首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Changes in plant volatile emission can be induced by exposure to volatiles from neighbouring insect-attacked plants. However, plants are also exposed to volatiles from unattacked neighbours, and the consequences of this have not been explored. We investigated whether volatile exchange between undamaged plants affects volatile emission and plant-insect interaction. Consistently greater quantities of two terpenoids were found in the headspace of potato previously exposed to volatiles from undamaged onion plants identified by mass spectrometry. Using live plants and synthetic blends mimicking exposed and unexposed potato, we tested the olfactory response of winged aphids, Myzus persicae. The altered potato volatile profile deterred aphids in laboratory experiments. Further, we show that growing potato together with onion in the field reduces the abundance of winged, host-seeking aphids. Our study broadens the ecological significance of the phenomenon; volatiles carry not only information on whether or not neighbouring plants are under attack, but also information on the emitter plants themselves. In this way responding plants could obtain information on whether the neighbouring plant is a competitive threat and can accordingly adjust their growth towards it. We interpret this as a response in the process of adaptation towards neighbouring plants. Furthermore, these physiological changes in the responding plants have significant ecological impact, as behaviour of aphids was affected. Since herbivore host plants are potentially under constant exposure to these volatiles, our study has major implications for the understanding of how mechanisms within plant communities affect insects. This knowledge could be used to improve plant protection and increase scientific understanding of communication between plants and its impact on other organisms.  相似文献   

2.
Plants emit volatile organic compounds (VOCs) as a means to warn other plants of impending danger. Nearby plants exposed to the induced VOCs prepare their own defense weapons in response. Accumulated data supports this assertion, yet much of the evidence has been obtained in laboratories under artificial conditions where, for example, a single VOC might be applied at a concentration that plants do not actually experience in nature. Experiments conducted outdoors suggest that communication occurs only within a limited distance from the damaged plants. Thus, the question remains as to whether VOCs work as a single component or a specific blend, and at which concentrations VOCs elicit insect and pathogen defenses in undamaged plants. We discuss these issues based on available literature and our recent work, and propose future directions in this field.  相似文献   

3.
4.
5.
Generally, effects of herbivory on plant fitness have been measured in terms of female reproductive success (seed production). However, male plant fitness, defined as the number of seeds sired by pollen, contributes half of the genes to the next generation and is therefore crucial to the evolution of natural plant populations. This is the first study to examine effects of insect herbivory on both male and female plant reproductive success. Through controlled field and greenhouse experiments and genetic paternity analysis, we found that foliar damage by insects caused a range of responses by plants. In one environment, damaged plants had greater success as male parents than undamaged plants. Neither effects on pollen competitive ability nor pollinator visitation patterns could explain the greater siring success of these damaged plants. Success of damaged plants as male parents appeared to be due primarily to changes in allocation to flowers versus seeds after damage. Damaged plants produced more flowers early in the season, but not more seeds, than undamaged plants. Based on total seed production, male fitness measures from the first third of the season, and flower production, we estimated that damaged and undamaged plants had equal total reproductive success at the end of the season in this environment. In a second, richer environment, damaged and undamaged plants had equal male and female plant fitness, and no traits differed significantly between the treatments. Equal total reproductive success may not be ecologically or evolutionarily equivalent if it is achieved differentially through male versus female fitness. Genes from damaged plants dispersed through pollen may escape attack from herbivores, if such attack is correlated spatially from year to year.  相似文献   

6.
On testing for a tradeoff between constitutive and induced resistance   总被引:1,自引:0,他引:1  
Plants possess two types of resistance against herbivores: ever-present constitutive resistance and induced resistance triggered by attack. As the production of both resistance types entails a metabolic cost, a tradeoff between them has frequently been hypothesized. Over twenty published studies have tested for the existence of this tradeoff, but this literature is marred by three methodological problems. The first problem is lack of agreement about how to measure induced resistance, a complex trait that typically involves comparison between damaged and undamaged plants. Some metrics of induced resistance confound constitutive and induced resistance, creating evidence for a tradeoff when one does not exist or obscuring real tradeoffs. On both biological and statistical grounds, we argue for the difference in mean resistance between damaged and control plants from the same family or genotype as the best metric of induced resistance. The second problem is that limited sampling (e.g. of families or of individuals within families) or errors in measuring resistance traits of individuals can generate spurious evidence for a tradeoff even when our preferred induced resistance metric is used. The third problem is that some families may show induced susceptibility (lower resistance in damaged than in undamaged plants). To provide a better test for a tradeoff, we devise a Monte Carlo procedure that accounts for sampling variation, measurement error and induced susceptibility without producing unrealistic negative resistance values, and we illustrate it with simulated data. Until the problems we describe are widely addressed and the tools we propose are widely applied, the resistance tradeoff hypothesis cannot be considered to have been adequately evaluated. Our approach also applies whenever the plasticity of a trait (measured as the difference between treatments or environments) is compared to the value of that trait in a single environment.  相似文献   

7.
捕食螨化学生态研究进展   总被引:1,自引:0,他引:1  
董文霞  王国昌  孙晓玲  陈宗懋 《生态学报》2010,30(15):4206-4212
捕食螨是重要的生物防治因子。早在20世纪70年代就发现了捕食螨的性信息素,许多研究证明植物挥发物在捕食螨向猎物定位过程中发挥着至关重要的作用,影响捕食螨寻找猎物的植物挥发物来源于未受害植物、机械损伤植物、猎物危害植物、非猎物危害植物。人工合成的植物挥发物组分对捕食螨具有引诱作用,但引诱活性低于虫害诱导植物释放的挥发性混合物。捕食螨的饲养条件、饥饿程度、学习与经验行为等会影响捕食螨对植物挥发物的反应。介绍了信息素与植物挥发物对捕食螨的作用,并讨论了目前存在的问题和研究前景。  相似文献   

8.
Evolution and current status of ecological phytochemistry   总被引:1,自引:0,他引:1  
Macías FA  Galindo JL  Galindo JC 《Phytochemistry》2007,68(22-24):2917-2936
Phytochemical studies have experienced a great deal of change during the last century, not only regarding the number of compounds described, but also in the concept of phytochemistry itself. This change has mainly been related to two key points: the methodologies used in phytochemical studies and the questions regarding 'why secondary metabolites appeared in plants and in other living organisms?' and 'what is their role?'. This transformation in the field has led to new questions concerning such different subjects as evolution, paleobotany, biochemistry, plant physiology and ethnography. However, the main issue is to clarify the role that secondary metabolites play in the plant (and other organisms) and whether the resources invested in their production (C and N allocation, genes encoding their biogenetic pathways, specific enzymes, energy-rich molecules such as ATP and NADPH) have or lack a reasonable reward in terms of advantages for survival. Consequently, in this review the main emphasis will be placed on two subjects related to the evolution of phytochemical studies. The first aim is to describe briefly the influence that the development of the methodologies needed for compound isolation and structure elucidation have had on the field of phytochemistry. The second area to be covered concerns the new theories addressing the role of secondary metabolites from an ecological point of view: co-evolution of plants and their potential enemies (phytophagous insects, microbes, herbivores and other plants), chemical plant defence, adaptative strategies of phytophagues to plant toxins (among them sequestration will be briefly mentioned), and models and theories for carbon and nitrogen allocation. Some final remarks are made to summarize our opinion about the immediate future of phytochemical ecology and phytochemical studies.  相似文献   

9.
Isoprene emission from plants is one of the principal ways in which plant processes alter atmospheric chemistry. Despite the importance of this process, few long-term controls over basal emission rates have been identified. Stress-induced changes in carbon allocation within the entire plant, such as those produced by defoliation, have not been examined as potential mechanisms that may control isoprene production and emission. Eastern cottonwood (Populus deltoides) saplings were partially defoliated and physiological and growth responses were measured from undamaged and damaged leaves 7 days following damage. Defoliation reduced isoprene emission from undamaged and damaged leaves on partially defoliated plants. Photosynthetic rates and leaf carbon and nitrogen pools were unaffected by damage. Photosynthetic rate and isoprene emission were highly correlated in undamaged leaves on undamaged plants and damaged leaves on partially defoliated plants. There was no correlation between photosynthetic rate and isoprene emission in undamaged leaves on partially defoliated plants. Isoprene emission was also highly correlated with the number of source leaves on the apical shoot in damage treatments. Increased carbon export from source leaves in response to defoliation may have depleted the amount of carbon available for isoprene synthesis, decreasing isoprene emission. These results suggest that while isoprene emission is controlled at the leaf level in undamaged plants, emission from leaves on damaged plants is controlled by whole-branch allocation patterns. Received: 12 May 1998 / Accepted: 9 November 1998  相似文献   

10.
Levels of atmospheric CO(2) have been increasing steadily over the last century and are projected to increase even more dramatically in the future. Soybeans (Glycine max L.) grown under elevated levels of CO(2) have larger herbivore populations than soybeans grown under ambient levels of CO(2). Increased abundance could reflect the fact that these herbivores are drawn in by increased amounts of volatiles or changes in the composition of volatiles released by plants grown under elevated CO(2) conditions. To determine impacts of elevated CO(2) on olfactory preferences, Japanese beetles (Popillia japonica Newman) and soybean aphids (Aphis glycines Matsumura) were placed in Y-tube olfactometers with a choice between ambient levels of CO(2) gas versus elevated levels of CO(2) gas or damaged and undamaged leaves and plants grown under ambient levels of CO(2) versus damaged and undamaged plants grown under elevated levels of CO(2). All plants had been grown from seeds under ambient or elevated levels of CO(2). Painted lady butterflies (Vanessa cardui L.) were placed in an oviposition chamber with a choice between plants grown under ambient and elevated levels of CO(2). A. glycines and V. cardui showed no significant preference for plants in either treatment. P. japonica showed no significant preference between ambient levels and elevated levels of CO(2) gas. There was a significant P. japonica preference for damaged plants grown under ambient CO(2) versus undamaged plants but no preference for damaged plants grown under elevated CO(2) versus undamaged plants. P. japonica also preferred damaged plants grown under elevated levels of CO(2) versus damaged plants grown under ambient levels of CO(2). This lack of preference for damaged plants grown under elevated CO(2) versus undamaged plants could be the result of the identical elevated levels of a green leaf volatile (2-hexenal) present in all foliage grown under elevated CO(2) regardless of damage status. Green leaf volatiles are typically released from damaged leaves and are used as kairomones by many herbivorous insects for host plant location. An increase in production of volatiles in soybeans grown under elevated CO(2) conditions may lead to larger herbivore outbreaks in the future.  相似文献   

11.
Victor O. Sadras 《Oecologia》1997,109(3):427-432
In indeterminate plant species, the rate of vegetative growth usually declines during the stage of active reproductive growth. Fruit shedding, as induced by insect herbivores, could counteract this decline. Due to the relative increase in vegetative growth, plants that have suffered reproductive damage could be better able to intercept light and acquire soil resources than undamaged plants. If so, plants with damaged neighbours might grow less than their counterparts with smaller, undamaged neighbours. This hypothesis was tested in high- and low-density cotton crops subjected to three treatments: (i) undamaged controls; (ii) uniformly damaged, in which all plants were damaged; (iii) non-uniformly damaged, in which every second plant was damaged. Damaged plants had their flowerbuds and young fruits manually removed at 85 days after sowing to simulate shedding as induced by Helicoverpa spp. (Lepidoptera) and mirid bugs (Hemiptera). As expected, damaged plants had greater leaf area and more vegetative dry matter than undamaged ones. This was most pronounced at high plant density. Neighbour status did not affect vegetative growth but it had a substantial, asymmetric effect on the reproductive growth of target plants. Damaged targets recovered to the level of undamaged controls in terms of total fruit number but had a large reduction in the mass of mature fruit due to the limited time available for recovery. The effect of neighbour status, if any, on the production of mature fruit in damaged targets was overridden by the limit imposed to recovery by the duration of the growing season. In contrast, neighbour status affected the production of mature fruit of undamaged targets: undamaged targets with damaged neighbours had 34% (low density) and 56% (high density) less mature fruit mass than their counterparts with undamaged neighbours. This was because (i) reproductive allocation and (ii) the proportion of total fruit that reached maturity in target plants declined with increasing neighbour interference. Most studies dealing with changes in competitive relationships among plants subjected to differential herbivory have shown how undamaged plants may benefit from herbivores that feed on their neighbours. This study shows that differential reproductive damage can cause the opposite effect, as undamaged plants may have a significant reduction in productivity due to the influence of neighbours whose vegetative growth was stimulated by the loss of reproductive organs. Received: 2 June 1996 / Accepted: 8 September 1996  相似文献   

12.
Abstract 1. The herbaceous plant Solanum carolinense (L.) (Solanaceae) is host to a number of specialist insects, including the leaf-feeding beetles Epitrix fuscula (Crotch) and Leptinotarsa juncta (Germar) (Coleoptera: Chrysomelidae). Potted individuals of S. carolinense were subjected to one of two treatments: exposure to herbivory by E. fuscula or exclusion of all herbivores. The effects of E. fuscula herbivory on larval performance and oviposition preference of L. juncta were investigated.
2. Although the masses of the L. juncta pupae did not differ between the two treatments, larvae feeding on damaged plants developed more slowly than those feeding on undamaged plants.
3. In both paired leaf choice trials and whole plant choice trials, larvae of L. juncta showed no preference for undamaged versus damaged hosts.
4. In a field transplant experiment, adult L. juncta females showed slight feeding preferences and strong oviposition preferences for undamaged plants versus plants that had been fed on by E. fuscula .
5. The results are discussed with reference to their implications for plant-mediated competition among herbivores and constraints on the evolution of plant resistance.  相似文献   

13.
Most research on plant-plant chemical interactions has focussed on events following herbivore or pathogen attack. However, undamaged plants also interact chemically as a natural facet of their behaviour, and this may have consequences for insects that use the plants as hosts. In this review, the links between allelopathy and insect behaviour are outlined. Findings on how chemical interactions between different plant species and genotypes affect aphid herbivores and their natural enemies are reviewed, and the role of plant diversity and chemical interaction for trophic interactions in crops is discussed.  相似文献   

14.
Elin Boalt  Kari Lehtilä 《Oikos》2007,116(12):2071-2081
To study mechanisms underlying plant tolerance to herbivore damage, we used apical and foliar damage as experimental treatments to study whether there are similar tolerance mechanisms to different types of damage. We also studied whether tolerance to different types of damage are associated, and whether there is a cost involved in plant tolerance to different types of herbivore damage. Our greenhouse experiment involved 480 plants from 30 full-sib families of an annual weed Raphanus raphanistrum , wild radish, which were subjected to control and two different simulated herbivore damage treatments, apex removal and foliar damage of 30% of leaf area. Apical damage significantly decreased seed production, whereas foliar damage had no effect. There was a significant genetic variation for tolerance to foliar, but not apical damage. No costs were observed in terms of negative correlation between tolerance to either damage type and fitness of undamaged plants. Tolerances to apical and foliar damage were not significantly correlated with each other. We observed a larger number of significant associations between tolerance and reproductive traits than between tolerance and vegetative traits. Plant height and leaf size of damaged plants interacted in their association to tolerance to foliar damage. Inflorescence number and pollen quantity per flower of damaged plants were positively associated with tolerance to apical damage. In late-flowering genotypes, petal size of undamaged plants and pollen quantity of damaged plants were positively associated with tolerance to foliar damage. In summary, traits involved in floral display and male fitness were associated with plant tolerance to herbivore damage.  相似文献   

15.
Nora C. Underwood 《Oecologia》1998,114(3):376-381
Induced plant responses to herbivory have been demonstrated in many systems. It has been suggested that the timing of these responses may influence the impact of induced resistance on herbivore populations, and may affect the evolution of induced defenses. This study used a bioassay to characterize the time course of systemic induced responses to Mexican bean beetle herbivory in four genotypes of soybeans. The results suggest that the time course of induced responses in this system is more complex than most previous studies have indicated. Herbivory provoked both rapid induced resistance and subsequent induced susceptibility to beetle feeding. All four genotypes of soybean induced significant resistance to beetle damage (beetles preferred undamaged to damaged plants) by 3 days after damage. By 15 days after damage, this resistance had decayed (beetles showed no preference for undamaged over damaged plants), and by 20 days after damage, all four genotypes exhibited significant induced susceptibility (beetles preferred previously damaged plants over undamaged plants). The magnitude of induced resistance in each genotype correlated strongly with the magnitude of induced susceptibility in that genotype. Received: 28 September 1997 / Accepted: 1 December 1997  相似文献   

16.
刘慧  许再福  黄寿山 《生态学报》2007,27(12):5421-5426
采用高效液相色谱分析方法,通过测定葫芦素B含量的变化,探讨黄足黄守瓜与南瓜之间在时间上的化学诱导关系。虫害和机械损伤均能引起南瓜子叶中的葫芦素B含量围绕着对照水平上、下波动的变化。但是,这两种因素所引起的葫芦素B含量变化的规律有较大的不同。黄足黄守瓜的为害相对于机械损伤诱导葫芦素B合成的差异主要表现在3个方面:首先,反应速度比较快。如叶部处理中,虫害株在虫害后1h葫芦素B含量已有了显著升高,而机械损伤株葫芦素B含量此时不仅没有升高,反而有下降趋势,在1.5h才有所升高。其次,反应程度比较大,即虫害株葫芦素B的最大诱导量显著大于机械损伤株的。最后,诱导反应持续的时间比较长,即是说虫害株结束诱导反应的时间要明显长于机械损伤株的。另外,即使被处理的是南瓜茎部,其子叶中葫芦素B含量也发生了变化,而且变化趋势与叶部被处理的具有相似性,证明虫害和机械损伤都能系统诱导被害南瓜合成葫芦素B。此外,实验结果还显示虫害株未被害叶葫芦素B的含量比被害叶的高。  相似文献   

17.
Odors from corn plants infested with the larvae of the noctuid herbivore Mythimna separata (Walker) attract tachinid fly, Exorista japonica Townsend, females; and odors from corn plants artificially damaged also attract this fly. We investigated the responses of flies to herbivore-infested, artificially damaged, and undamaged plants before and after arrival at the target plants to measure timing of the behavioral sequence. The behavior of the flies for 10 min after takeoff from a release point was observed in a wind-tunnel bioassay. The percentage of flies attracted to the plants was higher in infested and artificially damaged plants than in undamaged plants. Latency before takeoff was longer in undamaged plants, and time from takeoff to arrival at the plant was also longer in undamaged plants. Moreover, flies stayed longer on infested and artificially damaged plants. Flies walked longer on infested plants than on artificially damaged and undamaged plants. In this paper, we summarize the behavioral data and discuss the host-searching behavior of E. japonica females.  相似文献   

18.
Plant‐emitted volatile organic compounds (VOCs) mediate interactions within a plant community. Typically, receiving a signal from a damaged neighbour enhances the defensive attributes of a receiver plant. The mechanisms underlying plant–plant interactions may be divided into active and passive processes, both of which involve transit of VOCs between plants and are vulnerable to environmental perturbation. Numerous studies have documented between‐plant interactions, but the specific effects on a receiver plant's interactions with herbivores have received little attention. Moreover, the relative contributions of active and passive processes to plant defence and the effects of environmental pollutants on the processes have been largely unexplored. We used a system comprising Brassica oleracea var. italica (broccoli) and the specialist herbivore Plutella xylostella to test whether plants previously exposed to herbivore‐damaged neighbours differed from nonexposed plants in their susceptibility to oviposition. We then investigated the roles of active and passive mechanisms in our observations and whether differences in susceptibility remained under elevated ozone concentrations. Plants exposed to herbivore‐damaged neighbours were more susceptible to oviposition than plants exposed to undamaged neighbours, which indicates associational susceptibility. Mechanistically, active and passive volatile‐mediated processes occurred in tandem with the passive process – involving adsorption of sesquiterpenes to receiver plants – appearing to structure the oviposition response. Exposure to ozone rapidly degraded the sesquiterpenes and eliminated the associational susceptibility. Plant volatiles have typically been thought to play roles in between‐plant interactions and to promote receiver plant defence. Here, we show that receiver plants may also become more susceptible to oviposition and thus more likely to be damaged. Extensive disruption of volatile‐mediated interactions by an atmospheric pollutant highlights the need to consider the pervading environment and changes therein when assessing their ecological significance.  相似文献   

19.
Most herbivorous arthropods are specialists that feed on one or a few related plant species. To understand why this is so, both mechanistic and functional studies have been carried out, predominantly restricted to bitrophic aspects. Host-selection behaviour of herbivorous arthropods has been intensively studied and this has provided ample evidence for the role of secondary plant chemicals as source of information in behavioural decisions of herbivores. Many evolutionary studies have regarded co-evolution between plants and herbivores to explain the diversity of secondary plant chemicals and host specialisation of herbivores. However, many cases remain unexplained where herbivores select host plants that are suboptimal in terms of fitness returns. A stimulating paper by Bernays and Graham [(1988) Ecology 69, 886-892)] has initiated a discussion on the need of a multitrophic perspective to understand the evolution of host-plant specialisation by herbivorous arthropods. However, this has hardly resulted in ecological studies on host-selection behaviour that take a multitrophic perspective. Yet, evidence is accumulating that constitutive and induced infochemicals from natural enemies and competitors can affect herbivore behaviour. These cues may constitute important information on fitness prospects, just as plant cues can do. In this paper I selectively review how information from organisms at different trophic levels varies in space and time and how herbivores can integratively exploit this information during host selection. In doing so, research areas are identified that are likely to provide important new insights to explain several of the questions in herbivore host selection that remain unanswered so far. These research areas are at the interface of evolutionary ecology, behavioural ecology and chemical ecology.  相似文献   

20.
 We carried out two experiments to determine the effect of leaf damage on plant attractiveness to pollinators using wild radish, Raphanus raphanistrum (Brassicaceae), a self-incompatible annual herb. Pairs of plants from 36 full-sib families were grown in pots in the greenhouse. One member of each pair was damaged by Pieris rapae larvae that were allowed to remove half of the leaf area of each of the first four rosette leaves. The plants were subsequently taken out for pollinator observations once a week from the beginning of flowering in late June until the end of August. We conducted two experiments to examine how foliar damage affected visitation by pollinators. In the first experiment, numbers of pollinators visiting plants were compared between damaged and control sibling plants. In the second experiment, the number of open flowers during observations was controlled to be the same for both damaged and undamaged sibs. Damage significantly decreased the number and size of flowers during the first observations in late June. Damaged plants received fewer visits by native bees during the first week of observations. Since damage did not affect native bee visits when the number of open flowers was equalized between treatments, flower number was probably the main cue attracting native bees to plants. In the experiment without flower number control, syrphid flies, the other abundant pollinator taxon, spent more time per flower on the undamaged than on the damaged plants. When flower number was controlled, flies probed significantly more flowers during each visit on the undamaged than on the damaged plants and had higher visitation rates to undamaged plants early in the season. Since syrphid flies preferred undamaged plants both with and without flower number control, they apparently used cues apart from flower number for visitation. The difference between undamaged and damaged plants in floral characteristics and pollinator visitation vanished within a few weeks after the start of flowering. This result suggests that early damage may not have a strong fitness effect through reduction in mating success. However, poor weather conditions can cause early mortality of plants in the field, and nutrient depletion and competition decrease fruit set of later flowers. Therefore, conditions exist under which visitation to early flowers may affect plant fitness. Received: 30 July 1996 / Accepted: 10 February 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号