首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper compares the available North Americanliterature and data concerning several ecologicalfactors affecting Phragmites australisin inlandfreshwater, tidal fresh, and tidal brackish marshsystems. We compare aboveground productivity, plantspecies diversity, and sediment biogeochemistry; andwe summarize Phragmiteseffects on faunalpopulations in these habitats. These data suggest thatPhragmitesaboveground biomass is higher thanthat of other plant species occurring in the samemarsh system. Available data do not indicate anysignificant difference in the aboveground Phragmitesbiomass between marsh types, nor doesthere appear to be an effect of salinity on height.However, Phragmitesstem density wassignificantly lower in inland non-tidal freshwatermarshes than in tidal marshes, whether fresh orbrackish. Studies of the effects of Phragmiteson plant species richness suggest that Phragmitesdominated sites have lower diversity.Furthermore, Phragmiteseradication infreshwater sites increased plant diversity in allcases. Phragmitesdominated communities appearto have different patterns of nitrogen cyclingcompared to adjacent plant communities. Abovegroundstanding stocks of nitrogen (N) were found to behigher in Phragmitessites compared to thosewithout Phragmites. Porewater ammonium(NH4 +) did not differ among plant covertypes in the freshwater tidal wetlands, but inbrackish marshes NH4 +was much higher inSpartinaspp. than in neighboring Phragmitesstands. Faunal uses of Phragmitesdominated sites in North America were found to vary bytaxa and in some cases equaled or exceeded use ofother robust emergent plant communities. In light ofthese findings, we make recommendations for futureresearch.  相似文献   

2.
Numbers of species and genera,endemic genera,extant primitive genera,relationship and distribution patterns of presently living Chenopodiaceae(two subfamilies,12 tribes,and 118 genera)are analyzed and compared for eight distributional areas,namely central Asia,Europe,the Mediterranean region,Africa,North America,South America, Australia and East Asia. The Central Asia,where the number of genera and diversity of taxa are greater than in other areas,appears to be the center of distribution of extant Chenopodiaceae.North America and Australia are two secondary centers of distribution. Eurasia has 11 tribes out of the 12,a total of 70 genera of extant chenopodiaceous plants,and it contains the most primitive genera of every tribe. Archiatriplex of Atripliceae,Hablitzia of Hablitzeae,Corispermum of Corispermeae,Camphorosma of Camphorosmaea,Kalidium of Salicornieae,Polecnemum of Polycnemeae,Alexandra of Suaedeae,and Nanophyton of Salsoleae,are all found in Eurasia,The Beteae is an Eurasian endemic tribe,demonstrating the antiquity of the Chenopodiaceae flora of Eurasia.Hence,Eurasia is likely the place of origin of chenopodiaceous plants. The presence of chenopodiaceous plants is correlated with an arid climate.During the Cretaceous Period,most places of the continent of Eurasia were occupied by the ancient precursor to the Mediterranean,the Tethys Sea.At that time the area of the Tethys Sea had a dry and warm climate.Therefore,primitive Chenopodiaceae were likely present on the beaches of this ancient land.This arid climatic condition resulted in differentiation of the tribes Chenopodieae,Atripliceae,Comphorosmeae,Salicornieae,etc.,the main primitive tribes of the subfamily Cyclolobeae. Then following continental drift and the Laurasian and Gondwanan disintegration, the Chenopodiaceae were brought to every continent to propagate and develop, and experience the vicissitudes of climates, forming the main characteristics and distribution patterns of recent continental floras. The tribes Atripliceae, Chenopodieae, Camphorosmeae, and Salicornieae of recent Chenopodiaceae in Eurasia, North America, South America, southern Africa, and Australia all became strongly differentiated. However, Australia and South America, have no genera of Spirolobeae except for a few maritime Suaeda species. The Salsoleae and Suaedeae have not arrived in Australia and South America, which indicates that the subfamily Spirolobeae developed in Eurasia after Australia separated from the ancient South America-Africa continent, and South America had left Africa. The endemic tribe of North America, the tribe Sarcobateae, has a origin different from the tribes Salsoleae and Suaedeae of the subfamily Spirolobeae. Sarcobateae flowers diverged into unisexuality and absence of bractlets. Clearly they originated in North America after North America had left the Eurasian continent. North America and southern Africa have a few species of Salsola, but none of them have become very much differentiated or developed, so they must have arrived through overland migration across ancient continental connections. India has no southern African Chenopodiaceae floristic components except for a few maritime taxa, which shows that when the Indian subcontinent left Africa in the Triassic period, the Chenopodiaceae had not yet developed in Africa. Therefore, the early Cretaceous Period about 120 million years ago, when the ancient Gondwanan and Laurasian continents disintegrated, could have been the time of origin of Chenopodiaceae plants.The Chinese flora of Chenopodiaceae is a part of Chenopodiaceae flora of central Asia. Cornulaca alaschnica was discovered from Gansu, China, showing that the Chinese Chenopodiaceae flora certainly has contact with the Mediterranean Chenopodiaceae flora. The contact of southeastern China with the Australia Chenopodiaceae flora, however, is very weak.  相似文献   

3.
Dogs were present in pre-Columbian America, presumably brought by early human migrants from Asia. Studies of free-ranging village/street dogs have indicated almost total replacement of these original dogs by European dogs, but the extent to which Arctic, North and South American breeds are descendants of the original population remains to be assessed. Using a comprehensive phylogeographic analysis, we traced the origin of the mitochondrial DNA lineages for Inuit, Eskimo and Greenland dogs, Alaskan Malamute, Chihuahua, xoloitzcuintli and perro sín pelo del Peru, by comparing to extensive samples of East Asian (n = 984) and European dogs (n = 639), and previously published pre-Columbian sequences. Evidence for a pre-Columbian origin was found for all these breeds, except Alaskan Malamute for which results were ambigous. No European influence was indicated for the Arctic breeds Inuit, Eskimo and Greenland dog, and North/South American breeds had at most 30% European female lineages, suggesting marginal replacement by European dogs. Genetic continuity through time was shown by the sharing of a unique haplotype between the Mexican breed Chihuahua and ancient Mexican samples. We also analysed free-ranging dogs, confirming limited pre-Columbian ancestry overall, but also identifying pockets of remaining populations with high proportion of indigenous ancestry, and we provide the first DNA-based evidence that the Carolina dog, a free-ranging population in the USA, may have an ancient Asian origin.  相似文献   

4.
Among the 12 subfamilies currently considered in the systematics of Poaceae, the Arundinoideae have long been considered as a dustbin group, with a diversity of forms putatively hiding incertae sedis. Because this subfamily has been poorly investigated using molecular markers for the last two decades, the present study provides the first complete phylogeny of the Arundinoideae based on five plastid DNA loci sequenced for 12 genera, and analysed with and without plastome data from previous studies. The refined Arundinoideae appear to be a robust evolutionary lineage of Poaceae, divided into three tribes with some biogeographical patterns: (1) tribe Arundineae, the most heterogeneous tribe, including Eurasian Arundo, Australian Amphipogon and Monachather, and South African Dregeochloa; (2) tribe Crinipedeae (described here), including Crinipes, Elytrophorus, Styppeiochloa and Pratochloa (described here), with a South and East African distribution; and (3) tribe Molinieae, including Hakonechloa, Molinia and Phragmites, with a Eurasian distribution. Despite reduction in size, this small subfamily conserves a high diversity of morphological forms, with several small but highly differentiated genera. Finally, the molecular dating approach provides an evolutionary framework to understand the diversification of Arundinoideae, refuting Gondwanan vicariance between genera and suggesting capability for long distance dispersal.  相似文献   

5.
Sigmodontinae rodents represent one of the most diverse and complex components of the mammalian fauna of South America. Among them most species belongs to Oryzomyini and Akodontini tribes. The highly specific diversification observed in both tribes is characterized by diploid complements, which vary from 2n = 10 to 86. Given this diversity, a consistent hypothesis about the origin and evolution of chromosomes depends on the correct establishment of synteny analyzed in a suitable phylogenetic framework. The chromosome painting technique has been particularly useful for identifying chromosomal synteny. In order to extend our knowledge of the homeological relationships between Akodontini and Oryzomyini species, we analyzed the species Akodon montensis (2n = 24) and Thaptomys nigrita (2n = 52) both from the tribe Akodontini, with chromosome probes of Hylaeamys megacephalus (2n = 54) of the tribe Oryzomyini. The results indicate that at least 12 of the 26 autosomes of H. megacephalus show conserved synteny in A. montensis and 14 in T. nigrita. The karyotype of Akodon montensis, as well as some species of the Akodon cursor species group, results from many chromosomal fusions and therefore the syntenic associations observed probably represent synapomorphies. Our finding of a set of such associations revealed by H. megacephalus chromosome probes (6/21; 3/25; 11/16/17; and, 14/19) provides phylogenetic information for both tribes. An extension of these observations to other members of Akodontini and Oryzomyini tribes should improve our knowledge about chromosome evolution in both these groups.  相似文献   

6.
藜科植物的起源、分化和地理分布   总被引:27,自引:0,他引:27  
全球藜科植物共约130属1500余种,广泛分布于欧亚大陆、南北美洲、非洲和大洋洲的半干旱及盐碱地区。它基本上是一个温带科,对亚热带和寒温带也有一定的适应性。本文分析了该科包含的1l族的系统位置和分布式样,以及各个属的分布区,提出中亚区是现存藜科植物的分布中心,原始的藜科植物在古地中海的东岸即华夏陆台(或中国的西南部)发生,然后向干旱的古地中海沿岸迁移、分化,产生了环胚亚科主要族的原始类群;起源的时间可能在白垩纪初,冈瓦纳古陆和劳亚古陆进一步解体的时期。文章对其迁移途径及现代分布式样形成的原因进行了讨论。  相似文献   

7.
Interspecific hybridization can lead to the extinction of native populations and increased aggressiveness in hybrid forms relative to their parental lineages. However, interbreeding among subspecies is less often recognized as a serious threat to native species. Phragmites australis offers an excellent opportunity to investigate intraspecific hybridization since both native and introduced lineages occur in North America. Introduced Phragmites is a highly successful estuarine plant invader throughout North America, but native Phragmites populations are declining in the eastern US. Despite range overlaps, hybridization has not yet been detected between the native and introduced lineages in the wild, suggesting that phenological or physiological barriers preclude cross-pollination. We demonstrate, for the first time, that native and introduced populations of Phragmites can hybridize. There is substantial overlap in flowering period between native and introduced populations from the same geographic locations. We manually cross-pollinated native individuals with pollen from introduced Phragmites and recovered viable offspring. We then used microsatellite markers to prove that alleles unique to the pollen parent were transferred to progeny. Our results imply a mechanism for the further decline of native Phragmites in North America and a potential for the formation of aggressive hybrid offspring.  相似文献   

8.
Chloroplasts contain several copies of their DNA, and intra-individual haplotypic variation (heteroplasmy) is common in plants, but unexplored in the cosmopolitan genus Phragmites. The aims of this study were to assess if heteroplasmy due to paternal leakage of the chloroplast occurs in Phragmites and which new insights into the evolutionary history of Phragmites australis in North America can be identified from the heteroplasmic variation. Eight non-native P. australis haplotypes occur in North America and can interbreed with P. australis ssp. americanus and P. australis var. berlandieri, creating opportunities for biparental inheritance of distinctive haplotypes. The polymorphism in the trnT-trnL sequence length revealed seventeen cases of heteroplasmy worldwide, in contact zones of distantly related haplotypes and in known hybrid populations, nine of which occurred in North America. In America, the cloned sequences, combined with nuclear markers, identified recombined haplotypes between native P. australis ssp. americanus and invasive P. australis haplotype M, and between the species P. mauritianus and P. australis, due to chloroplast paternal leakage. The occurrence of heteroplasmy and recombined haplotypes suggest a local origin for some of the rare non-native haplotypes occurring in North America, and plastid leakage events in the evolutionary histories of P. australis ssp. americanus and P. australis var. berlandieri.  相似文献   

9.
We found a new non-native haplotype of Phragmites australis in North America that provides convincing evidence for multiple introductions of this highly invasive reed from Europe. Prior to our detection of this new non-native haplotype, invasion of North America by this reed grass was thought to be limited to a single cp-DNA haplotype–haplotype M. However, we found two sites colonized by haplotype L1 in Quebec, Canada, a haplotype native to northern Europe, Great Britain and Romania. Because the invasion of North America by P. australis is ongoing, and because there is evidence for intra- and inter-specific hybridization and increased fecundity resulting from outcrossing, more attention should be paid to genetic differences and associated vigor of populations of introduced Phragmites across North America.  相似文献   

10.
Bees are among the most important pollinators of angiosperm plants. Many bee species show narrow host‐plant preferences, reflected both in behavioral and morphological adaptations to particular attributes of host‐plant pollen or floral morphology. Whether bee host‐plant associations reflect co‐cladogenesis of bees and their host plants or host‐switches to unrelated host plants is not clear. Rophitinae is a basal subfamily of Halictidae in which most species show narrow host‐plant preferences (oligolecty). We reconstructed the phylogenetic relationships among the rophitine genera using a combination of adult morphology (24 characters) and DNA sequence data (EF‐1α, LW rhodopsin, wingless; 2700 bp total). The data set was analyzed by parsimony, maximum likelihood and Bayesian methods. All methods yielded highly congruent results. Using the phylogeny, we investigated the pattern of host‐plant association as well as the historical biogeography of Rophitinae. Our biogeographical analysis suggests a number of dispersal/vicariance events: (1) a basal split between North America and South America (most likely a dispersal from South America to North America), and (2) at least two subsequent interchanges between North America and Eurasia (presumably via the northern hemisphere land bridges). Our analysis of host‐plant associations indicates that Rophitinae specialized on a closely related group of angiosperm orders in the Euasterid I clade (mainly Gentianales, Lamiales and Solanales). However, there is little evidence of cocladogenesis between bees and plants and strong evidence of host switches to unrelated host plants. Based on our phylogenetic results we describe two new tribes of Rophitinae: Conanthalictini new tribe (including the genus Conanthalictus) and Xeralictini new tribe (including Xeralictus and Protodufourea). © The Willi Hennig Society 2007.  相似文献   

11.
In tidal wetlands of the eastern United States, buried seeds of the non-native haplotype of Phragmites australis may be a source of propagules for re-establishment after eradication efforts but factors controlling the development and expression of seed banks in non-native Phragmites stands have not been examined. We sampled surface soil at four Chesapeake Bay brackish tidal wetlands dominated by the non-native (European) haplotype M of Phragmites and used the seedling emergence method to quantity species of seedlings emerging under flooded and non-flooded soil conditions. Within each subestuary, one site was dominated by Phragmites that produced viable seeds (high viability) and the other by Phragmites that did not (low viability). We also described standing vegetation in plots, measured soil salinity, analyzed soil characteristics, and described surrounding land cover. Based on number of emerging seedlings, we found that 284 and 698 Phragmites seeds m−2 occurred at the two high-viability sites, which was significantly higher than seed densities at the low-viability sites (10 seeds m−2), and greater than densities reported elsewhere. We also found that emergence of Phragmites seedlings from soil samples was prevented by continuous flooding of 3.5 cm of standing water, suggesting that colonization of deep water areas is due to vegetative clonal expansion from Phragmites in adjacent higher elevations. The density of Phragmites seeds was not related to soil salinity or abundance of other species in the seed bank or vegetation, but instead was positively related to greater wave energy disturbance (much longer fetch and more open water) and lower area of wetlands nearby. The seed bank was more species-rich (15-22 species observed) than standing vegetation (3-15 species) at all sites, meaning that the dominance of Phragmites in vegetation does not prevent the development of a diverse seed bank and implying that a species-rich community may establish rapidly following control efforts. Based on these results and our findings in related studies, we postulate that wave energy disturbance generates repeated opportunities for seedling recruitment by Phragmites, which creates stands of Phragmites with higher genotypic diversity. In turn, genetically diverse stands favor greater cross-pollination and production of viable seed. These findings suggest that, in North America, targeting control efforts on non-native Phragmites patches in areas of higher exposure to wave energy may be more effective in reducing source populations than efforts in more protected locations.  相似文献   

12.
Free amino acids and γ-glutamyl peptides have been examined in 22 species of Iridaceae. 3-(3′-Carboxyphenyl)alanine and 3′-carboxyphenylglycine, previously known from the tribes Irideae and Tigridideae in the subfamily Iridodeae have been identified also in the tribe Mariceae of Iridoideae and the genera Bobartia, Orthrosanthus and Libertia of the subfamily Sisyrinchioideae. γ-Glutamyl peptides, previously known from the tribe Irideae, have been found also in the tribe Mariceae, both tribes being from subfamily Iridoideae. γ-Glutamyl-S-methylcysteine, γ-glutamylmethionine and the corresponding sulphoxides are the dominating γ-glutamyl peptides in the genera Dietes, Gynandriris, Moraea (tribe Irideae), Neomarica and Trimezia (tribe Mariceae), whereas γ-glutamyl peptides with non-sulphur amino acids are predominant in genera Ferraria, Hermodactylus, Homeria, Iris, Iridodyctyum and Xiphium (tribe Irideae). Dietes robisoniana, endemic to Lord Howe Island, has the same technical characters as other Dietes species from Southern Africa. The results are discussed in relation to botanical classification of and within the subfamilies Iridoideae and Sisyrinchoideae.  相似文献   

13.
The Amazonia and the Atlantic Forest, separated by the diagonal of open formations, are two ecoregions that comprise the most diverse tropical forests in the world. The Sphaenorhynchini tribe is among the few tribes of anurans that occur in both rainforests, and their historical biogeographic have never been proposed. In this study, we infer a dated phylogeny for the species of the Sphaenorhynchini and we reconstructed the biogeographic history describing the diversification chronology, and possible patterns of dispersion and vicariance, providing information about how orogeny, forest dynamics and allopatric speciation affected their evolution in South America. We provided a dated phylogeny and biogeography study for the Sphaenorhynchini tribe using mitochondrial and nuclear genes. We analyzed 41 samples to estimate the ancestral areas using biogeographical analysis based on the estimated divergence times and the current geographical ranges of the species of Sphaenorhynchini. We recovered three characteristic clades that we recognize as groups of species (S. lacteus, S. planicola, and S. platycephalus groups), with S. carneus and G. pauloalvini being the sister taxa of all other species from the tribe. We found that the diversification of the tribe lineages coincided with the main climatic and geological factors that shaped the Neotropical landscape during the Cenozoic. The most recent common ancestor of the Sphaenorhynchini species emerged in the North of the Atlantic Forest and migrated to the Amazonia in different dispersion events that occurred during the connections between these ecoregions. This is the first large‐scale study to include an almost complete calibrated phylogeny of Sphaenorhynchini, presenting important information about the evolution and diversification of the tribe. Overall, we suggest that biogeographic historical of Sphaenorhynchini have resulted from a combination of repeated range expansion and contraction cycles concurrent with climate fluctuations and dispersal events between the Atlantic Forest and Amazonia.  相似文献   

14.
Sequences of nuclear chalcone synthase gene (Chs) were analyzed for species of the Brassicaceae family to reconstruct phylogenetic relationships. The phylogeny for 106 species of 60 genera was reconstructed, and assigned to 24 tribes, using maximum parsimony, maximum likelihood, and neighbor-joining methods. Most of the tribes can be assigned to the major lineages (Lineages I–III) suggested by Beilstein et al. (2006). The tribe Camelineae was not monophyletic. Conringia planisiliqua together with Orychophragmus violaceus would not be recognized as a new tribe proposed by the previous studies, and C. planisiliqua should be a member of tribe Isatideae. The genera delimitation and monophyly of the expanded Solms-laubachia were also confirmed by our data. Furthermore, one parent of inter-tribal allopolyploid Pachycladon appeared to be most closely associated with Crucihimalaya, Transberingia and tribes Boechereae and Halimolobeae, another parent was proved to be in tribe Smelowskieae.  相似文献   

15.
Scalopini is one of the two fully fossorial mole tribes in the family Talpidae, with remarkable adaptations to subterranean lifestyles. Most living Scalopini species are distributed in North America while a sole species occurs in China. On the other hand, scalopine fossils are found in both Eurasia and North America from upper Oligocene strata onwards, implying a complex biogeographical history. The systematic relationships of both extant and fossil Scalopini across North America and Eurasia are revised by conducting phylogenetic analyses using a comprehensive morphological character matrix together with 2D geometric–morphometric analyses of the humeral shape, with a specific emphasis on Mioscalops, a genus commonly found in North America and formerly known as Scalopoides. Our phylogenetic analyses support the monophyly of the tribe Scalopini as well as a proposed two‐subtribe‐division scenario of Scalopini (i.e. Scalopina and Parascalopina), although Proscapanus could not be assigned to either subgenus. Our geometric–morphometric analyses indicate that the European Mioscalops from southern Germany should be allocated to Leptoscaptor, which in turn implies that Mioscalops may be endemic to North America and never arrived in Europe. Examination of biogeographical patterns does not unambiguously determine the geographical origin of Scalopini. Nevertheless, it does support multiple transcontinental colonization events across Asia, Europe and North America. Scapanulus oweni, distributed in central China, is the only remaining representative of one of those out‐of‐North‐America migrations, whereas scalopine moles are common in North America nowadays with up to five species.  相似文献   

16.
Sequence data from the nuclear encoded ribosomal internal transcribed spacer (ITS) region were used to determine monophyly of tribes, tribal limits, and tribal relationships of 96 so far unassigned or tentatively assigned genera (represented by 101 taxa/accessions) within the Brassicaceae. Maximum-parsimony and maximum-likelihood analyses of 185 ITS Brassicaceae sequences, which also included representatives of each of the 34 currently recognized tribes, supported the separate phylogenetic distinctness of these tribes and permitted the tribal assignment of all but 12 of the unassigned genera into tribal clades. The data support the recognition of eight new, well-resolved, uni- or oligogeneric tribes recognized herein as the Alyssopsideae [96% bootstrap support (BS); including the central and southwestern Asian Alyssopsis and Calymmatium], Asteae (100% BS; including the Mexican Asta), Eudemeae (97% BS; South American Brayopsis, Eudema, and Xerodraba), Kernereae (96% BS; European Kernera and Rhizobotrya), Notothlaspideae (100% BS; New Zealandic Notothlaspi), Oreophytoneae (100% BS; eastern African Oreophyton and southern European Murbeckiella), and Yinshanieae (100% BS; Chinese Yinshania), as well as the moderately supported Microlepidieae (75% BS; Australian Microlepidium and Carinavalva). Furthermore, the results fully support the recent findings that the tribes Schizopetaleae and Thelypodieae ought to be recognized as two distinct tribes instead of a single tribe, as well as provide some support for the re-establishment of the tribe Cremolobeae, bringing the total number to 44 tribes in the family. Nearly 92% (308) of the 336 genera in the family have been assigned to a tribe. The earlier-published Anastaticeae is taken here to replace the Malcolmieae.  相似文献   

17.
Common reed, Phragmites australis (Cav.) Trin. Ex Steud., is the dominant emergent vegetation in the lower Mississippi River Delta (MRD), Louisiana, USA and is comprised primarily of introduced lineages of different phylogeographic origins. Dense stands of P. australis are important for protecting marsh soils from wave action and storm surges. In the Fall of 2016, while investigating symptoms of die-back of Phragmites stands in the lower marsh, a non-native scale was found infesting affected stands in high densities. Identified as Nipponaclerda biwakoensis (Kuwana) (Hemiptera: Aclerdidae), the scale was well established across the lower MRD. This report represents the first recorded population of Nipponaclerda biwakoensis in North America. Intriguingly, there are noticeable differences in die-back symptoms and in scale densities among different lineages of Phragmites in the MRD, with stands of the well-known European invasive lineage appearing healthier and having lower scale densities than other Phragmites lineages. Given its apparent relationship with the die-back syndrome, the scale may have serious implications for the health and stability of Phragmites marsh communities across coastal Louisiana. Efforts are currently underway to investigate the role of the scale and other abiotic stressors in the die-backs and potential management solutions.  相似文献   

18.
Native snakeweeds, especially Gutierrezia sarothrae (Pursh) Britton and Rusby and Gutierrezia microcephala (DC.) A. Gray, are among the most widespread and damaging weeds of rangelands in the western United States and northern Mexico. The genus long ago spread to southern South America, where further speciation occurred. We have found several species of insects in Argentina that damage other species of snakeweeds there and are possible candidates for biological control in North America. The first of these, the root-boring weevil, Heilipodus ventralis (Hustache), was tested in Argentina and then sent to the USDA-ARS Insect Quarantine Facility at Temple, Texas, for host specificity testing on North American plants. We tested H. ventralis on 40 species of the family Asteraceae, in 19 tests of five types, using 686 adults and 365 larvae. Host specificity increased from adult feeding, to ovipositional selection, to larval development. At Temple, adults fed mostly on 6 species of the closely related genera Grindelia, Gutierrezia, and Gymnosperma, but with substantial feeding on four other genera of the two preferred subtribes Solidagininae and Machaerantherinae and on Baccharis in the tribe Baccharidinae, with lesser feeding on the subtribe Asterinae, all in the tribe Astereae, and on 1 species in the tribe Anthemideae. Females oviposited primarily on the same 6 species but very little on plants outside the 2 preferred subtribes. Larvae developed only on 9 of the 29 U.S. plant species tested, 6 within the two preferred subtribes and on Brickellia and Aster in other tribes. Only 5 species of three genera appear to be potential true hosts of H. ventralis in North America, on which all stages of the life cycle, adult feeding, oviposition, and larval development, can take place; these are Gymnosperma glutinosum (Spreng.) Less., Gutierrezia grandis Blake, Gut. microcephala, Gut. sarothrae, and Grindelia lanceolata Nutt. None of these genera contain species of economic or notable ecological value; the few rare species appear to be protected by habitat isolation from attack by H. ventralis. H. ventralis, therefore, appears sufficiently host specific for field release in North America. This is the first introduced biocontrol agent to be approved for release in a continental area to control a native weed.  相似文献   

19.
Extracts enriched for globulin proteins were prepared from the seeds of a large number of legume species and were tested for homology to antisera prepared against the glycosylated 7S seed storage protein of the soybean (Glycine max). Electrophoretic identification and subsequent analysis of proteins precipitated with 7S antisera was useful at relatively short taxonomic distances, particularly within the tribe Phaseoleae, to which G. max belongs. Glycine and most other members of the subtribe Glycininae are unusual within the Phaseoleae in having high molecular weight (> 70 000 dalton) subunit polypeptides. Seeds from other plants representing other subtribes of the Phaseoleae also contained proteins that cross-reacted with the G. max antisera; the molecular weights of these proteins varied from 30 000 to nearly 90 000 daltons. Homology was detected across a wider range of legume tribes within the subfamily Papilionoideae by enzyme-linked immunosorbent assay (ELISA). The results of these experiments suggest both that the 7S proteins of these tribes are evolutionarily related and that at least some features of these apparently rapidly-evolving proteins are under relatively strong selectional constraint.  相似文献   

20.
Abiotic global change factors, such as rising atmospheric CO2, and biotic factors, such as exotic plant invasion, interact to alter the function of terrestrial ecosystems. An invasive lineage of the common reed, Phragmites australis, was introduced to North America over a century ago, but the belowground mechanisms underlying Phragmites invasion and persistence in natural systems remain poorly studied. For instance, Phragmites has a nitrogen (N) demand higher than native plant communities in many of the ecosystems it invades, but the source of the additional N is not clear. We exposed introduced Phragmites and native plant assemblages, containing Spartina patens and Schoenoplectus americanus, to factorial treatments of CO2 (ambient or +300 ppm), N (0 or 25 g m?2 year?1), and hydroperiod (4 levels), and focused our analysis on changes in root productivity as a function of depth and evaluated the effects of introduced Phragmites on soil organic matter mineralization. We report that non-native invasive Phragmites exhibited a deeper rooting profile than native marsh species under all experimental treatments, and also enhanced soil organic matter decomposition. Moreover, exposure to elevated atmospheric CO2 induced a sharp increase in deep root production in the invasive plant. We propose that niche separation accomplished through deeper rooting profiles circumvents nutrient competition where native species have relatively shallow root depth distributions; deep roots provide access to nutrient-rich porewater; and deep roots further increase nutrient availability by enhancing soil organic matter decomposition. We expect that rising CO2 will magnify these effects in deep-rooting invasive plants that compete using a tree-like strategy against native herbaceous plants, promoting establishment and invasion through niche separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号