首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Symptoms which are associated with die-back in Phragmites : growth inhibition, root and bud death, premature shoot senescence, blocked aeration and vascular systems, especially in rhizomes and roots, and abnormal surface and internal cell-wall lignification and suberization of roots were induced by each of three of the lower volatile organic acids, propionic, butyric and caproic. These acids were applied in nutrient media in concentrations similar to those previously associated with die-back sites and/or in sediments containing rotting rhizomes and roots of the plant. At concentrations of 1.4 and 0.56 mM, respectively, butyric and caproic acids were each found to be highly toxic at pH 4.5, but relatively innocuous at pH 6. Propionic acid, applied at a much higher concentration of 10.4 mM, was highly toxic at both pH 4.5 and 6. The results support previous findings that the undissociated forms of the organic acids are the more toxic. Rhizomes and roots, rotting in water or waterlogged sand, released cocktails of acids and produced pH in the range 4.8–5.4. Phragmites seedlings planted in these media died within 12 h. Overall, the results support the theory that die-back in Phragmites can be induced and/or perpetuated by organic acids released from the decaying underground parts of the plant or other sources of organic matter.  相似文献   

2.
Nitrogen form has been shown to affect Zn uptake, translocation and storage in the Zn-hyperaccumulating plant Noccaea caerulescens but the biochemical processes are not fully understood. Organic acids and amino acids have been implicated in Zn transport and storage. This study aimed to examine the effect of N form on concentrations of organic acids and amino acids and how these metabolites correlated with Zn hyperaccumulation. Plants were grown in nutrient solution with NO3, NH4NO3 or NH4+, supplied with 50 or 300 μM Zn, and buffered at either pH 4.5 or 6.5. The metabolomic profile was determined by gas chromatography mass spectroscopy. The concentration of Zn in shoots, xylem and roots was greatest for the NO3, pH 6.5 and 300 μM Zn treatments. For all N forms, the lower growth-medium pH raised xylem sap pH but had no influence on Zn concentration or exudation rate of the xylem sap. Nitrate enhanced organic acid production while NH4+ increased amino acid production. Organic acids in the xylem were more responsive to changes in growth-medium pH than N form, and did not correlate with Zn concentration in shoots, roots or xylem. Serine might be directly involved in Zn hyperaccumulation. Phosphoric acid was associated with reduced Zn accumulation in the shoots. Malic acid was not detected in the shoots but responded to cation uptake more than to Zn specifically in the roots. Citric acid responded to cation uptake more than to Zn specifically in the shoots but did not correlate with Zn concentration in the roots or the xylem sap, or any other cations in the roots. In conclusion, organic acids in N. caerulescens are not specifically involved in Zn hyperaccumulation but are involved in regulating pH in the xylem and cation–anion balance in plants.  相似文献   

3.
Die-back and healthy stands ofPhragmites australis (Cav.) Trin. exSteud., in the U.K. and Hungary, were compared in terms of plant morphology and anatomy, sediment redox potential and sulphide levels and plant resistance to internal Poiseuille gas flow. In laboratory experiments rhizome cuttings were exposed to acetic acid or dissolved sulphide in unstirred solution cultures in order to determine whether the die-back symptoms found in the field could be induced by these phytotoxins. Most of the die-back symptoms, namely stunting of adventitious roots and laterals, bud death, callus blockages of the gas-pathways, and vascular blockages (both xylem and phloem), were produced by each of the phytotoxin treatments. These symptoms were largely absent from healthy field sites and from the experimental controls. In a greenhouse experiment, plants were grown in waterlogged sand or loam, with or without a sub-surface organic layer composed of chopped up rhizomes and roots mixed with the soil base. Especially during the first 70 days, redox levels were considerably lowered, and shoot numbers and shoot growth much reduced by the presence of the organic layers; the effects were most pronounced in the sand plus organic matter treatment. It is suggested that accumulated phytotoxins, e.g. orgnaic acids and/or sulphide, whether produced from the death and decay of the plant, or from excessive organic loading or as an indirect results of eutrophication, will perpetuate the die-back ofPhragmites and prevent the recovery of the plant in the short term.  相似文献   

4.
The common sorrel, Rumex acetosa L. is well adapted to acid mineral soils with high availability of phytotoxic Al species. The mechanisms of Al resistance in this species are not established. Our goal was to assess the possible implications of organic acids and phenolic substances in Al detoxification in roots and shoots of this plant. R. acetosa plants were exposed in nutrient solution (pH 4.3) to a non-growth reducing Al concentration of 50 μM Al for 5 days. Exclusion of Al from root tips was visualized by haematoxylin staining. Tissue Al and Ca concentrations were analysed by ICP ES. Root and shoot concentrations of organic acids and phenolic substances were analysed by HPLC. A time-dependent (model II type) Al exclusion pattern in root tips was observed. Nonetheless, high Al concentrations accumulated in roots (1170 μg/g) and shoots (275 μg/g). Aluminium supply enhanced root citrate concentrations but decreased shoot organic acid levels. Aluminium induced high levels of anthraquinone in roots and of catechol, catechin and rutin in shoots. Aluminium resistance in R. acetosa implies both exclusion of Al from root tips and tolerance to high Al tissue concentrations. Citrate in roots and phenolics in shoots may bind Al in non-toxic form. Anthraquinones, as strong antioxidants, may play a role in a general defence response to the root stress.  相似文献   

5.
Barleria argillicola Oberm. is a critically endangered species, endemic to a small area in the KwaZulu-Natal Province, South Africa. Animals are known to forage on this plant species, suggesting its therapeutic or nutraceutical potential. This study investigated the antibacterial, acetylcholinesterase inhibition, antioxidant and phytochemical properties of this species with a view to exploring its medicinal potential. The possibility of in vitro propagation as a conservation strategy was also examined. Dichloromethane extract showed a good antibacterial activity (with minimum inhibitory concentration less than 1 mg/ml) against all the tested micro-organisms. Methanol extract exhibited a stronger antibacterial activity against the Gram-negative bacteria Escherichia coli and Pseudomonas aeruginosa than the Gram-positive bacterium Staphylococcus aureus. Extracts obtained from the aerial parts and roots demonstrated a dose-dependent acetylcholinesterase inhibition and antioxidant activities. Higher iridoid, flavonoid and condensed tannin contents were recorded in the aerial parts compared to the roots although the total phenolic content was higher in the roots. The highest in vitro shoot proliferation of 4.60 ± 0.51 and 4.0 ± 0.47 shoots per explant was achieved using shoot-tip and single nodal explants respectively, after four weeks of culture in Murashige and Skoog medium supplemented with 5 μM benzyladenine riboside (BAR). Further supplementation of the medium with naphthalene acetic acid (NAA) or indole butyric acid (IBA) concentrations did not significantly increase shoot proliferation.  相似文献   

6.
We investigated the responses of phytochelatins (PCs), glutathione (GSH) and other non-protein thiols in Cd hyperaccumulator Arabis paniculata after Cd exposure. Applying γ-glutamylcysteine synthetase (γ-ECS) inhibitor, l-buthionine-sulfoximine (BSO), the roles of PCs in Cd tolerance and Cd accumulation in A. paniculata were evaluated. Plants were exposed to four Cd concentrations (0, 50, 100 and 250 μM) for different times (2w or 3w) with and without BSO. Overall, Cd exposure had little impact on plant biomass after 2w or 3w of growth except at the highest Cd level. A. paniculata tolerated ≤100 μM Cd with up to 1127 mg kg?1 Cd in the shoots and 5624 mg kg?1 Cd in the roots after 3w of Cd exposure. Cd exposure induced formation of PCs and three unknown thiols in the roots, but none were detected in the shoots. BSO had no significant effect on Cd sensitivity in plants though it reduced Cd accumulation in the roots. In addition, the molar ratio of PCs:Cd, which ranged from 0.7 to 1.3 after exposing to 50–100 μM Cd without BSO in the roots, was close to the value expected for PC-mediated Cd sequestration in plants. Those data indicate that GSH and PCs did not contribute to Cd tolerance in the shoots and Cd transport from the root to shoot in A. paniculata, but they may play an important role in Cd accumulation and Cd complexation in the roots of A. paniculata.  相似文献   

7.
Lizhi Wang 《农业工程》2013,33(5):282-286
Plant growth, biomass allocation, root distribution and plant nutrient content were investigated in the submerged macrophyte Potamogeton crispus growing in heterogeneous sediments. Three experimental sediments heterogeneous in nutrient content and phosphorus release capacity were used: sandy loam with low nutrient content (A), clay with intermediate nutrient content (B), and clay with high nutrient content (C). Biomass accumulation was significantly affected by the sediment type, and was highest in clay C (1.23 mg per plant dry weight) but lowest in sandy loam (0.69 mg per plant dry weight). The root:shoot ratios in treatments A, B and C were 0.30, 0.14 and 0.09, respectively. P. crispus allocated more biomass to roots in sandy loam compared with the other sediments. The average root numbers in sediments A, B and C were 16, 19 and 20, respectively, and the total root lengths in sediments A, B and C were 238.84, 200.36 and 187.21 cm, respectively. Almost 90% of the root biomass was distributed in the 0–15 cm depth in sediments B and C, compared with 64.53% in sediment A. The rank order of plant nitrogen and phosphorus concentrations in the sediment types was C > B > A. These results indicate that both sediment structure and nutrient availability influence the growth and distribution of the root system of P. crispus.  相似文献   

8.
In constructed wetlands, solids accumulation may have two consequences with opposing effects on treatment efficiency: it decreases the longevity by reducing void space and it enhances biological activity by favoring biofilm development. The goal of our study was to estimate the effect of plants (presence and species) and artificial aeration on solids accumulation (volatile and inorganic). The horizontal and vertical distribution of solids was sampled using solids traps in 12 constructed wetland mesocosms (5 years old). Microbial density and activity were estimated in the biological fraction of the sampled solids. The effect of plant presence reduced accumulated solids by 26% and sulphide content by 50% sulphide content. There was more solids accumulation in Typha angustifolia units than in Phragmites australis. Also, T. angustifolia generated more biological activities at the surface and close to the inlet while conditions were more homogeneous throughout P. australis units. Aeration (1) stimulated biofilm development at the inlet of planted beds, (2) seemed to reduce mineral matter accumulation and (3) generated the same pattern of activities in planted beds enabling to reach a total nitrogen removal rate of up to 0.65 g N m?2 d?1.  相似文献   

9.
《Aquatic Botany》2007,86(4):353-360
The influence of cadmium (Cd) on physiological and biochemical parameters was studied to elucidate the mechanism of Cd resistance in Phragmites australis. Cadmium concentrations in roots, stems and leaves increased with exogenous Cd concentration, but Cd content in roots was much higher than in shoots. X-ray microanalysis was used to reveal compartments in which Cd accumulated in root cortex. Cadmium concentrations followed a gradient with the sequence: intercellular space > cell wall > vacuole > cytoplasm, indicating that most Cd was immobilized in the apoplast or sequestered into the vacuolar lumen. Sequential extraction of various Cd chelates revealed that more than half of extractable Cd was bound to proteins, whereas 26% was bound to organic acids. Cd-binding protein fractions were found in the roots after gel filtration chromatography, among which a polypeptide with an apparent molecular mass of 14 kDa bound Cd most avidly. One newly synthesized polypeptide of low molecular mass (1 kDa) appeared under Cd pollution, whereas a prominent fraction of 72 kDa disappeared. Four aldehyde oxidase (AO) isoenzyme activities increased significantly in roots under Cd pollution. Cd stress also enhanced xanthine dehydrogenase (XDH) activities in roots. Two AO polypeptides of different molecular sizes were detected in the roots by Western blot assay. The abundance of the 160 kDa subunit correlated with Cd stress, but the amount of the 90 kDa polypeptide did not change under Cd treatment. Enhanced abscisic acid (ABA) contents were observed in roots of P. australis exposed to Cd. The involvement of Cd distribution in plant tissues and subcellular compartments and of AO and XDH enzymatic activities in the acclimation mechanism of P. australis to Cd pollution is discussed herein.  相似文献   

10.
《Process Biochemistry》2007,42(3):352-362
The effects of medium components and environmental factors on the production of mycelial biomass and polysaccharide–peptide complexes (exobiopolymers) by Cordyceps sphecocephala J-201 were investigated in submerged cultures. The optimal temperature and initial pH for the production of both mycelial biomass and exobiopolymers in flask cultures were found to be 25 °C and pH 4–5, respectively. The optimal combination of the media constituents was as follows (g l−1): sucrose 40, yeast extract 6, polypepton 2, KH2PO4 0.46, K2HPO4 1, and MgSO4·7H2O 0.5. The results of bioreactor culture revealed that the maximum concentration of mycelial biomass (28.2 g l−1) was obtained at an agitation speed of 300 rpm and at an aeration rate of 2 vvm, whereas maximum exobiopolymer production (2.5 g l−1) was achieved at a milder agitation speed (150 rpm). There was a significant variance in mycelial morphology between different aeration conditions. Looser mycelial pellets were developed, and their size and hairiness increased as the aeration rate increased from 0.5 to 2.0 vvm, resulting in enhanced exobiopolymer production. The apparent viscosities of fermentation broth increased rapidly towards the end of fermentations at the conditions of high aeration rate and agitation speed, which were mainly due to high amount of mycelial biomass rather than exobiopolymers at the later stages of fermentation. The three different exobiopolymers (FR-I, -II, and -III) were fractionated by a gel filtration chromatography on Sepharose CL-6B. The carbohydrate and protein contents in each fraction were significantly different and the molecular weights of FR-I, FR-II, and FR-III were determined to be 1831, 27, and 2.2 kDa, respectively. The compositional analysis revealed that the three fractions of crude exobiopolymers consisted of acidic and nonpolar amino acids, such as aspartic acid, glutamic acid, glycine, and valine in protein moiety, and of mainly mannose and galactose in sugar moiety.  相似文献   

11.
The fatty acid composition of foliar buds, young, mature, and senescent leaves, and stem parts of the rice-field weed, Ludwigia adscendens L. (Onagraceae) was analyzed by thin layer chromatography and gas chromatography flame ionization detection. The analysis of fatty acid composition revealed that saturated fatty acids (i.e., C14:0, C16:0, and C18:0) were prevailing compounds among the all weed parts except senescent leaves where C18:1 was predominant. The esterified fatty acids isolated from different weed parts over the range of 10–100 μg/ml followed by individual synthetic esterified fatty acids that were identified from the esterified extracts of different weed parts, and a mixture of synthetic esterified fatty acids except esterified eicosenoic acid and docosahexaenoic acid were applied to identify their role as a chemical cue for a potential biocontrol agent, Altica cyanea (Weber) (Coleoptera: Chrysomelidae) in a Y-tube olfactometer under laboratory conditions. In this bioassay, the esterified fatty acids from mature leaves and stem parts of this weed attracted A. cyanea at 20–100 μg/ml and at 80 μg/ml concentrations, respectively. Clear attraction was recorded by female A. cyanea insects in the mixture of synthetic esterified fatty acids at 60, 80, and 100 μg/ml concentrations. It is thus concluded that A. cyanea rely on an effective proportion of esterified fatty acids as an olfactory cue for attraction.  相似文献   

12.
Mixed culture of Saccharomyces cerevisiae and Acetobacter pasteurianus was carried out for high yield of acetic acid. Acetic acid production process was divided into three stages. The first stage was the growth of S. cerevisiae and ethanol production, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. The second stage was the co-culture of S. cerevisiae and A. pasteurianus, fermentation temperature and aeration rate were maintained at 34 °C and 0.4 vvm, respectively. The third stage was the growth of A. pasteurianus and production of acetic acid, fermentation temperature and aeration rate were controlled at 32 °C and 0.2 vvm, respectively. Inoculation volume of A. pasteurianus and S. cerevisiae was 16% and 0.06%, respectively. The average acetic acid concentration was 52.51 g/L under these optimum conditions. To enhance acetic acid production, a glucose feeding strategy was subsequently employed. When initial glucose concentration was 90 g/L and 120 g/L glucose was fed twice during fermentation, acetic acid concentration reached 66.0 g/L.  相似文献   

13.
We surveyed the fungal endophytes in the leaves and roots of Phragmites australis plants along a gradient of reed decline at Lake Trasimeno (central Italy) in Oct. 2010. An integrated approach consisting of cultivation and molecular identification was used. Endophytes were recovered from 61.59 % of the samples, with a total of 1 541 isolates. On the basis of a molecular analysis of the rDNA Internal Transcribed Spacer (ITS) region, 25 operational taxonomic units (OTUs) were identified. Fusarium sp. (OTU 21) and Gibberella moniliformis (OTU 1) were the most frequently isolated fungi. Comparisons of the leaf and root samples demonstrated spatial heterogeneity in the endophyte assemblages among the plant parts and sites. In this study, we have shown that reed plants in different states of decline harbour different endophytic communities. This finding may help to understand the very complex scenario of reed die-back.  相似文献   

14.
Mine tailings are an environmental problem in Southern Spain because wind and water erosion of bare surfaces results in the dispersal of toxic metals over nearby urban or agricultural areas. Revegetation with tolerant native species may reduce this risk. We grew two grasses, Lygeum spartum and Piptatherum miliaceum, and the crop species Cicer arietinum (chickpea) under controlled conditions in pots containing a mine tailings mixed into non-polluted soil to give treatments of 0%, 25%, 50%, 75% and 100% mine tailings. We tested a neutral (pH 7.4) mine tailings which contained high concentrations of Cd, Cu, Pb and Zn. Water-extractable metal concentrations increased in proportion to the amount of tailings added. The biomass of the two grasses decreased in proportion to the rate of neutral mine-tailing addition, while the biomass of C. arietinum only decreased in relation to the control treatment. Neutron radiography revealed that root development of C. arietinum was perturbed in soil amended with the neutral tailings compared to those of the control treatment, despite a lack of toxicity symptoms in the shoots. In all treatments and for all metals, the plants accumulated higher concentrations in the roots than in shoots. The highest concentrations occurred in the roots of P. miliaceum (2500 mg kg?1 Pb, 146 mg kg?1 Cd, 185 mg kg?1 Cu, 2700 mg kg?1 Zn). C. arietinum seeds had normal concentrations of Zn (70–90 mg kg?1) and Cu (6–9 mg kg?1). However, the Cd concentration in this species was ~1 mg kg?1 in the seeds and 14.5 mg kg?1 in shoots. Consumption of these plant species by cattle and wild fauna may present a risk of toxic metals entering the food chain.  相似文献   

15.
A protocol has been developed for in vitro plant regeneration from a nodal explant of Dracaena sanderiana Sander ex Mast. Nodal explant showed high callus induction potentiality on MS medium supplemented with 6.78 μM 2,4-dichlorophenoxyacetic acid (2,4-D) followed by 46.5 μM chlorophenoxy acetic acid (CPA). The highest frequency of shoot regeneration (85%) and number of shoots per explant (5.6) were obtained on medium supplemented with 7.84 μM N6-benzylaminopurine (BA). Rooting was high on MS solid compared to liquid medium when added with 7.38 μM indole-3-butyric acid (IBA). Fifty percent of the roots were also directly rooted as microcuttings on soil rite, sand and peat mixture (1:1:1). In vitro and ex vitro raised plantlets were used for acclimatization. More than 90% of the plantlets was successfully acclimatized and established in plastic pots. Ex vitro transferred plantlets were normal without any phenotypic aberrations.  相似文献   

16.
《Aquatic Botany》2009,90(4):357-364
Plant growth, biomass allocation and autofragmentation were investigated in response to root and shoot competition in the submersed macrophyte Myriophyllum spicatum L. growing in two sediment environments. Biomass accumulation and allocation were significantly affected by sediment fertility, with a higher total biomass observed in fertile sediment (average: 4.69 g per plant vs. 1.12 g per plant in infertile sediment). Root-to-shoot ratios were 0.34 and 0.06 in the infertile and fertile sediments, respectively, reflecting the high investment placed on roots under infertile conditions. In the presence of root, shoot, and full competition, whole plant biomass decreased by 18%, 12% and 24% in the infertile sediments, and 23%, 25% and 33% in the fertile sediments, respectively. Root weight ratios (RWRs) increased with root competition by 38% (P < 0.001) and 12% (P = 0.002), while leaf weight ratios (LWRs) decreased with shoot competition by 6% (P = 0.042) and 5% (P = 0.001) in the infertile and fertile sediments, respectively. A total of 406 autofragments were harvested in the fertile sediments, but none were obtained from the infertile sediments. In the control, autofragment number and biomass was 166% and 175% higher compared to the competition treatment. Root and shoot competition resulted in a 21% (P = 0.043) and 18% (P = 0.098) decrease in the autofragment biomass, respectively. These results indicated that M. spicatum responds to different sediment fertility by changing its allocation patterns. Moreover, both root and shoot competition influenced plant growth and autofragmentation, while sediment nutrient availability played an important role in M. spicatum autofragmentation.  相似文献   

17.
Trichoderma harzianum strain T-22 (T22) has the ability of enhancing root growth and plant development. The aim of this research is to explain the biochemical basis of the direct plant-growth-promoting activity of T22. Seven days after the transfer to root-inducing medium, in vitro-cultured shoots of GiSeLa6® (Prunus cerasus × Prunus canescens), an important Prunus rootstock for sweet and sour cherry varieties, were inoculated with T22. Indole-3-acetic acid (IAA), trans-zeatin riboside (t-ZR) and dihydrozeatin riboside (DHZR) were analyzed by a competitive enzyme-linked immunosorbent assay. Acidification of the medium by plant, T22, and plant + T22 were assessed by three pH indicators, whereas root morphological changes were observed by light and epifluorescence microscopic analysis. The results showed that after T22-inoculation, IAA in leaves and roots significantly increased by 148 and 122%, respectively, whereas DHZR decreased by 83%. Increases in t-ZR were found only in leaves (88%). The ratios auxin/cytokinins changed from 28.5 to 46.6 in leaves, and from 15.0 to 21.2 in roots of un-inoculated and T22-inoculated plants, respectively. Root activity determined a decline of medium acidity, and this effect was more marked in T22-inoculated plants (up to pH 4). Microscopic analysis revealed changes in root cell wall suberification in the exoderm and endoderm, with an increase in suberized cellular layers from 1 to 2–3, and an enhancement of cell wall epifluorescence. During the acclimatisation phase of nursery processes, all these T22-induced changes constitute an advantage, as inoculated plants could acclimatise better, so increasing plant survival in the absence of pesticides.  相似文献   

18.
This study investigated the distribution and accumulation of strontium (Sr) in the shoots and roots of Euphorbia macroclada (EU), Verbascum cheiranthifolium (VR), and Astragalus gummifer (AS), with respect to their potential use in phytoremediation. Plant samples and their associated soils were collected from the arid and semi-arid Keban mining area and were analyzed inductively by ICP-MS for Sr. Mean Sr values in the shoots, roots and soil were, respectively, 453, 243 and 398 mg kg?1 for E. macroclada; 149, 106 and 398 mg kg?1 for V. cheiranthifolium; and 278, 223 and 469 mg kg?1 for A. gummifer. The enrichment factors for root (ECR) and shoot (ECS) of these plants were lower than 1 or close to 1, except for the shoot of E. macroclada. The mean translocation factors (TLF) of these plants were higher than 1 and 2.08 for E. macroclada, 1.47 for V. cheiranthifolium, 1.18 for A. gummifer. It thus appeared that the shoots of these plants can be an efficient bioaccumulator plant for Sr and it can be used in cleaning or rehabilitating of the contaminated soil and areas by Sr because of their high translocation factors.  相似文献   

19.
《Aquatic Botany》2005,81(4):353-366
Carbon fixation and allocation were studied using 13C incubation and leaf marking techniques in mature monospecific stands of Enhalus acoroides L.f. Royle in August 1998 and January 1999 in Banten Bay, Indonesia. The highest rate of 13C uptake (>0.008 g 13C g C−1 d−1) was found in the middle to distal parts of leaves of E. acoroides. Young and senescing leaves numbers had lower 13C incorporation compared to mature leaves. The incorporation of 13C by epiphytes on the leaves was higher than that of the leaves themselves (>0.01 g 13C g C−1 d−1). The results showed that turbidity of the water influenced the leaf growth, productivity and Relative Growth Rate of E. acoroides, which were lower at Kepuh Island, the more turbid site. However, at Kepuh Island, where the water column was turbid, the plant could still harvest sufficient light for an uptake rate of 13C, higher than the uptake rates at Kubur and Panjang Islands, stations with a much more transparent water column (on average 0.0047 g 13C g C−1 d−1 at Kepuh Island, versus 0.0045 g 13C g C−1 d−1 at Panjang Island and 0.0034 g 13C g C−1 d−1 at Kubur Island). There was evidence that 13C was exported from the incubated shoots to the roots and rhizomes and to neighboring shoots of E. acoroides in clear water, but not in turbid water. We suggest that single shoots of E. acoroides are able to grow in turbid water under low light conditions. They assimilate sufficient carbon for their own maintenance but are not able to export to neighboring plant parts.  相似文献   

20.
《Aquatic Botany》2007,86(1):9-13
Plant growth, biomass allocation and root distribution were investigated in the submerged macrophyte Vallisneria natans growing in heterogeneous sediments. Experimentally heterogeneous sediment environments were constructed by randomly placing 4 cm of clay or sandy loam into the top (0–4 cm) or bottom (4–8 cm) layer within an experimental tray, providing two homogeneous and two heterogeneous treatments. Biomass accumulation was significantly affected by the experimental treatments: higher in the homogeneous sediment of clay (32 mg per plant) and the two heterogeneous treatments (about 27 mg per plant), but lower in the homogeneous sediment of sandy loam (15 mg per plant). Root: shoot ratio was also different among the four treatments. Compared with the treatments of clay in the top layer, plants allocated more biomass to roots at the treatments of sandy loam in the top layer. Heterogeneous sediments significantly affected root distribution pattern. Compared with the treatments of sandy loam in the bottom layer, root number (7–8 versus 13–14) and total root length (3.6–4.0 cm versus 29.5–40.0 cm) in the bottom layer were significantly higher in the treatments with clay in the bottom layer. These results indicate that both sediment structure and nutrient availability influence growth and root system distribution of V. natans.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号