首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Differential scanning calorimetric studies have been carried out on aqueous dispersions of cholesterol plus one of the pair of positional isomers, 1-arachidoyl-2-oleoylphosphatidylcholine (AOPC) or 1-oleoyl-2-arachidoylphosphatidylcholine (OAPC). There were some differences in the shapes of the endotherms obtained from the dispersions with the two positional isomers. These observations confirm the previous finding (Davis, P.J. and Keough, K.M.W. (1984) Biochemistry 22, 6334–6340) that positional isomers of unsaturated phosphatidylcholines may interact differently with cholesterol, at least in the gel state. The shapes of endotherms obtained here and in the previous study are consistent with the suggestion that the position of the unsaturated chain on the glycerol has a role in determining the nature of the phosphatidylcholine-cholesterol interaction. Certain features of the endotherms seen here and previously (op. cit.) suggest that factors such as effective chain depth in the bilayer or efficiency of chain packing in the bilayer may also influence this interaction.  相似文献   

2.
Phosphatidylcholine and cholesterol interactions in model membranes   总被引:1,自引:0,他引:1  
Various phosphatidylcholines differing either in the stereochemistry around their chiral center or in the position of a cis double bond along the acyl chains were synthesized in order to study critical contact regions in the phospholipid molecule with adjacent cholesterol in model membranes. Microviscosities calculated from fluorescence depolarization of diphenylhexatriene and chain order from spin label studies were measured to monitor physical membrane properties. The enhancing effect of cholesterol on the microviscosity of membranes containing phosphatidylcholines with comparable acyl chain length was largest when the two acyl chains were saturated and smallest when both were unsaturated. Membranes prepared from phosphatidylcholines having a single cis double bond at different positions along the sn-2 acyl chain showed roughly the same changes of microviscosity or chain order upon incorporation of cholesterol. No discrimination was evident in the interaction between cholesterol and enantiomeric phosphatidylcholines or between the enantiomeric phosphatidylcholine molecules themselves. We conclude that the rigidifying effect of cholesterol in membranes does not depend on specific sites of interaction and that with respect to physical membrane properties phosphatidylcholine behaves as an achiral molecule.  相似文献   

3.
In the present work, we demonstrate that phosphatidylcholine with (16:1)9 acyl chains undergoes polymorphic rearrangements in mixtures with 0.6-0.8 mol fraction cholesterol. Studies were performed using differential scanning calorimetry, X-ray diffraction, cryo-electron microscopy, 31P NMR static powder patterns and 13C MAS/NMR. Mixtures of phosphatidylcholine with (16:1)9 acyl chains and 0.6 mol fraction cholesterol, after being heated to 100 degrees C, can form an ordered array with periodicity 14 nm which may be indicative of a cubic phase. Our results indicate that the formation of highly curved bilayer structures, such as those required for membrane fusion, can occur in mixtures of cholesterol with certain phosphatidylcholines that do not form non-lamellar structures in the absence of cholesterol. We also determine the polymorphic behavior of mixtures of symmetric phosphatidylcholines with cholesterol. Species of phosphatidylcholine with (20:1)11, (22:1)13 or (24:1)15 acyl chains in mixtures with 0.6-0.8 mol fraction cholesterol undergo a transition to the hexagonal phase at temperatures 70-80 degrees C. This is not the case for phosphatidylcholine with (18:1)6 acyl chains which remains in the lamellar phase up to 100 degrees C when mixed with as much as 0.8 mol fraction cholesterol. Thus, the polymorphic behavior of mixtures of phosphatidylcholine and cholesterol is not uncommon and is dependent on the intrinsic curvature of the phospholipid. Crystals of cholesterol can be detected in mixtures of all of these phosphatidylcholines at sufficiently high cholesterol mole fraction. What is unusual about the formation of these crystals in several cases is that cholesterol crystals are present in the monohydrate form in preference to the anhydrous form. Furthermore, after heating to 100 degrees C and recooling, the cholesterol crystals are again observed to be in the monohydrate form, although pure cholesterol crystals require many hours to rehydrate after being heated to 100 degrees C. Both the nature of the acyl chain as well as the mole fraction cholesterol determine whether cholesterol crystals in mixtures with the phospholipids will be in the monohydrate or in the anhydrous form.  相似文献   

4.
Interaction of cholesterol with various glycerophospholipids and sphingomyelin   总被引:20,自引:0,他引:20  
M B Sankaram  T E Thompson 《Biochemistry》1990,29(47):10670-10675
The influence of cholesterol on the phase behavior of glycerophospholipids and sphingomyelins was investigated by spin-label electron spin resonance (ESR) spectroscopy. 4-(4,4-Dimethyl-3-oxy-2-tridecyl-2-oxazolidinyl)butanoic acid (5-SASL) and 1-stearoyl-2-[4-(4,4-dimethyl-3-oxy-2-tridecyl-2-oxazolidinyl)butanoy l]-sn- glycero-3-phosphocholine (5-PCSL) spin-labels were employed for this purpose. The outer hyperfine splitting constants, Amax, measured from the spin-label ESR spectra as a function of temperature were taken as empirical indicators of cholesterol-induced changes in the acyl chain motions in the fluid state. The Amax values of 5-PCSL exhibit a triphasic dependence on the concentration of cholesterol for phosphatidylcholines and bovine brain sphingomyelin. We interpret this dependence as reflecting the existence of liquid-disordered, ld, liquid-ordered, lo, and coexistence regions, ld + lo. The phase boundary between the ld and the two-phase region and the boundary between the lo and the two-phase region in the phosphatidylcholine-cholesterol systems coalesce at temperatures 25-33 degrees C above the main-chain melting transition temperature of the cholesterol-free phosphatidylcholine bilayers. In the case of bovine brain sphingomyelin, the ld-lo phase coalescence occurs about 47 degrees C above the melting temperature of the pure sphingomyelin. The selectivity of interaction of cholesterol with glycerophospholipids of varying headgroup charge was studied by comparing the cholesterol-induced changes in the Amax values of derivatives of phosphatidylcholine, phosphatidic acid, phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylserine spin-labeled at the fifth position of the sn-2 chain.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
Growing cells of sterol-requiring Mycoplasma hominis and sterol non-requiring Acholeplasma laidlawii were used to test the ability of cholesterol-dipalmitoyl phosphatidylcholine dispersions to serve as cholesterol donors to these organisms. Dispersions with high cholesterol to phosphatidylcholine ratios were more effective than dispersions with low cholesterol to phosphatidylcholine ratios in donating cholesterol to the membranes of both mycoplasmas and in promoting growth of the sterol-requiring species. M. hominis took up almost three times as much cholesterol as did A. laidlawii. In addition, significant quantities of the phosphatidylcholine component of the dispersions were found to be associated with M. hominis membranes as against none in the A. laidlawii membrane preparations. In all cases, the percentage of cholesterol taken up by M. hominis from the dispersions exceeded that of phosphatidylcholine by a factor of 3–5. These results were interpreted to suggest that all the cholesterol taken up by A. laidlawii is transferred from the dispersion to the membranes by a process which involves only a transient contact between the organisms and the lipid dispersions, whereas a certain amount of the cholesterol taken up by M. hominis may also be derived from lipid dispersions adhering to or fusing with the cell membranes.  相似文献   

6.
A water-soluble fluorescent phosphatidylcholine, 1,2-bis[4-(1-pyreno-butanoyl]-sn-glycero-3-phosphocholine (DPybPC) has been used to develop a sensitive, continuous assay for pure lecithin:cholesterol acyltransferase (LCAT) in solution. The monomeric substrate allowed us to examine the reaction of LCAT in the absence of a lipid/water interface in terms of the sensitivity of the enzymatic reaction to anions, ionic strength, apolipoproteins A-I and A-II, and a series of lysophosphatidylcholines and fatty acids. In contrast to the reaction of LCAT with aggregated phosphatidylcholines, the reaction of DPybPC with LCAT was not significantly affected by anions, ionic strength, nor apolipoproteins, indicating that these are only effectors of the interfacial reaction. Lysophosphatidylcholines and fatty acids inhibited LCAT in a chain-length-dependent manner below the critical micellar concentrations of these amphiphiles, indicating that the products of the LCAT reaction can bind to the enzyme and affect its kinetics even in the absence of an interface.  相似文献   

7.
Phase equilibria in the phosphatidylcholine-cholesterol system   总被引:35,自引:0,他引:35  
A thermodynamic and a microscopic interaction model are proposed to describe the phase equilibria in the phosphatidylcholine-cholesterol system. The model calculations allow for a solid phase with conformationally ordered acyl chains and liquid phases with conformationally ordered as well as disordered chains. The resulting phase diagram is in excellent agreement with the experimental phase diagram for dipalmitoylphosphatidylcholine bilayers with cholesterol as determined by a recent NMR and calorimetry study. It is thus demonstrated that the phase behaviour of phosphatidylcholine-cholesterol mixtures can be rationalized using only a few basic assumptions: (i) Cholesterol interacts favourably with phosphatidylcholine chains in an extended conformation, (ii) the main transition of pure phosphatidylcholine bilayers takes place in terms of translational variables as well acyl-chain conformational variables, and (iii) cholesterol disturbs the translational order in the crystalline (gel) state of phosphatidylcholine. These results suggest that the occurrence of specific phosphatidylcholine-cholesterol complexes is not implied by the experimental thermodynamic data.  相似文献   

8.
The transfer of cholesterol between liposomal membranes was examined. On incubation of liposomes compsoed of egg yolk phosphatidylcholine, phosphatidic acid and cholesterol (molar percentage, 65.8 : 1.3 : 32.9 or 65.5 : 6.3 : 31.2), almost complete equilibration of the cholesterol pools was achieved within 6 to 8 h at 37 degrees C. The rate of transfer of cholesterol from the liposomes, in which cholesterol was introduced by 'the exchange reaction', was not significantly different from that from liposomes prepared in the presence of cholesterol, in which the cholesterol was distributed homogenously. These findings indicate that half life for 'flip-flop' of cholesterol molecules in egg yolk phosphatidylcholine liposomes is less than 6 h at 37 degrees C. The transfer of cholesterol between liposomes was strongly dependent on temperature and was affected by the fatty acid composition of the phospholipid, suggesting that the 'fluidity' of the membranes strongly influences the transfer rate. A preferential distribution of cholesterol molecules was observed in heterogeneous liposomes with different classes of phospholipids. The 'affinity order' of cholesterol for phospholipid deduced from the present experiments is as follows: beef brain sphingomyelin greater than dipalmitoylglycerophosphocholine = dimyristoylglycerophosphocholine greater than egg yolk phosphatidylcholine.  相似文献   

9.
Quinn PJ  Wolf C 《The FEBS journal》2010,277(22):4685-4698
Protein sorting and assembly in membrane biogenesis and function involves the creation of ordered domains of lipids known as membrane rafts. The rafts are comprised of all the major classes of lipids, including glycerophospholipids, sphingolipids and sterol. Cholesterol is known to interact with sphingomyelin to form a liquid-ordered bilayer phase. Domains formed by sphingomyelin and cholesterol, however, represent relatively small proportions of the lipids found in membrane rafts and the properties of other raft lipids are not well characterized. We examined the structure of lipid bilayers comprised of aqueous dispersions of ternary mixtures of phosphatidylcholines and sphingomyelins from tissue extracts and cholesterol using synchrotron X-ray powder diffraction methods. Analysis of the Bragg reflections using peak-fitting methods enables the distinction of three coexisting bilayer structures: (a) a quasicrystalline structure comprised of equimolar proportions of phosphatidylcholine and sphingomyelin, (b) a liquid-ordered bilayer of phospholipid and cholesterol, and (c) fluid phospholipid bilayers. The structures have been assigned on the basis of lamellar repeat spacings, relative scattering intensities and bilayer thickness of binary and ternary lipid mixtures of varying composition subjected to thermal scans between 20 and 50 °C. The results suggest that the order created by the quasicrystalline phase may provide an appropriate scaffold for the organization and assembly of raft proteins on both sides of the membrane. Co-existing liquid-ordered structures comprised of phospholipid and cholesterol provides an additional membrane environment for assembly of different raft proteins.  相似文献   

10.
R E Overfield  C A Wraight 《Biochemistry》1980,19(14):3322-3327
The oxidation of cytochrome c2 by photosynthetic reaction center isolated from Rhodopseudomonas sphaeroides and incorporated into unilamellar phosphatidylcholine vesicles was found to be kinetically similar to that observed earlier for reaction centers in low detergent solution [Overfield, R.E., Wraight, C.A., & DeVault, D. (1979) FEBS Lett. 105, 137-142]. At low ionic strength the kinetics were biphasic. The fast phase indicated the formation of a cytochrome-reaction center complex with an apparent binding constant, KB, of about 10(5) M-1. However, KB decreased dramatically with increasing salt concentration, and no fast oxidation was detectable in 0.1 M NaCl. The slow cytochrome oxidation was first order in both cytochrome and reaction centers and, thus, second order overall. Deviations from theoretical second-order behavior were observed when the rate of the first-order back reaction of the primary photoproducts was significant compared to the cytochrome oxidation. This can cause serious overestimation of the second-order rate constant. The slow oxidation of cytochrome c2 by reaction centers in phosphatidylcholine vesicles exhibited a 40% lower encounter frequency than with the solubilized reaction center. This was attributed to the much lower diffusion coefficient of the reaction center in the vesicle membrane than in solution. No effects of diminished dimensionality were detected with neutral vesicles. An activation energy of 8.0 +/- 0.4 kcal x mol-1 was determined for the slow phase of cytochrome c2 oxidation by reaction centers in solution and in vesicles of several different phosphatidylcholines, including dimyristoylphosphatidylcholine above and below its phase transition temperature. Thus, the physical state of the lipid did not appear to affect any rate-limiting steps leading to cytochrome oxidation. The ionic strength dependence of the slow kinetics of oxidation of cytochromes c and c2 confirmed the electrostatic nature of the cytochrome-reaction center interaction, and the pH dependence indicated the titration of a group or groups, important to this interaction, at pH 9.5.  相似文献   

11.
The efflux of [3H]cholesterol from prelabelled human erythrocytes having modified phosphatidylcholine compositions was measured during 24-h incubations in the presence of unlabelled acceptor liposomes composed of equimolar amounts of egg phosphatidylcholine and cholesterol. The cells were modified by replacement of part of the native phosphatidylcholine with either dipalmitoylphosphatidylcholine, palmitoyloleoylphosphatidylcholine or dilinoleoylphosphatidylcholine catalyzed by phosphatidylcholine-specific transfer protein from bovine liver. The results indicated that the efflux of [3H]cholesterol was faster from erythrocytes in which the dipalmitoylphosphatidylcholine content was increased from 7 to 25% of the total, than from cells enriched in palmitoyloleoylphosphatidylcholine or dioleoylphosphatidylcholine. Incorporation of dilinoleoylphosphatidylcholine to a level of 13% of the total phosphatidylcholine slowed the rate of efflux of [3H]sterol. The phosphatidylcholine replacements produced no significant differences in cholesterol/phospholipid ratio before or after 24 h of incubation with the acceptor egg phosphatidylcholine-cholesterol vesicles. Using vesicles prepared from erythrocyte lipid, modified to reflect the changes in the phosphatidylcholine composition induced in the whole cells, the same influence of composition on the rate of cholesterol exchange was evident. Enhancement of the dipalmitoylphosphatidylcholine content from 7 to 25% of the total phosphatidylcholine pool increased the rate of [3H]cholesterol efflux, while the addition of the same amount of dilinoleoylphosphatidylcholine slowed it compared to controls. The magnitude of the effect was comparable in intact cells and erythrocyte lipid vesicles enriched in dipalmitoylphosphatidylcholine, while the influence of dilinoleoylphosphatidylcholine was more marked in the intact cells. These results demonstrate that changes in the molecular species composition of the phosphatidylcholine pool can influence the rate of exchange of cholesterol but not necessarily the cellular content of sterol in the human erythrocyte. The influence of this phospholipid appears to be expressed independently of the presence of membrane protein or an underlying cytoskeleton.  相似文献   

12.
Phase modulation fluorescence spectroscopy was used to investigate the influence of cholesterol (0 to 50 mol%) on acyl chain dynamics in multilamellar vesicles of phosphatidylcholine. Four different phosphatidylcholines (DPPC, DOPC, POPC, and egg PC) and six different fluorescent probes (diphenylhexatriene and five anthroyloxy fatty acids) were employed. We found that: (1) Increased cholesterol content had only slight effects on fluorescence lifetimes of the six probes. (2) Increased cholesterol content increased the steady-state fluorescence anisotropy (r) of all the probes except 16-anthroyloxy palmitate (16-AP) in each of the four phosphatidylcholines. (3) Added cholesterol tended to limit the extent of probe rotation (as reflected by r, the infinite-time anisotropy) to a much greater extent than it altered the rate of probe rotation. (4) The tendency for cholesterol to order the structure of the bilayer was greatest in the proximal half of the acyl chains and diminished toward the center of the bilayer. (5) In some phosphatidylcholines the rotation rates of probes located near the bilayer center (diphenylhexatriene and 16-AP) were apparently increased by increasing levels of cholesterol. (6) In several respects dipalmitoylphosphatidylcholine (DPPC) vesicles responded differently to increased cholesterol than vesicles of the other three phosphatidylcholines. (7) A single second-order equation described the relationship between rand r for the five anthroyloxy fatty acid probes in the four different phosphatidylcholines over a wide range of cholesterol content. The data for diphenylhexatriene in the different phosphatidylcholines could not be fit by a single equation.  相似文献   

13.
J P Slotte 《Biochemistry》1992,31(24):5472-5477
In this study, we have used cholesterol oxidase as a probe to study cholesterol/phospholipid interactions in mixed monolayers at the air/water interface. Mixed monolayers, containing a single phospholipid class and cholesterol at differing cholesterol/phospholipid molar ratios, were exposed to cholesterol oxidase at a lateral surface pressure of 20 mN/m (at 22 degrees C). At equimolar ratios of cholesterol to phospholipid, the average rate of cholesterol oxidation was fastest in unsaturated phosphatidylcholine mixed monolayers (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine and egg yolk phosphatidylcholine), intermediate in 1,2-dipalmitoyl-sn-glycero-3-phosphocholine, and slowest in sphingomyelin monolayers (egg yolk or bovine brain sphingomyelin). The average oxidation rate in mixed monolayers was not exclusively a function of monolayer packing density, since egg yolk and bovine brain sphingomyelin mixed monolayers occupied similar mean molecular areas even though the measured average oxidation rate was different with these two phospholipids. This suggests that the phospholipid acyl chain composition influenced the oxidation rate. The importance of the phospholipid acyl chain length on influencing the average oxidation rate was further examined in defined phosphatidylcholine mixed monolayers. The average oxidation rate decreased linearly with increasing acyl chain lengths (from di-8:0 to di-18:0). When the average oxidation rate was examined as a function of the cholesterol to phospholipid (C/PL) molar ratio in the monolayer, the otherwise linear function displayed a clear break at a 1:1 stoichiometry with phosphatidylcholine mixed monolayers, and at a 2:1 C/PL stoichiometry with sphingomyelin mixed monolayers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The relation between the immune-reaction of phosphatidylcholine liposomes containing spin-labeled galactosyl ceramide with or without cholesterol and the topographical distribution of the glycolipid in membranes was studied. In egg yolk phosphatidylcholine liposomes, both immune agglutination and antibody binding occurred, irrespectively of the presence of cholesterol, though the motion of the fatty acyl chain of spin-labeled galactosyl ceramide was restricted by cholesterol. In dipalmitoyl phosphatidylcholine liposomes, unlike in egg yolk phosphatidylcholine liposomes, the immune-reaction depended on the cholesterol content. The electron spin resonance (ESR) spectra of spin-labeled galactosyl ceramide in dipalmitoyl phosphatidylcholine liposomes indicated that cholesterol affected the topographical distribution of spin-labeled galactosyl ceramide in the liposomes. Without cholesterol, most of the spin-labeled galactosyl ceramide was clustered on the dipalmitoyl phosphatidylcholine membrane, but with increase of cholesterol, random distribution of hapten on the membrane increased. The cholesterol-dependent change in the topographical distribution of hapten on the membranes was parallel with that of immune reactivity. 'Aggregates' composed solely of galactosyl ceramide did not show any binding activity with antibody. The findings suggest that the recognition of galactosyl ceramide by antibody depended on the topographical distribution of hapten molecules. Phosphatidylcholine and/or cholesterol may play roles as 'spacers' for the proper distribution of 'active' haptens on the membranes. The optimum density of haptens properly distributed on liposomal membranes is discussed.  相似文献   

15.
Lecithin: cholesterol acyltransferase (LCAT) was more highly activated by apolipoprotein A-I (apoA-I) with dimyristoyl phosphatidylcholine (DMPC) than with dilinoleoyl phosphatidylcholine (DLPC) when lipid dispersion of cholesterol and each phosphatidylcholine was used as a substrate. When the enzyme reactions were activated by whole apolipoproteins of high density lipoproteins (HDL), DLPC was more available to the LCAT reaction than DMPC with high concentrations of apoHDL in an incubation mixture. However, no detectable enzyme reaction was observed with dipalmitoyl phosphatidylcholine (DPPC) under both conditions. On the other hand, all of these phosphatidylcholines acted as substrates of LCAT when they were incorporated into HDL coupled to Sepharose. The order of their relative reactivities to cholesterol was DMPC, DPPC, AND DLPC under the conditions used.  相似文献   

16.
The preincubation at 37 degrees C of rat liver microsomal fraction, followed by re-isolation of the treated vesicles, results in a time-dependent increase in the activity of acyl-CoA: cholesterol acyltransferase. The presence of cholesterol-phospholipid (1:1, mol/mol) liposomes results in higher rate of increase in activity and under these conditions the rate of increase is liposomal cholesterol concentration-dependent. The preincubation of the microsomal fraction in the presence of [3H]cholesterol-phospholipid liposomes results in transfer of [3H]cholesterol to the re-isolated microsomal vesicles and this transfer follows first-order kinetics in respect to the donor concentration. These preincubations result also in a time-dependent and liposomal cholesterol concentration-dependent increase in the incorporation of [3H]cholesterol into the cholesteryl oleate produced on assay of cholesterol acyltransferase activity. From specific radioactivity data of the cholesteryl esters synthesised on assay of cholesterol acyltransferase in treated microsomal preparations, the rate of liposomal [3H]cholesterol equilibration with the cholesterol acyltransferase substrate pool can be calculated. The half-time of this transfer decreased with the concentration of liposomal cholesterol present during the preincubation. The activation energy for the transfer of liposomal cholesterol to the cholesterol acyltransferase substrate pool was 87.9 kJ/mol and was independent of the concentration of liposomal cholesterol. The activation energy for the rate of increase of total cholesteryl oleate was similar to this value for low concentrations of liposomal cholesterol and progressively decreased with increasing concentrations of liposomal cholesterol. The data suggest that under the present conditions, the time-dependent and temperature-dependent increase in cholesterol acyltransferase activity is due to the transfer of non-esterified cholesterol from other microsomal and/or liposomal vesicles to the vesicles that contain the enzyme and therefore to increased availability of substrate.  相似文献   

17.
The effect of alpha-tocopherol on the structure and phase behaviour of mixed aqueous dispersions of phosphatidylcholine and phosphatidylethanolamine has been examined by synchrotron X-ray diffraction. Equimolar mixtures of dioleoylphosphatidylethanolamine:dioleoylphosphatidylcholine and dimyristoylphosphatidylcholine:dioleoylphosphatidylethanolamine did not show evidence of phase separation of an inverted hexagonal structure typical of alpha-tocopherol and phosphatidylethanolamine from lamellar phase. Mixed dispersions of dioleoyl derivatives of phosphatidylethanolamine:phosphatidylcholine (3:1) form a typical miscible gel phase at low temperatures but which phase separates into lamellar liquid-crystal and inverted hexagonal phases at temperatures greater than 65 degrees C. The presence of 1, 2 or 5 mol% alpha-tocopherol caused a decrease in the temperature at which the inverted hexagonal phase appears. Phase separation of non-lamellar phase from lamellar gel phase can be detected in the presence of 7.5 and 10 mol% alpha-tocopherol, indicating a limited capacity of the phosphatidylcholine to incorporate alpha-tocopherol into the lamellar domain. A partial phase diagram of the ternary mixture has been constructed from the X-ray scattering data. It was concluded that there is no preferential interaction of alpha-tocopherol with phosphatidylethanolamine in mixed aqueous dispersions containing phosphatidylcholines.  相似文献   

18.
Measurements of hydration and water self diffusion in lamellar phases of the ternary system: phosphatidylcholine/cholesterol/water have been made using pulse NMR relaxation methods. Systems containing phosphatidylcholine and cholesterol in a 1 : 1 mol ratio with varying water contents are studied at 20.5°C. The results indicate that 12 water molecules corresponds to complete hydration of the phosphatidylcholine/cholesterol unit, and in the region of this hydration a 4-fold decrease in water diffusion occurs. The nature of the bound water and its relationship to phase stability and overall water mobility in the system are discussed. It is concluded that at the stoichiometric composition the diffusion decreases due to the relative immobility of the bound water. The implications in terms of permeability regulation in the aqueous channels by water content and hydration are cited.  相似文献   

19.
Measurements of hydration and water self diffusion in lamellar phases of the ternary system: phosphatidylcholine/cholesterol/water have been made using pulse NMR relaxation methods. Systems containing phosphatidylcholine and cholesterol in a 1:1 mol ratio with varying water contents are studied at 20.5 degrees C. The results indicate that 12 water molecules corresponds to complete hydration of the phosphatidylcholine/cholesterol unit, and in the region of this hydration a 4-fold decrease in water diffusion occurs. The nature of the bound water and its relationship to phase stability and overall water mobility in the system are discussed. It is concluded that at the stoichiometric composition the diffusion decreases due to the relative immobility of the bound water. The implications in terms of permeability regulation in the aqueous channels by water content and hydration are cited.  相似文献   

20.
13C-NMR and permeability studies are described for sonicated vesicles of phosphatidylcholines bearing two 16-carbon saturated hydrocarbon chains with (a) one ether linkage at carbon 1 (3) or 2 of glycerol and one ester linkage at carbon 2 or 1 (3) of glycerol; (b) two ether linkages and (c) two ester linkages at carbons 1 (3) and 2 of glycerol. The results of 13C-NMR relaxation enhancement measurements using cholesterol enriched with 13C at the 4 position indicate that no significant relocation of the cholesterol molecules takes place in the bilayer when a methylene group is substituted for a carbonyl group in phosphatidylcholine. The 4-13C atom of cholesterol undergoes similar fast anisotropic motions in diester- and diether -phosphatidylcholine bilayers, as judged by spin-lattice relaxation time measurements in the liquid-crystalline phase; although the fast motions are unaltered, linewidth and spin-spin relaxation time measurements suggested some restriction of the slow motions of cholesterol molecules in bilayers from phosphatidylcholines containing an O-alkyl linkage at the sn-2 position instead of an acyl linkage. At temperatures above the gel to liquid-crystal phase transition, the kinetics of ionophore A23187-mediated 45Ca2+ efflux from vesicles prepared from each type of phosphatidylcholine molecule were the same; the kinetics of spontaneous carboxyfluorescein diffusion from diester- and diether -phosphatidylcholine vesicles were the same, whereas mixed ether/ester phosphatidylcholine molecules gave bilayers which are less permeable. The rate constants were reduced on cholesterol incorporation into the bilayers of each type of phosphatidylcholine molecule. The reductions were not statistically significant for 45Ca2+ release. The rate constants for carboxyfluorescein release were also reduced by cholesterol to the same extent in vesicles from diester-, diether -, and 1-ether, and 1-ether-2-ester-phosphatidylcholines; however, a smaller reduction was noted in bilayers from the 1-ester-2-ether analog. The results provide further evidence that there are no highly specific requirements for ester or ether linkages in phosphatidylcholine for cholesterol to reduce bilayer permeability. This is a reflection of the fact that in both diester- and diether -phosphatidylcholine bilayers, the 4-13C atom of cholesterol is located in the region of the acyl carboxyl group or the glyceryl ether oxygen atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号