首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
High-performance liquid chromatography with electrospray ionization mass spectrometry was used to determine 11-nor-Δ9-tetrahydrocannabinol-9-carboxylic acid (THC-COOH) in urine. After basic hydrolysis of conjugates, the compound was extracted using SPEC-PLUS-3ML-C18 solid-phase extraction columns. A deuterium labelled internal standard (d3-THC-COOH) was added prior to hydrolysis. Separation was performed on a reversed-phase Zorbax Eclipse XDB-C8 analytical column (150×3.0 mm I.D.) using a gradient program from 60 to 80% acetonitrile (4 mM formic acid) at a flow-rate of 0.5 ml/min. The compounds were detected by single ion monitoring of m/z 345 and m/z 348 for the protonated molecules [THC-COOH+H]+ and [d3-THC-COOH+H]+, respectively. The precision and accuracy were tested on spiked urine samples in the range 2.5–125 ng/ml. The mean recovery was 95% (n=58), coefficients of variations were 2.2–4.3% and the limit of detection 2 ng/ml. Diagnostic qualifying ions of THC-COOH (m/z 327 and m/z 299) and d3-THC-COOH (m/z 330) were generated using up-front collision-induced dissociation. The relative ion intensities in clinical samples (n=21) were within ±20% deviation compared with standards. Using this tolerance and the presence of the ions m/z 327 and m/z 299 at the correct retention times as the acceptance criteria for identification of THC-COOH positive samples, the limit of detection was 15 ng/ml. The LC–MS method complies with the current recommendations on drugs of abuse testing, in which mass spectrometric detection is emphasized.  相似文献   

2.
We first detected glutathionyl hemoglobin (Hb) β-chain in hemodialysis patients and healthy subjects using electrospray ionization liquid chromatography–mass spectrometry. The ratio of glutathionyl Hb β-chain to total β-chain was markedly increased in the hemodialysis patients as compared with healthy subjects. Glutathionyl Hb will be used as a new clinical marker of oxidative stress.  相似文献   

3.
A sensitive and specific assay of imidapril and its active metabolite, imidaprilat, in human plasma has been developed. This method is based on rapid isolation and high-performance liquid chromatography (HPLC)–electrospray ionization (ESI)-tandem mass spectrometry (MS–MS). Imidapril and imidaprilat were isolated from human plasma using OASIS HLB (solid-phase extraction cartridge), after deproteinization. The eluent from the cartridge was evaporated to dryness, and the residue was reconstituted in mobile phase and injected into the HPLC–ESI-MS–MS system. Each compound was separated on a semi-micro ODS column in acetonitrile–0.05% (v/v) formic acid (1:3, v/v). The selected ion monitoring using precursor→product ion combinations of m/z 406→234 and 378→206, was used for determination of imidapril and imidaprilat, respectively. The linearity was confirmed in the concentration range of 0.2 to 50 ng/ml in human plasma, and the precision of this assay, expressed as a relative standard deviation, was less than 13.2% over the entire concentration range with adequate assay accuracy. The HPLC–ESI-MS–MS method correlates well with the radioimmunoassay method, therefore, it is useful for the determination of imidapril and imidaprilat with sufficient sensitivity and specificity in clinical studies.  相似文献   

4.
A confirmation procedure is described for residues of spectinomycin in bovine milk. Spectinomycin is extracted from raw milk using ion-pair reversed-phase solid-phase extraction. The extracts are ion-pair chromatographed on a polymeric reversed-phase column and analyzed on a quadrupole ion trap mass spectrometer equipped with an electrospray interface. MS–MS data are acquired in the scan mode of product ions deriving from m/z 333, the protonated molecular ion. The estimated limit of confirmation is between 0.05 and 0.1 μg/ml. The procedure was validated with control milk, fortified milk (0.1–5.0 μg/ml), and milk from cows dosed with spectinomycin.  相似文献   

5.
The Micromass Platform LCZ mass detector parameters were optimized for simultaneous recording of the protonated (CsA∼H+), sodium adduct (CsA∼Na+) and potassium adduct (CsA∼K+) of cyclosporin A eluted from a Symmetry Shield RP8 column. The optimized procedure allows a precise analysis of CsA in whole blood or serum without removal of salts prior to analysis. The ratio of the three forms of CsA varied depending on the assay condition and the types of specimens being analyzed. The summation of three ionic forms of CsA detected by LC–ESI-MS is a reliable and simple method to assess CsA concentration in the blood.  相似文献   

6.
7.
Organophosphorus (OP) pesticides kill by disrupting a targeted pest's brain and nervous systems. But if humans and other animals are sufficiently exposed, OP pesticides can have the same effect on them. We developed a fast and accurate high-performance liquid chromatography–tandem mass spectrometry method for the quantitative measurement of the following six common dialkylphosphate (DAP) metabolites of organophosphorus insecticides: dimethylphosphate (DMP), dimethylthiophosphate (DMTP), dimethyldithiophosphate (DMDTP), diethylphosphate, (DEP), diethylthiophosphate (DETP), and diethyldithiophosphate (DEDTP). The general sample preparation included 96-well plate solid phase extraction using weak anion exchange cartridges. The analytical separation was performed by high-performance liquid chromatography with a HILIC column. Detection involved a triple quadrupole mass spectrometer with an ESI probe in negative ion mode using multiple reaction monitoring. Repeated analyses of urine samples spiked at 150, 90 and 32 ng/mL with the analytes gave relative standard deviations of less than 22%. The extraction efficiency ranged from 40% to 98%. The limits of detection were in the range of 0.04–1.5 ng/mL. The throughput is 1152 samples per week, effectively quadrupling our previous throughput. The method is safe, quick, and sensitive enough to be used in environmental and emergency biological monitoring of occupational and nonoccupational exposure to organophosphates.  相似文献   

8.
In order to discriminate selegiline (SG) use from methamphetamine (MA) use, the urinary metabolites of SG users have been investigated using high-performance liquid chromatography (HPLC)–electrospray ionization mass spectrometry (HPLC–ESI–MS). Selegiline-N-oxide (SGO), a specific metabolite of SG, was for the first time detected in the urine, in addition to other metabolites MA, amphetamine (AP) and desmethylselegiline (DM-SG). A combination of a Sep-pak C18 cartridge for the solid-phase extraction, a semi-micro SCX column (1.5 mm I.D.×150 mm) for HPLC separation and ESI–MS for detection provided a simple and sensitive procedure for the simultaneous determination of these analytes. Acetonitrile–10 mM ammonium formate buffer adjusted to pH 3.0 (70:30, v/v) at a flow-rate of 0.1 ml/min was found to be the most effective mobile phase. Linear calibration curves were obtained over the concentration range from 0.5 to 100 ng/ml for all the analytes by monitoring each protonated molecular ion in the selected ion monitoring (SIM) mode. The detection limits ranged from 0.1 to 0.5 ng/ml. Upon applying the scan mode, 10–20 ng/ml were the detection limits. Quantitative investigation utilizing this revealed that SGO was about three times more abundant (47 ng/ml, 79 ng/ml) than DM-SG in two SG users’ urine samples tested here. This newly-detected, specific metabolite SGO was found to be an effective indicator for SG administration.  相似文献   

9.
We have developed a highly selective and sensitive analytical method to quantify paraquat and diquat by use of high-performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS). The sample preparation includes solid phase extraction that uses weak cation exchange cartridges. These highly charged dual quaternary amines were not retained by standard reversed phase columns, but they could be adequately separated through HPLC with a HILIC column. The detection was carried out with a triple quadrupole mass spectrometer with an electrospray ionization probe in positive ion mode in multiple reaction monitoring. Repeated analysis in human urine samples spiked with low (5 ng/ml), medium (15 ng/ml), and high (30 ng/ml) concentrations of the analytes yielded relative standard deviations of less than 9%. The extraction efficiencies ranged from 77.7% to 94.2%. The limits of detection were in the range of 1 ng/ml.  相似文献   

10.
We describe a novel high performance liquid chromatography–electrospray ionization mass spectrometry (HPLC–ESI-MS) method for the simultaneous quantification of enzymatic immature (dihydroxylysinonorleucine DHLNL, hydroxylysinonorleucine HLNL) and mature (pyridinoline PYD, deoxypyridinoline DPD) collagen crosslinks in connective tissues. The crosslinks were separated on a C18 Atlantis® T3 reversed-phase column with heptafluorobutyric acid (HFBA) as volatile ion-pairing reagent in an acetonitrile–water mobile phase. Detection was carried out by electrospray ionization mass spectrometry in a positive ion mode with selected ion recording (SIR). This method is more sensitive and selective than ion exchange chromatography with post-column ninhydrin detection which is the reference method used for the simultaneous quantification of collagen enzymatic divalent and trivalent crosslinks. The intra and inter-day precision errors were less than 3.4 and 7.7%, respectively for DHLNL, 3.5 and 5.9%, respectively for HLNL, 4.0 and 5.2%, respectively for PYD, 8.2 and 10.7%, respectively for DPD. This novel technique should be useful to quantify simultaneously DHLNL, HLNL, PYD and DPD in connective tissues and to evaluate the maturation of collagen by determination of the ratio between immature and mature enzymatic crosslinks.  相似文献   

11.
A sensitive and selective method for the determination of domperidone in human breast milk and serum has been developed. The same method may be successfully applied to both matrices to a lower limit of quantitation of 0.5 ng/ml. Samples are processed by a liquid–liquid extraction, and analyzed by LC–ESI-MS in positive ion mode. There was no interference, on the domperidone quantitation, from over 30 drugs. Samples from patients, at various times post-dose, were analyzed and a large number showed significant levels of domperidone in the breast milk as well as in the serum.  相似文献   

12.
A rapid and systematic strategy based on liquid chromatography–mass spectrometry (LC–MS) profiling and liquid chromatography–tandem mass spectrometry (LC–MS–MS) substructural techniques was utilized to elucidate the degradation products of paclitaxel, the active ingredient in Taxol. This strategy integrates, in a single instrumental approach, analytical HPLC, UV detection, full-scan electrospray MS, and MS–MS to rapidly and accurately elucidate structures of impurities and degradants. In these studies, degradants induced by acid, base, peroxide, and light were profiled using LC–MS and LC–MS–MS methodologies resulting in an LC–MS degradant database which includes information on molecular structures, chromatographic behavior, molecular mass, and MS–MS substructural information. The stressing conditions which may cause drug degradation are utilized to validate the analytical monitoring methods and serve as predictive tools for future formulation and packaging studies. Degradation products formed upon exposure to basic conditions included baccatin III, paclitaxel sidechain methyl ester, 10-deacetylpaclitaxel, and 7-epipaclitaxel. Degradation products formed upon exposure to acidic conditions included 10-deacetylpaclitaxel and the oxetane ring opened product. Treatment with hydrogen peroxide produced only 10-deacetylpaclitaxel. Exposure to high intensity light produced a number of degradants. The most abundant photodegradant of paclitaxel corresponded to an isomer which contains a C3–C11 bridge. These methodologies are applicable at any stage of the drug product cycle from discovery through development. This library of paclitaxel degradants provides a foundation for future development work regarding product monitoring, as well as use as a diagnostic tool for new degradation products.  相似文献   

13.
YH439 is a potential drug candidate for the treatment of various hepatic disorders. YH439 and its three metabolites have been identified in rat urine by liquid chromatography–mass spectrometry (LC–MS) and by gas chromatography (GC)–MS. Identification of YH439 and its metabolites was established by comparing their GC retention times and mass spectra with those of the synthesized authentic standards. Both electron impact- and positive chemical ionization MS have been evaluated. The metabolism study was performed in the rat using oral administration of the drug. A major metabolite (YH438) was identified as the N-dealkylation product of YH439. Other identified metabolites were caused by the loss of the methyl thiazolyl amine group (metabolite II) from YH439, the isopropyl hydrogen malonate group (metabolite IV) and the decarboxylated product (metabolite III) of metabolite II.  相似文献   

14.
A liquid chromatography–mass spectrometry (LC–MS) method for the analysis of corticosteroids in equine urine was developed. Corticosteroid conjugates were hydrolysed with β-glucuronidase; free and enzyme-released corticosteroids were then extracted from the samples with ethyl acetate followed by a base wash. The isolated corticosteroids were detected by LC–MS and confirmed by LC–MS–MS in the positive atmospheric pressure chemical ionisation mode. Twenty-three corticosteroids (comprising hydrocortisone, deoxycorticosterone and 21 synthetic corticosteroids), each at 5 ng/ml in urine, could easily be analysed in 10 min.  相似文献   

15.
Quantitative analysis of two opioid peptides, DSLET [(d-Ser2)Leu-enkephalin-Thr6] and Met-enkephalin-Arg-Gly-Leu, was performed using microbore liquid chromatography interfaced to electrospray ionization tandem mass spectrometry. Validation of the methodology was demonstrated for each peptide in plasma. Quantitative analyses were performed through the use of a deuterium labelled peptide analog as an internal standard. Linearity was observed for the analysis of DSLET (5–1000 ng/ml) and Met-enkephalin-Arg-Gly-Leu (1–1000 ng/ml) in plasma with a limit of detection of 0.25 ng/ml for Met-enkephalin-Arg-Gly-Leu and 1.0 ng/ml for DSLET. In general, the observed concentrations showed good reproducibility with coefficients of variation of within 15%. In the concentration range studied, only 0.5 ml of plasma was required for optimal detection of Met-enkephalin-Arg-Gly-Leu and 0.25 ml for DSLET. Application of this method was demonstrated by studying the disposition of DSLET in a rat. DSLET administered to a rat exhibited a short half-life and a high clearance value.  相似文献   

16.
Thyrotropin-releasing hormone (TRH) is involved in a wide range of biological responses. It has a central role in the endocrine system and regulates several neurobiological activities. In the present study, a rapid, sensitive and selective liquid chromatography–mass spectrometry method for the identification and quantification of TRH has been developed. The methodology takes advantage of the specificity of the selected-ion monitoring acquisition mode with a limit of detection of 1 fmol. Furthermore, the MS/MS fragmentation pattern of TRH has been investigated to develop a selected reaction monitoring (SRM) method that allows the detection of a specific b2 product ion at m/z 249.1, corresponding to the N-terminus dipeptide pyroglutamic acid–histidine. The method has been tested on rat hypothalami to evaluate its suitability for the detection within very complex biological samples.  相似文献   

17.
The biodegradation of alkylpolyglucosides (APGs) was studied under the conditions of the OECD Screening Test with activated sludge as an inoculum. An influence of alkyl and sugar chain length on the biodegradation rate and a central scission pathway of the biodegradation were investigated. The liquid chromatography-electrospray mass spectrometry technique was used for alkylpolyglucoside analysis and for identification and semiquantitative determination of metabolites. It was found that APGs with a longer alkyl chain were biodegraded faster than those with a shorter one. However, a longer sugar chain caused slower biodegradation of APGs. The central scission pathway of biodegradation was also confirmed.  相似文献   

18.
A sensitive and specific method for determination of the residues of 50 anabolic hormones in muscle (pork, beef, shrimp), milk and pig liver was developed. Analytes were separated and acquired by liquid chromatography coupled with an electrospray ionization tandem mass spectrometer (LC–ESI–MS/MS). Target compounds were simultaneously extracted with methanol after enzyme hydrolysis, and purified using a graphitized carbon-black solid-phase extraction (SPE) and followed by NH2 SPE cartridge. Limits of quantification were 0.04–2.0 μg kg?1; average recoveries were 76.9–121.3%; and the relative standard deviation was 2.4–21.2%. This method has been successfully applied in real samples.  相似文献   

19.
A rapid, specific and sensitive liquid chromatography–electrospray ionization-tandem mass spectrometry method was developed and validated for determination of cymipristone in human plasma. Mifepristone was used as the internal standard (IS). Plasma samples were deproteinized using methanol. The compounds were separated on a ZORBAX SB C18 column (50 mm × 2.1 mm i.d., dp 1.8 μm) with gradient elution at a flow-rate of 0.3 ml/min. The mobile phase consisted of 10 mM ammonium acetate and acetonitrile. The detection was performed on a triple-quadruple tandem mass spectrometer by selective reaction monitoring (SRM) mode via electrospray ionization. Target ions were monitored at [M+H]+ m/z 498  416 and 430  372 in positive electrospray ionization (ESI) mode for cymipristone and IS, respectively. Linearity was established for the range of concentrations 0.5–100 ng/ml with a coefficient correlation (r) of 0.9996. The lower limit of quantification (LLOQ) was identifiable and reproducible at 0.5 ng/ml. The validated method was successfully applied to study the pharmacokinetics of cymipristone in healthy Chinese female subjects.  相似文献   

20.
The tetrapeptide AcSDKP, a natural and specific substrate of angiotensin I-converting enzyme (ACE), is a negative regulator of hematopoiesis. AcSDKP has been measured in various biological media using an enzyme immunoassay (EIA), but its presence in human plasma and urine has not been formally established. By using immunoaffinity extraction and liquid chromatography–electrospray mass spectrometry, we demonstrate that AcSDKP-like immunoreactivity measured with EIA in plasma and urine samples from untreated, captopril- (an ACE inhibitor) and AcSDKP-treated subjects corresponds to AcSDKP. The present study confirms that AcSDKP is naturally present in human plasma and urine and that EIA is reliable for its measurement in such media.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号