首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
A simple high-performance liquid chromatographic method was developed for the determination of ranitidine in human plasma. Prior to analysis, ranitidine and the internal standard (metoprolol) were extracted from alkalinized plasma samples using dichloromethane. The mobile phase was 0.05 M potassium dihydrogenphosphate–acetonitrile (88:12, v/v) adjusted to pH 6.5. Analysis was run at a flow-rate of 1.3 ml/min and at a detection wavelength of 229 nm. The method is sensitive with a detection limit of 1 ng/ml at a signal-to-noise ratio of 3:1, while the quantification limit was set at 15 ng/ml. The calibration curve was linear over a concentration range of 15–2000 ng/ml. Mean recovery value of the extraction procedure was about 90%, while the within-day and between-day coefficients of variation and percent error values of the assay method were all less than 15%.  相似文献   

2.
Ebastine (CAS 90729-43-4) is an antiallergic agent which selectively and potently blocks histamine H1-receptors in vivo. A simple and sensitive high-performance liquid chromatography (HPLC) method is described for the simultaneous determination of ebastine and its two oxidized metabolites, carebastine (CAS 90729-42-3) and hydroxyebastine (M–OH), in human plasma. After a pretreatment of plasma sample by solid-phase extraction, ebastine and its metabolites were analyzed on an HPLC system with ultraviolet detection at 254 nm. Chromatography was performed on a cyano column (250×4.0 mm I.D.) at 40 °C with the mobile phase of acetonitrile–methanol–0.012 M ammonium acetate buffer (20:30:48, v/v/v) at a flow rate of 1.2 ml/min. Accurate determinations were possible over the concentration range of 3–1000 ng/ml for the three compounds using 1 ml plasma samples. The intra- and inter-day assay accuracy of this method were within 100±15% of nominal values and the precision did not exceed 12.4% of relative standard deviation. The lower limits of quantitation were 3 ng/ml for ebastine and its metabolites in human plasma. This method was satisfactorily applied to the determination of ebastine and its two oxidized metabolites in human plasma after oral administration of ebastine.  相似文献   

3.
We have developed and validated a sensitive and selective method for the determination of the P-glycoprotein modulator GF120918 in murine and human plasma. Chlorpromazine is used as internal standard. Sample pretreatment involves liquid–liquid extraction with tert-butyl methyl ether. Chromatographic separation is achieved by reversed-phase high-performance liquid chromatography using a Symmetry C18 column and detection was accomplished with a fluorescence detector set at excitation and emission wavelengths of 260 and 460 nm, respectively. The mobile phase consists of acetonitrile–50 mM ammonium acetate buffer, pH 4.2 (35:65, v/v). To achieve good separation from endogenous compounds and to improve the peak shape the counter-ion 1-octane sulfonic acid (final concentration 0.005 M) was added to the mobile phase. The lower limit of quantitation was 5.7 ng/ml using 200 μl of human plasma and 23 ng/ml using 50 μl of murine plasma. Within the dynamic range of the calibration curve (5.7–571 ng/ml) the accuracy was close to 100% and within-day and between-day precision were within the generally accepted 15% range. The stability of GF120918 was tested in plasma and blood from mice and humans incubated at 4°C, room temperature, and 37°C for up to 4 h. No losses were observed under these conditions. This method was applied to study the pharmacokinetics of orally administered GF120918 in humans and mice. The sensitivity of the assay was sufficient to determine the concentration in plasma samples obtained up to 24 h after drug administration.  相似文献   

4.
A method was developed for the rapid quantitative analysis of chlorpheniramine in plasma, saliva and urine using high-performance liquid chromatography. A diethyl ether or hexane extract of the alkalinized biological samples was extracted with dilute acid which was chromatographed on a reversed-phase column using mixtures of acetonitrile and ammonium phosphate buffer as the mobile phase. Ultraviolet absorption at 254 nm was monitored for the detection and brompheniramine was employed as the internal standard for the quantitation. The effects of buffer, pH, and acetonitrile concentration in the mobile phase on the chromatographic separation were investigated. A mobile phase 20% acetonitrile in 0.0075 M phosphate buffer at a flow-rate of 2 ml/min was used for the assays of plasma and saliva samples. A similar mobile phase was used for urine samples. The drug and internal standard were eluted at retention volumes of less than 17 ml. The method can also be used to quantify two metabolites, didesmethyl- and desmethylchlorpheniramine, in the urine. The method can accurately measure chlorpheniramine levels down to 2 ng/ml in plasma or saliva using 1 ml of sample, and should be adequate for biopharmaceutical and pharmacokinetic studies. Various precautions for using the assay are discussed.  相似文献   

5.
A method for the simultaneous direct determination of salicylate (SA), its labile, reactive metabolite, salicyl acyl glucuronide (SAG), and two other major metabolites, salicyluric acid and gentisic acid in plasma and urine is described. Isocratic reversed-phase high performance liquid chromatography (HPLC) employed a 15-cm C18 column using methanol-acetonitrile-25 mM acetic acid as the mobile phase, resulting in HPLC analysis time of less than 20 min. Ultraviolet detection at 310 nm permitted analysis of SAG in plasma, but did not provide sensitivity for measurement of salicyl phenol glucuronide. Plasma or urine samples are stabilized immediately upon collection by adjustment of pH to 3–4 to prevent degradation of the labile acyl glucuronide metabolite. Plasma is then deproteinated with acetonitrile, dried and reconstituted for injection, whereas urine samples are simply diluted prior to injection on HPLC. m-Hydroxybenzoic acid served as the internal standard. Recoveries from plasma were greater than 85% for all four compounds over a range of 0.2–20 μg/ml and linearity was observed from 0.1–200 μg/ml and 5–2000 μg/ml for SA in plasma and urine, respectively. The method was validated to 0.2 μg/ml, thus allowing accurate measurement of SA, and three major metabolites in plasma and urine of subjects and small animals administered salicylates. The method is unique by allowing quantitation of reactive SAG in plasma at levels well below 1% that of the parent compound, SA, as is observed in patients administered salicylates.  相似文献   

6.
A simple, selective, sensitive and precise high-performance liquid chromatographic plasma assay for the hypoglycemic agent metformin is described. Acidified samples of plasma were deproteinated with acetonitrile, washed with dichloromethane and the resulting supernatant injected. Chromatography was performed at 40°C by pumping a mobile phase of acetonitrile (250 ml) in pH 7, 0.03 M diammonium hydrogen phosphate buffer (750 ml) at a flow-rate of 1 ml/min through a silica column. Metformin and the internal standard (atenolol) were detected at 240 nm and were eluted 7.8 and 6.8 min, respectively, after injection. No endogenous substances were found to interfere. Calibration curves were linear (r>0.999) from 10 to 2000 ng/ml. The absolute recovery of both metformin and atenolol was greater than 76%. The detection limit and limit of quantitation were 2.5 and 10 ng/ml, respectively. The intra- and inter-day precision (C.V.) was 12%, or less, and the accuracy was within 6.2% of the nominal concentration. This method is suitable for clinical investigation and monitoring metformin concentration.  相似文献   

7.
A method for the determination of (R)-(+)- and (S)-(−)-isomers of thiopentone in plasma was developed. Following liquid-liquid extraction, the separation of enantiomers of thiopentone and the internal standard (racemic ketamine) was achieved by high-performance liquid chromatography on an α1-acid glycoprotein (AGP) column with ultraviolet detection at 280 nm. The mobile phase consisted of 20 mM KH2PO4 buffer-propanol-methanol (93.5:5.0:1.5) at pH 5.0. The flow-rate was 0.9 ml/min. The limit of quantification for earch isomer was approximately 10 ng/ml. The assay is suitable for pharmacokinetic studies of (R)-(+)- and (S)-(−)-isomers of thiopentone, following usual bolus intravenous clinical doses of the racemic drug.  相似文献   

8.
A simple, specific and sensitive high-performance liquid chromatographic (HPLC) method was developed for the determination of rifampin in human plasma. Rifampin and sulindac (internal standard) are extracted from human plasma using a C2 Bond Elut extraction column. A 100-μl volume of 0.1 M HCl is added to the plasma before extraction to increase the retenction of the compounds on the extraction column. Methanol (1 ml) is used to elute the compounds and 0.5 ml of 3 mg/ml ascorbic acid in water is added to the final eluate to reduce the oxidation of rifampin. Separation is achieved by reversed-phase chromatography on a Zorbax Rx C8 column with a mobile phase composed of 0.05 M potassium dihydrogen phosphate-acetonitrile (55:45, v/v). Detection is by ultraviolet absorbance at 340 nm. The retention times of rifampin and internal standard are approximately 4.4 and 7.8 min, respectively. The assay is linear in concentration ranges of 50 to 35 000 ng/ml. The quantitation limit is 50 ng/ml. Both intra-day and inter-day accuracy and precision data showed good reproducibility.  相似文献   

9.
An improved method suitable for the determination of 8-methoxypsoralen in the range 50–1500 ng/ml in the plasma of psoriatic patients undergoing PUVA (psoralens and long-wave ultraviolet light) therapy is proposed. A 5-ml aliquot of plasma containing sodium citrate as anticoagulant was centrifuged, griseofulvin was added as internal standard and the sample was denatured with acetonitrile. The supernatant was applied to C18 cartridges and 8-methoxypsoralen was eluted with methanol. The evaporated eluate was reconstituted in the mobile phase for high-performance liquid chromatography (HPLC) and applied to the HPLC column: mobile phase, acetonitrile—0.01 M phosphoric acid (34:66); flow-rate, 1 ml/min; temperature, 40°C; column, Spherisorb 5 ODS, 100 mm × 4.6 mm I.D., 5 μm particle size; UV detection at 248 nm; detection limit, 15 ng/ml of plasma.  相似文献   

10.
A high-performance liquid chromatographic method for the measurement of bumetamide in plasma and urine is described. Following precipitation of proteins with acetonitrile, bumetanide was extracted from plasma or urine on a 1-ml bonded-phase C18 column and eluted with acetonitrile. Piretanide dissolved in methanol was used as the internal standard. A C18 Radial Pak column and fluorescence detection (excitation wavelength 228 nm; emission wavelength 418 nm) were used. The mobile phase consisted of methanol—water—glacial acetic acid (66:34:1, v/v) delivered isocratically at a flow-rate of 1.2 ml/min. The lower limit of detection for this method was 5 ng/ml using 0.2 ml of plasma or urine. Nafcillin, but not other semi-synthetic penicillins, was the only commonly used drug that interfered with this assay. No interference from endogenous compounds was detected. For plasma, the inter-assay coefficients of variation of the method were 7.6 and 4.4% for samples containing 10 and 250 ng/ml bumetanide, respectively. The inter-assay coefficients of variation for urine samples containing 10 and 2000 ng/ml were 8.1 and 5.7%, respectively. The calibration curve was linear over the range 5–2000 ng/ml.  相似文献   

11.
A novel HPLC assay which is rapid, reproducible and sensitive has been developed for the analysis of apomorphine in plasma. The assay incorporates boldine as an internal standard, and uses solid-phase extraction on C18 mini-columns for sample clean-up and concentration, so enabling quantitation of apomorphine at 500 pg/ml using fluorescence detection (λex 270 nm, λem). The HPLC assay comprised a 25 cm-long Techopakk C18 column and a mobile phase of (0.25 M sodium dihydrogen phosphate plus 0.25% heptane sulphonic acid, to pH 3.3 with orthophosphoric acid) containing 30% (v/v) methanol and 0.003% (w/v) EDTA, run at a flow-rate of 1.5 ml/min. Calibration plots prepared in plasma were linear over the range 1–30 ng/ml, (limit of quantitation (LOQ)=490 PG/ML) with R.S.D. of 0.05% and R.E. of 5.0% at the level of 1 ng/ml. Preliminary pharmacokinetic data from two patients given apomorphine by 12 h subcutaneous infusion (patient A dose=35 mg and patient B dose=141 mg) showed apomorphine elimination from plasma to fit a two-compartment model, with initial half-lives of 8.2 and 46.6 min, elimination half-lives of 76.4 and 166.5 min and area under the plasma concentration-time curve (AUC) values of 236 and 405 ng h/ml, respectively.  相似文献   

12.
An analytical method for the detection in biological samples of the novel tricyclic compound adosupine (10-acetoamido-5-methyl-5,6-dihydro-11H-dibenzo[b,e]azepin-6,11-dione), which is capable of influencing various forms of urinary bladder hyperreflexia has been developed using high-performance liquid chromatography with UV detection. Liquid—liquid extraction was used to isolate the parent compound, three metabolites and an analogue (added as internal standard) from plasma and brain of rat. Adosupine was well separated from its three metabolites with 0.01 M disodium hydrogenphosphate—acetonitrile—methanol—nonylamine (59.986:38:2:0.014) at pH 4.5 as mobile phase using a C18 reversed-phase column. The standard curves were linear in the range 50–5000 ng/ml (or ng/g) for adosupine and metabolites in both plasma and brain. The between- and within-assay variations for high and low concentrations of the parent compound and the three metabolites were 8.2–14%. In the range 50–5000 ng/ml (or ng/g) the accuracy of the method was satisfactory, with the relative error always lower than 10%. Analytical recoveries of added adosupine and the three metabolites were higher than 82%. The method has been applied successfully, to investigate the pharmacokinetics of the drug and its distribution in the central nervous system of rats.  相似文献   

13.
A liquid chromatographic procedure was developed for the determination of a new antipsychotic agent ziprasidone in plasma using fluorescence detection. A one-step liquid-liquid extraction from 1 ml of alkalinized plasma containing an internal standard alpha-ergocryptine using methyl-t-butyl ether afforded a greater than 84% recovery of ziprasidone. Chromatography was performed using a reversed-phase trimethylsilyl bonded silica column with a mobile phase of 72:28 phosphate buffer:acetonitrile at a flow rate of 1.5 ml/min. Detection of the eluted peaks was observed using excitation and emission wavelengths of 320 and 410 nm, respectively. Chromatographic run time did not exceed 14 min with no interference from endogenous material. The calibration curve was linear over the concentration range of 0.5 to 200 ng/ml and the inter- and intra-assay imprecision (CV) was less than 10%. The lower limit of quantitation was assessed at 0.5 ng/ml. Specificity of the method is demonstrated by the lack of interference from a large number of commonly used drugs and their metabolites in clinical use. The utility of the method is exemplified with the presentation of clinical data from patients receiving ziprasidone.  相似文献   

14.
A sensitive high-performance liquid chromatographic (HPLC) method for the determination of metronidazole in vaginal tissue is reported. The method uses a Zorbax SB phenyl column with a 0.01 M aqueous monobasic potassium phosphate buffer (pH 4.0)-absolute methanol (85:15, v/v) as mobile phase at a flow-rate of 1.0 ml/min and detection at 313 nm. Tinidazole was used as the internal standard. The method employed homogenization of tissue followed by solid-phase extraction. The quantitation was achieved within 30 min with sensitivity in the ng/g range. Metronidazole was linear in the 100–2000 ng/g range. The accuracy and precision were in the 1–4% range for the drug and the limit of detection was approximately 100 ng/g based on a signal-to-noise ratio of 3 and a 100-μl injection.  相似文献   

15.
A selective and sensitive high-performance liquid chromatographic method was developed for the separation and quantitation of daunorubicin and its metabolites in serum, plasma, and other biological fluids. Daunorubicin and metabolites in human plasma were injected directly into the high-performance liquid chromatography system via a loop-column to pre-extract the drugs from the plasma, and quantitated against a multilevel calibration curve with adriamycin as the internal standard. The column effluent was monitored with an electrochemical detector at an applied oxidative potential of 0.65 V and by fluorescence. Daunorubicin and four metabolites were separted and characterized by this method. In a blinded evaluation of accuracy and precision, the mean coefficients of variation were 3.8, 3.6 and 9.8% at concentrations of 150, 75 and 15 ng/ml, respectively, and blank samples gave negligible readings. The amperometric sensitivity was greater than achieved by fluorescence detection, and offers an alternative method for quantitation of these compounds. The new method has a limit of detection of less than 2 ng on column, allowing quantitation of < 10 ng/ml in plasma samples without organic extraction prior to chromatographic analysis.  相似文献   

16.
A novel, highly sensitive method was developed for simultaneous determination of tramadol and its main active metabolite O-demethyltramadol (ODMT) in rat plasma. The method involves a single-step extraction procedure and a specific determination by high-performance liquid chromatography with electrochemical detection, using an ethoxy analogue of tramadol (L-233) as internal standard. The dual-electrode detector was operated in the oxidation-screening mode. Absolute recoveries of tramadol and ODMT were about 80%. Calibration curves were linear over a concentration range of 10–1000 ng/ml for ODMT and 10–10 000 ng/ml for tramadol with intra- and inter-day coefficients of variation not exceeding 10% and 15%, respectively. The limit of quantification for tramadol and ODMT was lower than 15 ng/ml and 10 ng/ml using 100 μl of plasma, respectively. The described method allows an adequate characterization of the plasma vs. time profiles for both compounds.  相似文献   

17.
A new method based on fluorescence derivatization with 5‐(dimethylamino) naphthalene‐1‐sulfonyl chloride (dansyl chloride) was developed for the quantitative determination of galantamine in human plasma and urine using high‐performance liquid chromatography. The reaction between galantamine and dansyl chloride was optimally realized in 30 min at room temperature and pH 10.5, with a reagent to galantamine molar ratio of 2.13. The derivative was extracted with dichloromethane, and the extract was dried under a nitrogen stream and dissolved in the mobile phase. Chromatographic analysis was performed with an Inertsil C18 column and a mobile phase comprising 40% acetonitrile and 60% 10 mM o‐phosphoric acid, 1.2 ml/min. The injection volume was 20 μl. The derivatives were detected with a fluorescence detector (excitation 375 nm/emission 537 nm). The retention time for the dansyl derivative of galantamine was 16.8 min. Linearity was observed between 125 and 2000 ng/ml in water, urine and plasma. The limit of detection and limit of quantification for the developed method were 6.27–70.99 and 18.81–212.97 ng/ml, respectively. Per cent recovery was calculated as 95.15 for urine and 95.78 for plasma. Interday repeatability values for urine and plasma samples (n = 6) at three different concentrations were calculated as a per cent relative standard deviation of 0.24–0.59 and 0.35–0.56. The corresponding per cent relative standard deviation values for intraday repeatability were 0.13–0.51 and 0.04–0.15, respectively.  相似文献   

18.
A stereoselective reversed-phase HPLC assay to quantify S-(−) and R-(+) enantiomers of propranolol and 4-hydroxypropranolol in human plasma was developed. The method involved liquid–liquid extraction for sample clean-up and employed 2,3,4,6-tetra-O-acetyl-β-glucopyranosyl isothiocyanate as a pre-column chiral derivatization reagent. The internal standard used was 4-methylpropranolol. The derivatized products were separated on an Altex C18 column using a mixture of acetonitrile–water–phosphoric acid–triethylamine (58:42:0.1:0.06 and 50:50:0.15:0.06, v/v, for propranolol and 4-hydroxypropranolol, respectively) as mobile phase. The detection of propranolol derivatives was made at λex=280 nm and λem=325 nm, and the corresponding 325 and 400 nm were used for 4-hydroxypropranolol derivatives. The assay was linear from 1 to 100 ng/ml and from 2 to 50 ng/ml using 0.5 ml of human plasma for propranolol and 4-hydroxypropranolol enantiomers, respectively. The present assay is used to quantify the enantiomers of propranolol and 4-hydroxypropranolol, respectively, in human plasma for pharmacokinetic studies.  相似文献   

19.
Several methods for quantification of docetaxel have been described mainly using HPLC. We have developed a new isocratic HPLC method that is as sensitive and simpler than previous methods, and applicable to use in clinical pharmacokinetic analysis. Plasma samples are spiked with paclitaxel as internal standard and extracted manually on activated cyanopropyl end-capped solid-phase extraction columns followed by isocratic reversed-phase HPLC and UV detection at 227 nm. Using this system, the retention times for docetaxel and paclitaxel are 8.5 min and 10.5 min, respectively, with good resolution and without any interference from endogenous plasma constituents or docetaxel metabolites at these retention times. The total run time needed is only 13 min. The lower limit of quantification is 5 ng/ml using 1 ml of plasma. The validated quantitation range of the method is 5–1000 ng/ml with RSDs≤10%, but plasma concentrations up to 5000 ng/ml can be accurately measured using smaller aliquots. This method is also suitable for the determination of docetaxel in urine samples under the same conditions. The method has been used to assess the pharmacokinetics of docetaxel during a phase I/II study of docetaxel in combination with epirubicin and cyclophosphamide in patients with advanced cancer.  相似文献   

20.
A direct injection high-performance liquid chromatography method is described for the determination of mitomycin C (MMC) in human plasma. The stationary phase consisted of hydrophilic and hydrophobic functional groups covalently bound to silicone-coated silica beads (CAPCELL PAK MF Ph-1, 150×4.6 mm I.D., 5 μm). A mobile phase using 100% water gave a better separation of MMC from endogenous interferences as compared to a mobile phase with 12.5% acetonitrile and 2.5 mM phosphate buffer (pH 6.9). Using water as the eluent (1 ml/min) and UV detection at 365 nm, MMC was found to elute at 5.0 min with a peak width of 0.3 min, whereas endogenous interferences eluted before 3 min. Total assay time per sample was 6 min. Internal standard was not required because the recovery of MMC was nearly complete, about 90% from 20 to 5000 ng/ml. The standard curve was linear from 20 to 5000 ng/ml in plasma, and the intra- and inter-day variation was between 3 to 6%. The lower detection limit was 5 ng/ml with a 25 μl sample, which represent a two- to four-fold improvement over the 10 ng/ml detection limit by previous methods using liquid-liquid extraction and comparable sample size. The simplicity of this method, i.e., no sample extraction, no internal standard, 100% aqueous mobile phase, isocratic elution and short analysis time (6 min/sample), makes it suitable for large scale routine sample analysis, whereas its small sample volume requirement and high sensitivity are useful for pharmacokinetic studies in small animals where limited sample is available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号