首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanotransduction events in articular cartilage may be resolved into extracellular components followed by intracellular signalling events, which finally lead to altered cell response. Cell deformation is one of the former components, which has been examined using a model involving bovine chondrocytes seeded in agarose constructs. Viable fluorescent labels and confocal laser scanning microscopy were used to examine cellular and sub-cellular morphology. It was observed that cell size increased up to day 6 in culture, associated with an increase in the contents of proteoglycan and collagen. In addition, the organisation of the cytoskeleton components, described using a simple scoring scale, revealed temporal changes for actin fibres, microtubules and vimentin intermediate filaments. The constructs on day 1 were also subjected to unconfined compressive strains. A series of confocal scans through the centre of individual cells revealed a change from a spherical to an elliptical morphology. This was demonstrated by a change in diameter ratio, from a mean value of 1.00 at 0% strain to 0.60 at 25% strain. Using simple equations, the volume and surface areas were also estimated from the scans. Although the former revealed little change with increasing construct strain, surface area appeared to increase significantly. However further examination, using transmission electron microscopy to reveal fine ultrastructural detail at the cell periphery, suggest that this increase may be due to an unravelling of folds at the cell membrane. Cell deformation was associated with a decrease in the nuclear diameter, in the direction of the applied strain. The resulting nuclear strain in one direction increased in constructs compressed at later time points, although its values at all three assessment times were less than the corresponding values for cell strain. It is suggested that the nuclear behaviour may be a direct result of temporal changes observed in the organisation of the cytoskeleton. The study demonstrated that the chondrocyte-agarose model provides a useful system for the examination of compression events at both cellular and sub-cellular levels.  相似文献   

2.
3.
Solute transport within articular cartilage is of central importance to tissue physiology, and may mediate effects of mechanical compression on cell metabolism. We therefore developed and applied a freeze-substitution method for fixation of cartilage explant disks which had been compressed axially during radial solute desorption. Dextrans were used as model solutes. Explant morphology was well preserved and nonequilibrium solute concentration distributions were stable for several hours at room temperature. For desorption from explants compressed statically to 0-46% strain, analysis of laser confocal images and comparison to a theoretical model permitted measurement of effective diffusivities. Results were consistent with previous studies suggesting a role for transport limitations in mediating the decreases of chondrocyte metabolic rates associated with static compression. In explants compressed dynamically (23+/-5% strain at 0.001 Hz), evidence was obtained for the augmentation of effective transport rate of 3 kDa dextrans by oscillatory interstitial fluid flows. This suggests that augmented solute transport may play a role in mediating the increases of chondrocyte metabolic rates associated with dynamic compression. Methods appear suitable for quantitative studies of transport within mechanically compressed cartilage-like tissues, and may be valuable for identification of loading environments which optimize solute transport in tissue engineering applications.  相似文献   

4.
5.
Understanding altered gene expression in osteoarthritic cartilage can lead to new targets for drug intervention. We established a functional assay based on chondrocyte cluster formation, a phenotype associated with osteoarthritis (OA), to screen an OA cartilage gene library. Previous reports have demonstrated that normal chondrocytes grown in suspension culture maintain their chondrocytic phenotype, however, certain growth factors such as basic fibroblast growth factor (bFGF) will induce the cells to proliferate in tight clusters similar to those seen in osteoarthritic cartilage. In this study we validate that overexpression of bFGF by retrovirally transduced normal chondrocytes would similarly induce the proliferation of tight cell clusters. We then used this approach as a basis to set up a functional screen where an entire OA cartilage cDNA library was tranduced into normal chondrocytes to search for other genes that would also induce cluster formation. Seven potential genes were isolated from the OA gene library, including BPOZ, IL-17 receptor C, NADH ubiquinone oxidoreductase, COMP, Soluble carrier 16 (MCT 3), C1r, and bFGF itself. None of the identified genes were upregulated by bFGF, however, all of them upregulated the expression of bFGF suggesting a common pathway. Although cluster formation is not considered to be destructive in OA cartilage, it is consistent with the disease and could yield answers to the altered phenotype. Further studies are needed to elucidate how these genes are linked to the disease state.  相似文献   

6.
7.
Cellular complexes, analogous by virtue of their external appearance, size, and number of seemingly internalized thymocytes to thymic nurse cells (TNCs) of endothermic vertebrates, were seen in short-term cultures (6-8 days) of mechanically and enzymatically dissociated thymuses of leopard frog tadpoles. Most TNC-like complexes from mechanically disrupted thymuses were covered with many thymocytes that morphologically resembled the "internalized" thymocytes. With time in culture, most complexes remained spherical and lost their externally adherent and "internalized" thymocytes. Some complexes, however, adhered to the glass substratum by means of macrophage-like cells. After one typically appearing TNC from a mechanically dissociated thymus had released its "internalized" thymocytes and spread completely over the glass substratum, it could be seen to consist actually of 9-10 stromal cells with the appearance of epithelial cells, macrophages, and dendritic cells. TNC-like structures from enzymatically dissociated thymuses had few, if any, attached thymocytes. Although these structures closely resembled murine TNCs initially, they displayed abnormal transformations within a few days of culture. Our observations led us to question the assumption that all TNCs from mechanically as well as enzymatically isolated TNCs from vertebrate thymuses are single cells. Rather, some if not all of the so-called TNC may actually be entities composed of several stromal cell types that enclose thymocytes. We suggest that this configuration seen in vitro may reflect the architecture of the compartmentalized reticular stromal cell meshwork that characterizes the intact thymus.  相似文献   

8.
This study set out to compare the growth patterns and morphological characteristics of human fallopian tube epithelial cells isolated: (1) mechanically; and (2) enzymatically. Cells were cultured in medium supplemented with fetal bovine serum and antibiotics and their epithelial nature was established by immunocytochemistry for cytokeratins. Primary cultures were polygonal in shape with centrally located nuclei, irrespective of the isolation method. Cells isolated enzymatically exhibited a higher growth rate, but the survival rate was poor after more than 2-3 passages. Mechanical isolation gave a lower yield of cells, but had a higher survival rate when sub-cultured, even beyond 8 passages. Thus, mechanically isolated cells might be useful for longer term cultures, whereas enzymatically isolated cells are best only for short-term work.  相似文献   

9.
This study reports the cytoskeletal organisation within chondrocytes, isolated from the superficial and deep zones of articular cartilage and seeded into agarose constructs. At day 0, marked organisation of actin microfilaments was not observed in cells from both zones. Partial or clearly organised microtubules and vimentin intermediate filaments cytoskeletal components were present, however, in a proportion of cells. Staining for microtubules and vimentin intermediate filaments was less marked after 1 day in culture however than on initial seeding. For all three cytoskeletal components there was a dramatic increase in organisation between days 3 and 14 and, in general, organisation was greater within deep zone cells. Clear organisation for actin microfilaments was characterised by a cortical network and punctate staining around the periphery of the cell, while microtubules and vimentin intermediate filaments formed an extensive fibrous network. Cytoskeletal organisation within chondrocytes in agarose appears, therefore, to be broadly similar to that described in situ. Variations in the organisation of actin microfilaments between chondrocytes cultured in agarose and in monolayer are consistent with a role in phenotypic modulation. Vimentin intermediate filaments and microtubules form a link between the plasma membrane and the nucleus and may play a role in the mechanotransduction process.  相似文献   

10.
The agarose double helix and its function in agarose gel structure   总被引:15,自引:0,他引:15  
Agarose and eight different derivatives carrying O-methyl, O-sulphate, O-hydroxyethyl or O-carboxyethylidene substituents in various positions were studied by optical rotation, X-ray diffraction and computerised molecular model building methods. All samples showed essentially the same order-disorder transition during gel-sol interconversion. In addition, all the samples that could be made into oriented films or fibres gave X-ray diffraction diagrams corresponding to a common molecular structure. A double helix model for this structure is proposed that has the 0.95 nm axial periodicity observed and a calculated cylindrically averaged Fourier transform in good agreement with the observed (continuous) layer line intensities. Each chain in the double helix forms a lefthanded 3-fold helix of pitch 1.90 nm and is translated axially relative to its partner by exactly half this distance. This model accounts for the sign and magnitude of the optical rotation shift that accompanies the sol-gel transitions and is sterically accessible to each of the various substituted forms. The relationship between agarose gel properties and the double helix is discussed and the structure compared with i-carrageenan.  相似文献   

11.
Roger West 《Biopolymers》1988,27(2):231-249
This paper shows how the number of cross-linkage points (nodes) in a random reticulum, such as an ideal polysaccharide gel, may be calculated in accordance with mathematical principles. The influence of nodal configurations upon the statistical geometry of the reticulum is discussed, and it is shown from experimental evidence that the nodal configurations in agarose gel are nonrandom. A method is given for calculating the accommodation probability of an irregularly shaped particle in a reticulum, which is relevant to the theory of gel chromatography and to the distribution of cells in tissues permeating a network of capillaries or veins.  相似文献   

12.
13.
14.
Summary Chondrocytes, each with their pericellular matrix bounded by a fibrous capsule, can be extracted singly or in groups from both mature pig articular cartilage and chondrosarcoma tissue. These structures, termed chondrons, are thought to anchor the chondrocytes in the matrix and protect them from the compressive forces experienced when articular cartilage is under load. The capsule of these chondrons contains both type II and type IX collagens and is composed of fine fibrillar material, unlike the large banded fibres of type II collagen found in the rest of the matrix. This suggests a rote for type IX collagen in regulating the diameter of type II fibres to produce the fine fibrillar structure of the chondron capsules.  相似文献   

15.
We report chondrocyte phenotype and ectopic ossification in a collagenase-induced patellar tendon injury model. Collagenase or saline was injected intratendinously in one limb. The patella tendon was harvested for assessment at different times. There was an increase in cellularity, vascularity, and loss of matrix organization with time after collagenase injection. The tendon did not heal histologically until week 32. Ectopic mineralization as indicated by von Kossa staining started from week 8. Tendon calcification was mediated by endochondral ossification, as shown by expression of type X collagen. viva CT imaging and polarization microscopy showed characteristic bony porous structures and collagen fiber arrangement, respectively, in the calcific regions. Marrow-like cells and blood vessels were observed inside calcific deposits. Chondrocyte-like cells as indicated by morphology, expression of type II collagen, and sox 9 were seen around and embedded inside the calcific deposits. Fibroblast-like cells expressed type II collagen and sox 9 at earlier times, suggesting that erroneous differentiation of healing tendon fibroblasts may account for failed healing and ossification in collagenase-induced tendon degeneration. Because this animal model replicates key histopathological changes in calcific tendinopathy, it can be used as a model for the study of its pathogenesis at the patellar tendon.  相似文献   

16.
Osteoarthritis (OA) is one of the most prevalent forms of joint disorder, associated with a tremendous socioeconomic burden worldwide. Various non-genetic and lifestyle-related factors such as aging and obesity have been recognized as major risk factors for OA, underscoring the potential role for epigenetic regulation in the pathogenesis of the disease. OA-associated epigenetic aberrations have been noted at the level of DNA methylation and histone modification in chondrocytes. These epigenetic regulations are implicated in driving an imbalance between the expression of catabolic and anabolic factors, leading eventually to osteoarthritic cartilage destruction. Cellular senescence and metabolic abnormalities driven by OA-associated risk factors appear to accompany epigenetic drifts in chondrocytes. Notably, molecular events associated with metabolic disorders influence epigenetic regulation in chondrocytes, supporting the notion that OA is a metabolic disease. Here, we review accumulating evidence supporting a role for epigenetics in the regulation of cartilage homeostasis and OA pathogenesis.  相似文献   

17.
Glucose reactions were conducted in hot compressed water (473-773 K, 4-40 MPa) by means of a batch-type reactor. The reactions in the heating period (about for 60s) were observed. More than 80% of the glucose was consumed in the heating period above 573 K. Gasification of glucose was promoted with increasing temperature. The effect of heating rate (from 4.2 to 15.8K/s) on glucose conversion was also examined, and gasification of glucose was enhanced with increasing the heating rate.  相似文献   

18.
Most of our bones form through the process of endochondral ossification, which is tightly regulated by the activity of the cartilage growth plate. Chondrocyte maturation through the various stages of growth plate physiology ultimately results in hypertrophy. Chondrocyte hypertrophy is an essential contributor to longitudinal bone growth, but recent data suggest that these cells also play fundamental roles in signaling to other skeletal cells, thus coordinating endochondral ossification. On the other hand, ectopic hypertrophy of articular chondrocytes has been implicated in the pathogenesis of osteoarthritis. Thus, a better understanding of the processes that control chondrocyte hypertrophy in the growth plate as well as in articular cartilage is required for improved management of both skeletal growth disorders and osteoarthritis. This review summarizes recent findings on the regulation of hypertrophic chondrocyte differentiation, the cellular mechanisms involved in hypertrophy, and the role of chondrocyte hypertrophy in skeletal physiology and pathophysiology. Birth Defects Research (Part C) 102:74–82, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

19.
20.
Intensity of biosynthesis of glycogen, glycosaminoglycans and collagen by chondrocytes has been studied. It is established that the degree of influence of the lead compounds on these processes depends on dose, duration of chondrocytes' entry into the organism and intensity of their functioning. Lead acetate has the greatest effect on metabolism of chondrocytes in bones of the fetal skeleton during its entry in the gestation period. The inhibition of glycosaminoglycans biosynthesis in chondrocytes delays their transition into the hypertrophic state, thus inhibiting the skeleton growth. The more intense is the skeleton growth, the greater is the lead effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号