首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A stereospecific capillary electrophoresis assay for oxprenolol enantiomers and their basic metabolites in human urine has been developed using hydroxypropyl-β-CD as a chiral selector in the mobile phase. The bioassay method has been validated and the detection limit from spiked urine samples is 0.2μg/ml. The calibration curves are linear from 0.4 to 16 μg/ml. Extraction recovery ranged from 84.7 to 96.4% for all the compounds studied. The influence of various parameters on the chiral separation of oxprenolol and its basic metabolites have been investigated. Urinary excretion profiles of oxprenolol enantiomers and those of two metabolites have also been studied, following a single oral dose of racemic oxprenolol.  相似文献   

2.
A new sensitive high-performance liquid chromatographic (HPLC) method with fluorescence detection was developed for the determination of 2-phenylethylamine (PEA) in human urine. The analytical procedure involved a simple extraction of the analyte from urine, followed by precolumn derivatisation of the sample with o-phthalaldehyde. The HPLC separation was performed under isocratic conditions using an Erbasil S C18 (250 × 4.0 mm I.D., particle size 3 μm) reversed-phase column. The limit of quantification was 0.5 ng of PEA/ml of urine. The method showed good linearity, accuracy and precision data in the concentration range 0.5–200 ng/ml of urine. The method was successfully applied to the determination of PEA urinary excretion in Parkinsonian patients after oral administration of the monoamine oxidase B (MAO-B) inhibitor, selegiline.  相似文献   

3.
A sensitive HPLC method for the quantification of praziquantel enantiomers in human serum is described. The method involves the use of a novel disc solid-phase extraction for sample clean-up prior to HPLC analysis and is also free of interference from trans-4-hydroxypraziquantel, the major metabolite of praziquantel. Chromatographic resolution of the enantiomers was performed on a reversed-phase cellulose-based chiral column (Chiralcel OJ-R) under isocratic conditions using a mobile phase consisting of 0.1 M sodium perchlorate–acetonitrile (66:34, v/v) at a flow-rate of 0.5 ml/min. Recoveries for R-(−)- and S-(+)-praziquantel enantiomers were in the range of 84–89% at 50–500 ng/ml levels. Intra-day and inter-day precisions calculated as R.S.D. were in the ranges of 3–8% and 1–8% for both enantiomers, respectively. Intra-day and inter-day accuracies calculated as percent error were in the 0.2–5% and 0.3–8% ranges for both enantiomers, respectively. Linear calibration curves were in the concentration range 10–600 ng/ml for each enantiomer in serum. The limit of quantification of each enantiomer was 10 ng/ml. The detection limit for each enantiomer in serum using a UV detector set at 210 nm was 5 ng/ml (S/N=2).  相似文献   

4.
A procedure using a chirobiotic V column is presented which allows separation of the enantiomers of citalopram and its two N-demethylated metabolites, and of the internal standard, alprenolol, in human plasma. Citalopram, demethylcitalopram and didemethylcitalopram, as well as the internal standard, were recovered from plasma by liquid–liquid extraction. The limits of quantification were found to be 5 ng/ml for each enantiomer of citalopram and demethylcitalopram, and 7.5 ng/ml for each enantiomer of didemethylcitalopram. Inter- and intra-day coefficients of variation varied from 2.4% to 8.6% for S- and R-citalopram, from 2.9% to 7.4% for S- and R-demethylcitalopram, and from 5.6% to 12.4% for S- and R-didemethylcitalopram. No interference was observed from endogenous compounds following the extraction of plasma samples from 10 different patients treated with citalopram. This method allows accurate quantification for each enantiomer and is, therefore, well suited for pharmacokinetic and drug interaction investigations. The presented method replaces a previously described highly sensitive and selective high-performance liquid chromatography procedure using an acetylated β-cyclobond column which, because of manufactural problems, is no longer usable for the separation of the enantiomers of citalopram and its demethylated metabolites.  相似文献   

5.
Two capillary electrophoresis methods have been developed for the direct determination of triamterene and its main metabolite hydroxytriamterene sulfate in human urine. Analytes were detected using conventional UV detection as well as laser-induced fluorescence (LIF) detection with an HeCd-laser operating at a wavelength of 325 nm. The results of both detection techniques were compared. Indeed, the limit of quantification was eightfold lower using LIF detection (50 ng/ml) in comparison to UV detection (400 ng/ml). As no interference due to endogenous urine compounds was observed, direct urine analysis was feasible. Analysis was very simple and fast-one run could be performed within less than 10 min (CE-UV method) and 2.5 min (CE-LIF method), respectively. Both assays were fully validated and applied to urine samples from a human volunteer. The results of the application of the CE-LIF method to human urine samples are presented in this publication.  相似文献   

6.
A method has been developed for the stereoselective determination of zopiclone and its main metabolites in urine. After the addition of the internal standard zolpidem the urine samples were extracted at pH 8 with chloroform-isopropanol (9:1). Analyses were carried out using capillary electrophoresis (CE) with β-cyclodextrin as the chiral selector. The analytes were detected using UV laser-induced fluorescence detection with a He-Cd laser operated at 325 nm. Urine samples of two volunteers after oral administration of 7.5 mg zopiclone were investigated. The S-(+)-enantiomers of zopiclone and its metabolites were always excreted in higher amounts than the R-(−)-enantiomers. With the same method the zopiclone enantiomers were quantified in saliva. Compared to high-performance liquid chromatography, the CE method is very fast and simple.  相似文献   

7.
A capillary electrophoresis (CE) method for the quantification of R-(−)- and S-(+)-prilocaine in human serum was developed and validated. Stereoselective resolution was accomplished using 15 mM heptakis(2,6-di-methyl)-β-cyclodextrin and 0.03 mM hexadecyltrimethylammonium bromide (HTAB) contained in 100 mM phosphate buffer, pH 2.5. Solid-phase extraction was used as a sample preparation technique to remove endogenous interferences. A 72-cm uncoated fused-silica capillary at a voltage of 25 kV and 30°C was used for the analysis. The detection limits for R-(−)- and S-(+)-prilocaine were 38 ng/ml using 1 ml of human serum and the limits of quantitation were 45 ng/ml. The calibration curve was linear over the range of 45–750 ng/ml with procainamide as the internal standard. Precision and accuracy of the method were 2.86–8.50% and 3.29–7.40%, respectively, for R-(−)-prilocaine, and 3.94–9.17% and 2.0–6.73%, respectively, for S-(+)-prilocaine. The CE method was compared to an existing chiral HPLC method in terms of sensitivity and selectivity for the routine analysis of the drug.  相似文献   

8.
The potential of capillary electrophoresis (CE) with laser-induced fluorescence (LIF) detection for the separation and determination of dimethylamine (DMA) and other low-molecular-mass amines involving precolumn derivatization with fluorescein isothiocyanate isomer I (FITC) was investigated. Different variables that affect derivatization (pH, FITC concentration, reaction time and temperature) and separation (buffer concentration, addition of various organic modifiers, applied voltage and length of capillary) were studied. The linearity, reproducibility and reliability of the method were evaluated. The estimated instrumental detection limit for a 2-s pressure injection of the FITC-DMA derivative was 50 pg/ml (10−9 M), using LIF detection with excitation and emission wavelengths of 488 nm and 520 nm, respectively. However, for practical reasons, a minimum of 5 ng/ml DMA should be subjected to the derivatization. The applicability of the described method to the extract of atmospheric aerosol samples was demonstrated.  相似文献   

9.
A sensitive, simple and accurate method for determination of enantiomers of ofloxacin in microsomal incubates was developed by chiral ligand-exchange RP-HPLC with fluorescence detection to examine stereoselective metabolism of ofloxacin in the glucuronidation process. The C18 stationary phase was used as analytical column. The solution of chiral mobile phase additive was made up of 6 mM l-phenylalamine mixed with 3 mM CuSO4 in water. Mobile phase consisted of the solution of chiral mobile phase additive–methanol (86:14).The fluorescence detector was operated at λex 330 nm and λem 505 nm. The flow-rate of mobile phase was set at 1.0 ml/min. The achiral ODS column offers good separation of the two enantiomers in less than 25 min. The recovery of the assay was 97.9±6.1% (n=10) for S-ofloxacin and 99.6±6.0% (n=10) for R-ofloxacin. The method provides a high sensitivity and good precision (RSD<10%). The LOD was 0.6 μM for both enantiomers and the LOQ was 5.70±0.45 μM (n=8) for S-ofloxacin and 5.66±0.47 μM (n=8) for R-ofloxacin. The standard curves showed excellent linearity over the concentration range 5.5–2078 μM for S-(−)-ofloxacin and R-(+)-ofloxacin. The enantioselective method developed has been applied to determine the stereoselectivity of glucuronidation metabolism of ofloxacin optical isomers in rat liver microsomes.  相似文献   

10.
A method for the determination of (R)-(+)- and (S)-(−)-isomers of thiopentone in plasma was developed. Following liquid-liquid extraction, the separation of enantiomers of thiopentone and the internal standard (racemic ketamine) was achieved by high-performance liquid chromatography on an α1-acid glycoprotein (AGP) column with ultraviolet detection at 280 nm. The mobile phase consisted of 20 mM KH2PO4 buffer-propanol-methanol (93.5:5.0:1.5) at pH 5.0. The flow-rate was 0.9 ml/min. The limit of quantification for earch isomer was approximately 10 ng/ml. The assay is suitable for pharmacokinetic studies of (R)-(+)- and (S)-(−)-isomers of thiopentone, following usual bolus intravenous clinical doses of the racemic drug.  相似文献   

11.
A coupled achiral–chiral high-performance liquid chromatographic system with fluorescence detection at excitation/emission wavelengths of 276/306 nm has been developed for the determination of the enantiomers of terbutaline, (S)-(+)-terbutaline and (R)-(−)-terbutaline in urine. Urine samples were prepared by solid-phase extraction with Sep-pak silica, followed by HPLC. The terbutaline was preseparated from the interfering components in urine on Phenomenex silica column and the terbutaline enantiomers and betaxolol were resolved and determined on a Sumichiral OA-4900 chiral stationary phase. The two columns were connected by a switching valve equipped with silica precolumn. The precolumn was used to concentrate the terbutaline in the eluent from the achiral column before back flushing onto the chiral phase. For each enantiomer the assay was linear between 1 and 250 ng/ml (R2=0.9999) and the detection limit was 0.3 ng/ml. The intra-day variation was between 4.6 and 11.6% in relation to the measured concentration and the inter-day variation was 4.3–11.0%. It has been applied to the determination of (S)-(+)-terbutaline and (R)-(−)-terbutaline in urine from a healthy volunteer dosed with racemic terbutaline sulfate.  相似文献   

12.
Sample pretreatment using solid-phase extraction (SPE) on cartridges filled with small-particle Styrosorb porous polystyrene-based sorbent has been used in the analysis of propranolol enantiomers in human serum by high-performance liquid chromatography (HPLC) with fluorescent detection. SPE on Sep-Pak C18 cartridges was used as a reference pretreatment method. The propranolol content of the samples was determined by achiral normal-phase HPLC and the enantiomeric ratio of propranolol (S/R) was then determined by chiral HPLC on a column with silica-bonded cellulose-tris(3,5-dimethylphenyl carbamate). Recoveries of propranolol from serum using SPE on Styrosorb and C18 phases were 97±5% and 96±5%, respectively. Detection and quantification limits for propranolol enantiomers were 4 and 7 ng/ml, respectively.  相似文献   

13.
Two high-performance liquid chromatographic methods for the stereoselective determination of R,S-2-[4-(3-methyl-2-thienyl)-phenyl]propionic acid (R,S-MTPPA), a new anti-inflammatory agent, and its taurine conjugates (R,S-MTPPA-TAU) in dog urine have been developed and validated. The urine samples were subjected to solid extraction or TLC preparation, then R,S-MTPPA and R,S-MTPPA-TAU were separated on Chiralcel OD and Chiral AGP columns, respectively, with ultraviolet absorbance detection at 272 nm. The dose–response relationships for enantiomers of R,S-MTPPA and R,S-MTPPA-TAU were linear in the concentration ranges of 0.5–50 (r>0.9993) and 5–200 μg/ml (r>0.9982), respectively. Recoveries of all tested enantiomers from dog urine were roughly 90% within the above concentration ranges. Intra- and inter-day reproducibilities were sufficient for metabolic studies. These methods were applied to stereoselective determination of the enantiomers in dog urine after administration of either S- or R-MTPPA.  相似文献   

14.
The simultaneous determination of the enantiomers of the β1-selective adrenergic antagonist atenolol in human plasma and urine is described. After an alkaline preextraction atenolol is extracted from biological material at pH 12.3 using dichloromethane/propan-2-ol. The separation of the underivatized enantiomers is achieved by high-performance liquid chromatography on a chiral stationary phase (Chiralcel OD, cellulose tris-3, 5-dimethylphenylcarbamate, coated on silica gel) with fluorimetric detection. (?)-(S)-Pindolol is used as an internal standard. The detection limits of 5 ng/ml enantiomer in plasma and 50 ng/ml enantiomer in urine are sufficient for pharmacokinetic studies after therapeutic doses. © 1993 Wiley-Liss, Inc.  相似文献   

15.
A method is described for the simultaneous determination of (+)- and (−)-homochlorcyclizine (HCZ) in human urine by high-performance liquid chromatography on a chiral stationary phase of ovomucoid-bonded silica. The pH of the buffer and organic modifier in the mobile phase markedly affected the chromatographic separation. A mobile phase of methanol—0.02 M acetate buffer (pH 4.7) (25:75, v/v) at a flow-rate of 1.0 ml/min was used for the urine assays. The ultraviolet absorption was monitored at 240 nm, and diphenhydramine was employed as the internal standard for the quantitation. (+)-HCZ, (−)-HCZ and the internal standard were eluted at retention times of 15, 25 and 8 min, respectively. The limit of determination for HCZ enantiomers was ca. 50 ng/ml of urine. One of the metabolites in human urine, which was a quaternary ammonium-linked glucuronide, could also be determined in a manner similar to unchanged HCZ after β-glucuronidase hydrolysis. A pharmacokinetic study was conducted with three healthy volunteers, who each received a single oral dose of racemic HCZ (20 mg). Distinct differences were found between the two enantiomers, particularly in the metabolic process, that is, the urinary excretion as (−)-HCZ-glucuronide within 48 h was ca. four times higher than that of the (+)-isomer. This method should be very useful for enantioselective pharmacokinetic studies of HCZ.  相似文献   

16.
For the identification of drug abuse, a simple and rapid method which allows us to distinguish enantiomers of methamphetamine (MA) and its metabolites amphetamine (AP) and p-hydroxymethamphetamine (p-OHMA) in human urine was explored by coupling direct HPLC and HPLC-thermospray-mass spectrometry (HPLC-TSP-MS) both of which employ a β-cyclodextrin phenylcarbamate-bonded silica column. HPLC analysis was performed after the solid-phase extraction from the urine sample with Bond Elut SCX, and d- and l-enantiomers of MA, AP and p-OHMA could be separated well. The proposed conditions are as follows: eluent, acetonitrile-methanol-50 mM potassium phosphate buffer (pH 6.0) (10:30:60, v/v) flow-rate, 1.0 ml/min temperature, 25°C. The linear calibration curves were obtained for d- and l- MA and AP in the concentration range from 0.2 to 20 μg/ml; the relative standard deviation for d- and l-AP and d- and, l-MA ranged from 1.67 to 2.35% at 2 μg/ml and the detection limits were 50 ng/ml for d- and l-AP and d-MA and 100 ng/ml for l-MA. For the verification of the direct HPLC identification, HPLC-TSP-MS was also carried out under the same conditions except that acetonitrile-methanol-100 mM ammonium acetate (pH 6.0) (10:30:60, v/v) was used as an eluent. Upon applying the scan mode, 10 ng/ml for d- and l-AP and d-MA and 20 ng/ml for l-MA were the detection limits. Using the selected ion monitoring mode, 0.5 ng/ml, 0.8 ng/ml and 1 ng/ml could be detected for d- and l-AP, d-MA and l-MA, respectively.  相似文献   

17.
A sensitive, specific and reproducible gas chromatographic assay utilizing mass-selective detection has been developed for the stereoselective determination of mephenytoin (MP) in human urine. Following extraction of urine samples using methyl tert.-butyl ether, separation of R- and S-MP was achieved with a chiral capillary column; detection and quantitation were accomplished by mass spectrometry in the single ion monitoring mode (m/z 104 and 189). Excellent linearity was observed for both enantiomers over the concentration range of 5-1000 ng/ml with corresponding correlation coefficients (r)>0.99. The intra- and inter-day precision and accuracy were within +/-5%. This method employs a simplified processing procedure, demonstrates improved extraction recovery, and provides at least 5-fold greater sensitivity than previously reported assays. This method is well suited for the phenotypic evaluation of CYP2C19 activity using mephenytoin.  相似文献   

18.
The enantiomeric separation of metoprolol and its metabolites in human urine was undertaken using capillary electrophoresis (CE). Resolution of the enantiomers was achieved using carboxymethyl-β-cyclodextrin (CM-β-CD) as the chiral selector. A 100-mM acetate buffer (pH 4.0) containing 5% 2-propanol and 10 mM CM-β-CD resulted in the optimum separation of the metoprolol enantiomers and its acidic metabolite in human urine. Following a single metoprolol oral administration of 100 mg racemic metoprolol tartrate, stereoselective pharmacokinetic analysis showed that urinary acidic metabolite 3 of metoprolol accounted for 62.3% of the dose with an R/S ratio of 1.23 and urinary unchanged metoprolol 1 accounted for 6.3% of the dose with an R/S ratio of 0.72.  相似文献   

19.
A method for the simultaneous quantification of the antidepressant drug amitriptyline, its demethylated metabolite nortriptyline and four hydroxy metabolites (E-10-hydroxyamitriptyline, Z-10-hydroxyamitriptyline, E-10-hydroxynortriptyline, Z-10-hydroxynortriptyline) in human serum or plasma has been developed. The method is based on a three-step liquid-liquid extraction followed by gas-liquid chromatography (split-splitless injection, HP-5, 25 m×0.2 mm I.D., 0.33 μm capillary) with nitrogen phosphorus-selective detection (GLC-NPD). The limits of detection are 1.5 ng/ml for amitriptyline, nortriptyline, E-10-hydroxyamitriptyline and Z-10-hydroxyamitriptyline and 3 ng/ml for E-10-hydroxynortriptyline and Z-10-hydroxynortriptyline. The within-day and between-day precision is between 6 and 15% at three concentrations (low, moderate and high) for amitriptyline, nortriptyline and E-10-hydroxy metabolites. At low concentrations of 10 ng/ml, the precision of the assay of the Z-10-hydroxy metabolites has been found to be up to 19%. Accuracy is between 91 and 115% for all analytes. The performance of the assay of the hydroxy metabolites is mainly determined by the cleanness and the deactivation of the quartz insert of the injector port. Therefore, every day a freshly cleaned and deactivated insert was used.  相似文献   

20.
The determination of propanolol enantiomers in microsamples of human plasma and urine by HPLC using a chiral stationary phase is described. After extraction from 200 μl of plasma or urine with racemic alprenolol as internal standard (I.S.), the enantiomers are separated on a β-cyclodextrin column with a polar organic mobile phase and determined by fluorescence detection. The retention times of I.S. and propranolol enantiomers are about 12–13 min and 16–18 min, respectively. Peak resolutions are 1.4 for I.S. and 2.2 for propranol. The use of alprenolol as I.S. improves significantly the coefficients of variation (C.V.: 0.6–4.2%). Sensitivity is approximately 1.5 ng/ml per propranolol enantiomer. The assay is applied to pharmacokinetic studies of racemic propranolol in human biological fluids. The (S)-propranolol levels are always higher than the (R)-antipode concentrations in plasma and urine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号