were 0.05 and 0.5 mg/l for MPA and MPAG, respectively. Accuracy was 99.6-104% for MPA and 95.6-105% for MPAG and total imprecision (CV) was <7% for both compounds. Analytical recovery was >95% for MPA and MPAG. The method is simple, rapid, accurate and suitable for routine determination of MPA and MPAG in plasma.  相似文献   

16.
A method for the simultaneous determination of +S and -R arotinolol in serum by micellar electrokinetic capillary chromatography is described. Stereoselective resolution of the arotinolol enantiomers was achieved using 5 mM sodium taurocholate in 10 mM sodium dihydrogen phosphate buffer of pH 2.5. A 72-cm uncoated fused-silica capillary at a constant voltage of 15 kV was used for the analysis. The analytes of interest were extracted from serum using solid phase extraction. An octadecyl cartridge gave good recoveries in excess of 87% for both +S and -R arotinolol without any interference. The calibration curves were linear over the range of 50-500 ng ml(-1) with +S propranolol as the internal standard and the coefficient of determination was greater than 0.999 (n = 3). The limit of quantitation was 50 ng ml(-1) for each enantiomer and the detection limit using 1 ml serum and a UV detection set et 220 nm was 25 ng ml(-1) (S/N = 2). Precision and accuracy of the method were in the range 0.8-2.7% and 1.2-6.4%, respectively, for +S arotinolol and 1.1-3.9% and 2.2-6.5%, respectively, for -R arotinolol.  相似文献   

17.
A reversed-phase, column-switching high-performance liquid chromatographic (HPLC) method is described for the determination of a new thymidylate synthase inhibitor in human plasma. The compound and an internal standard are extracted from plasma using a Certify II solid-phase cartridge. Extracts are evaporated to dryness and the residue is reconstituted with mobile phase buffer. The analytes are separated from polar interferences and buffer salts originating from the elution step on a 4-mm YMC Basic pre-column. The fraction containing the analytes is further separated on a 25-cm YMC Basic column. The analytes are detected by their absorbance at 250 nm. The limit of quantitation is 10 ng/ml. The method is linear from 10 ng/ml to 80 μg/ml using three standard curve ranges. Validation studies for all three ranges show the method to be reproducible. The method has been successfully used to support pharmacokinetic studies.  相似文献   

18.
A rapid and sensitive high-performance liquid chromatographic (HPLC) assay for the determination of alpha-naphthylisothiocyanate (1-NITC) and two metabolites alpha-naphthylamine (1-NA) and alpha-naphthylisocyanate (1-NIC) in rat plasma and urine has been developed. The chromatographic analysis was carried out using reversed-phase isocratic elution with a Partisphere C(18) 5-microm column, a mobile phase of acetonitrile-water (ACN-H(2)O 70:30, v/v), and detection by ultraviolet (UV) absorption at 305 nm. The lower limits of quantitation (LLQ) in rat plasma, urine, and ACN were 10, 30, and 10 ng/ml for 1-NITC; 30, 100, and 30 ng/ml for 1-NA; and 30 ng/ml in ACN for 1-NIC. At low (10 ng/ml), medium (500 ng/ml), and high (5000 ng/ml) concentrations of quality control samples (QCs), the range of within-day and between-day accuracies were 95-106 and 97-103% for 1-NITC in plasma, respectively. Stability studies showed that 1-NITC was stable at all tested temperatures in ACN, and at -20 and -80 degrees C in plasma, urine, and ACN precipitated plasma and urine, but degraded at room temperature and 4 degrees C. 1-NA was stable in all of the tested matrices at all temperatures. 1-NIC was unstable in plasma, urine, and ACN precipitated plasma and urine, but stable in ACN. The degradation product of 1-NITC and 1-NIC in universal buffer was confirmed to be 1-NA. 1-NITC and 1-NA were detected and quantified in rat plasma and urine, following the administration of a 25 mg/kg i.v. dose of 1-NITC to a female Sprague-Dawley rat.  相似文献   

19.
A liquid chromatographic procedure using UV detection was coupled with ultrafiltration for the quantitation of free phenylbutazone in bovine plasma, in the range of 20 ng/ml to 2.0 μg/ml. Whole plasma samples (0.5 to 1 ml) were placed in a 2-ml centrifugal concentrator with a molecular-mass cut-off membrane of 10 000 and centrifuged at 4500 g for 2 h at 4°C using a fixed angle rotor. The ultrafiltrate was transferred to an LC vial with a 200-μl insert and 100 μl was injected into an LC system. The chromatographic system used a C18 reversed-phase column connected to a UV detector set at 264 nm. The mobile phase was 0.2 M sodium phosphate buffer (pH 7)–methanol (1:1). Recoveries of phenylbutazone from protein-free plasma water fortified at levels of 20 ng/ml to 2 μg/ml ranged from 91 to 93%, with relative standard deviations (R.S.D.s) ranging from 1 to 4%. The concentration of incurred non-protein bound phenylbutazone obtained from a cow intravenously dosed twice with 2 g phenylbutazone, 8 h apart, was 111, 26 and 11 ng/ml for 2, 72 and 104 h post first phenylbutazone dose, respectively.  相似文献   

20.
Three high-performance liquid chromatographic methods are described for the detection of the novel antifolate anticancer drug (6R)-5,10-dideaza-5,6,7,8-tetrahydrofolate (lometrexol): one with fluorometric detection and two with detection by UV absorbance. An assay for plasma lometrexol using UV detection (288 nm) and reversed-phase chromatography was developed, with a quantitation limit of 0.2 μg/ml and linearity up to 10 μg/ml. This assay was modified for measurement of lometrexol in urine, with a quantitation limit of 2 μg/ml and linearity up to 25 μg/ml. An alternative assay for plasma lometrexol using derivatization and fluorescence detection (excitation at 325 nm, emission at 450 nm) was also developed, which proved twenty-fold more sensitive (quantitation limit of 10 ng/ml) than the UV assay, and which was linear up to 250 ng/ml. The fluoremetric method requires sample oxidation with manganese dioxide prior to analysis, and uses ion-pair chromatography with tetramethylammonium hydrogensulphate as an ion-pair reagent. All assays use a similar preliminary solid-phase extraction method (recovery as assessed by UV absorption >73%), with C10-desmethylene lometrexol added for internal standardisation. Each assay is highly reproducible (inter-assay precision in each assay is <10%). Applicability of the fluorescence-based assay to lometrexol in plasma and the UV-based assay lometrexol in urine is demonstrated by pharmacokinetic studies in patients treated as part of a Phase I clinical evaluation of the drug.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号