首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The acquisition of mutations that activate oncogenes or inactivate tumor suppressors is a primary feature of most cancers. Mutations that directly alter protein sequence and structure drive the development of tumors through aberrant expression and modification of proteins, in many cases directly impacting components of signal transduction pathways and cellular architecture. Cancer-associated mutations may have direct or indirect effects on proteins and their interactions and while the effects of mutations on signaling pathways have been widely studied, how mutations alter underlying protein–protein interaction networks is much less well understood. Systematic mapping of oncoprotein protein interactions using proteomics techniques as well as computational network analyses is revealing how oncoprotein mutations perturb protein–protein interaction networks and drive the cancer phenotype.  相似文献   

2.
Advances in proteomics technologies have enabled novel protein interactions to be detected at high speed, but they come at the expense of relatively low quality. Therefore, a crucial step in utilizing the high throughput protein interaction data is evaluating their confidence and then separating the subsets of reliable interactions from the background noise for further analyses. Using Bayesian network approaches, we combine multiple heterogeneous biological evidences, including model organism protein-protein interaction, interaction domain, functional annotation, gene expression, genome context, and network topology structure, to assign reliability to the human protein-protein interactions identified by high throughput experiments. This method shows high sensitivity and specificity to predict true interactions from the human high throughput protein-protein interaction data sets. This method has been developed into an on-line confidence scoring system specifically for the human high throughput protein-protein interactions. Users may submit their protein-protein interaction data on line, and the detailed information about the supporting evidence for query interactions together with the confidence scores will be returned. The Web interface of PRINCESS (protein interaction confidence evaluation system with multiple data sources) is available at the website of China Human Proteome Organisation.  相似文献   

3.
In this paper we address the problem of extracting features relevant for predicting protein--protein interaction sites from the three-dimensional structures of protein complexes. Our approach is based on information about evolutionary conservation and surface disposition. We implement a neural network based system, which uses a cross validation procedure and allows the correct detection of 73% of the residues involved in protein interactions in a selected database comprising 226 heterodimers. Our analysis confirms that the chemico-physical properties of interacting surfaces are difficult to distinguish from those of the whole protein surface. However neural networks trained with a reduced representation of the interacting patch and sequence profile are sufficient to generalize over the different features of the contact patches and to predict whether a residue in the protein surface is or is not in contact. By using a blind test, we report the prediction of the surface interacting sites of three structural components of the Dnak molecular chaperone system, and find close agreement with previously published experimental results. We propose that the predictor can significantly complement results from structural and functional proteomics.  相似文献   

4.
In recent years, interactions between proteins have successfully been determined by mass spectrometry. A limitation of this technology has been the need for extensive purification, which restricts throughput and implies a tradeoff between specificity and the ability to detect weak or transient interactions. Quantitative proteomics sidesteps this problem by directly comparing specific and control pull-downs. Specific interaction partners are revealed by their quantitative ratios rather than by gel-based visualization and can be retrieved from a vast excess of background proteins. This principle is revolutionizing the protein interaction field as demonstrated by recent applications in fields as diverse as tyrosine signaling pathways, cell adhesion, and chromatin biology.  相似文献   

5.
Proteomics is the study of the protein complement of a genome and employs a number of newly emerging tools. One such tool is chemical proteomics, which is a branch of proteomics devoted to the exploration of protein function using both in vitro and in vivo chemical probes. Chemical proteomics aims to define protein function and mechanism at the level of directly observed protein–ligand interactions, whereas chemical genomics aims to define the biological role of a protein using chemical knockouts and observing phenotypic changes. Chemical proteomics is therefore traditional mechanistic biochemistry performed in a systems-based manner, using either activity- or affinity-based probes that target proteins related by chemical reactivities or by binding site shape/properties, respectively. Systems are groups of proteins related by metabolic pathway, regulatory pathway or binding to the same ligand. Studies can be based on two main types of proteome samples: pooled proteins (1 mixture of N proteins) or isolated proteins in a given system and studied in parallel (N single protein samples). Although the field of chemical proteomics originated with the use of covalent labeling strategies such as isotope-coded affinity tagging, it is expanding to include chemical probes that bind proteins noncovalently, and to include more methods for observing protein–ligand interactions. This review presents an emerging role for nuclear magnetic resonance spectroscopy in chemical proteomics, both in vitro and in vivo. Applications include: functional proteomics using cofactor fingerprinting to assign proteins to gene families; gene family-based structural characterizations of protein–ligand complexes; gene family-focused design of drug leads; and chemical proteomic probes using nuclear magnetic resonance SOLVE and studies of protein–ligand interactions in vivo.  相似文献   

6.
Proteomics is the study of the protein complement of a genome and employs a number of newly emerging tools. One such tool is chemical proteomics, which is a branch of proteomics devoted to the exploration of protein function using both in vitro and in vivo chemical probes. Chemical proteomics aims to define protein function and mechanism at the level of directly observed protein-ligand interactions, whereas chemical genomics aims to define the biological role of a protein using chemical knockouts and observing phenotypic changes. Chemical proteomics is therefore traditional mechanistic biochemistry performed in a systems-based manner, using either activity- or affinity-based probes that target proteins related by chemical reactivities or by binding site shape/properties, respectively. Systems are groups of proteins related by metabolic pathway, regulatory pathway or binding to the same ligand. Studies can be based on two main types of proteome samples: pooled proteins (1 mixture of N proteins) or isolated proteins in a given system and studied in parallel (N single protein samples). Although the field of chemical proteomics originated with the use of covalent labeling strategies such as isotope-coded affinity tagging, it is expanding to include chemical probes that bind proteins noncovalently, and to include more methods for observing protein-ligand interactions. This review presents an emerging role for nuclear magnetic resonance spectroscopy in chemical proteomics, both in vitro and in vivo. Applications include: functional proteomics using cofactor fingerprinting to assign proteins to gene families; gene family-based structural characterizations of protein-ligand complexes; gene family-focused design of drug leads; and chemical proteomic probes using nuclear magnetic resonance SOLVE and studies of protein-ligand interactions in vivo.  相似文献   

7.
Mass spectrometry offers a high-throughput approach to quantifying the proteome associated with a biological sample and hence has become the primary approach of proteomic analyses. Computation is tightly coupled to this advanced technological platform as a required component of not only peptide and protein identification, but quantification and functional inference, such as protein modifications and interactions. Proteomics faces several key computational challenges such as identification of proteins and peptides from tandem mass spectra as well as their quantitation. In addition, the application of proteomics to systems biology requires understanding the functional proteome, including how the dynamics of the cell change in response to protein modifications and complex interactions between biomolecules. This review presents an overview of recently developed methods and their impact on these core computational challenges currently facing proteomics.  相似文献   

8.
Protein-protein interaction networks: from interactions to networks   总被引:1,自引:0,他引:1  
The goal of interaction proteomics that studies the protein-protein interactions of all expressed proteins is to understand biological processes that are strictly regulated by these interactions. The availability of entire genome sequences of many organisms and high-throughput analysis tools has led scientists to study the entire proteome (Pandey and Mann, 2000). There are various high-throughput methods for detecting protein interactions such as yeast two-hybrid approach and mass spectrometry to produce vast amounts of data that can be utilized to decipher protein functions in complicated biological networks. In this review, we discuss recent developments in analytical methods for large-scale protein interactions and the future direction of interaction proteomics.  相似文献   

9.
Greedily building protein networks with confidence   总被引:2,自引:0,他引:2  
MOTIVATION: With genome sequences complete for human and model organisms, it is essential to understand how individual genes and proteins are organized into biological networks. Much of the organization is revealed by proteomics experiments that now generate torrents of data. Extracting relevant complexes and pathways from high-throughput proteomics data sets has posed a challenge, however, and new methods to identify and extract networks are essential. We focus on the problem of building pathways starting from known proteins of interest. RESULTS: We have developed an efficient, greedy algorithm, SEEDY, that extracts biologically relevant biological networks from protein-protein interaction data, building out from selected seed proteins. The algorithm relies on our previous study establishing statistical confidence levels for interactions generated by two-hybrid screens and inferred from mass spectrometric identification of protein complexes. We demonstrate the ability to extract known yeast complexes from high-throughput protein interaction data with a tunable parameter that governs the trade-off between sensitivity and selectivity. DNA damage repair pathways are presented as a detailed example. We highlight the ability to join heterogeneous data sets, in this case protein-protein interactions and genetic interactions, and the appearance of cross-talk between pathways caused by re-use of shared components. SIGNIFICANCE AND COMPARISON: The significance of the SEEDY algorithm is that it is fast, running time O[(E + V) log V] for V proteins and E interactions, a single adjustable parameter controls the size of the pathways that are generated, and an associated P-value indicates the statistical confidence that the pathways are enriched for proteins with a coherent function. Previous approaches have focused on extracting sub-networks by identifying motifs enriched in known biological networks. SEEDY provides the complementary ability to perform a directed search based on proteins of interest. AVAILABILITY: SEEDY software (Perl source), data tables and confidence score models (R source) are freely available from the author.  相似文献   

10.
Elucidation of the interaction of proteins with different molecules is of significance in the understanding of cellular processes. Computational methods have been developed for the prediction of protein-protein interactions. But insufficient attention has been paid to the prediction of protein-RNA interactions, which play central roles in regulating gene expression and certain RNA-mediated enzymatic processes. This work explored the use of a machine learning method, support vector machines (SVM), for the prediction of RNA-binding proteins directly from their primary sequence. Based on the knowledge of known RNA-binding and non-RNA-binding proteins, an SVM system was trained to recognize RNA-binding proteins. A total of 4011 RNA-binding and 9781 non-RNA-binding proteins was used to train and test the SVM classification system, and an independent set of 447 RNA-binding and 4881 non-RNA-binding proteins was used to evaluate the classification accuracy. Testing results using this independent evaluation set show a prediction accuracy of 94.1%, 79.3%, and 94.1% for rRNA-, mRNA-, and tRNA-binding proteins, and 98.7%, 96.5%, and 99.9% for non-rRNA-, non-mRNA-, and non-tRNA-binding proteins, respectively. The SVM classification system was further tested on a small class of snRNA-binding proteins with only 60 available sequences. The prediction accuracy is 40.0% and 99.9% for snRNA-binding and non-snRNA-binding proteins, indicating a need for a sufficient number of proteins to train SVM. The SVM classification systems trained in this work were added to our Web-based protein functional classification software SVMProt, at http://jing.cz3.nus.edu.sg/cgi-bin/svmprot.cgi. Our study suggests the potential of SVM as a useful tool for facilitating the prediction of protein-RNA interactions.  相似文献   

11.
Characterizing protein-protein interactions in a biologically relevant context is important for understanding the mechanisms of signal transduction. Most signal transduction systems are membrane associated and consist of large multiprotein complexes that undergo rapid reorganization—circumstances that present challenges to traditional structure determination methods. To study protein-protein interactions in a biologically relevant complex milieu, we employed a protein footprinting strategy based on isotope-coded affinity tag (ICAT) reagents. ICAT reagents are valuable tools for proteomics. Here, we show their utility in an alternative application—they are ideal for protein footprinting in complex backgrounds because the affinity tag moiety allows for enrichment of alkylated species prior to analysis. We employed a water-soluble ICAT reagent to monitor cysteine accessibility and thereby to identify residues involved in two different protein-protein interactions in the Escherichia coli chemotaxis signaling system. The chemotaxis system is an archetypal transmembrane signaling pathway in which a complex protein superstructure underlies sophisticated sensory performance. The formation of this superstructure depends on the adaptor protein CheW, which mediates a functionally important bridging interaction between transmembrane receptors and histidine kinase. ICAT footprinting was used to map the surfaces of CheW that interact with the large multidomain histidine kinase CheA, as well as with the transmembrane chemoreceptor Tsr in native E. coli membranes. By leveraging the affinity tag, we successfully identified CheW surfaces responsible for CheA-Tsr interaction. The proximity of the CheA and Tsr binding sites on CheW suggests the formation of a composite CheW-Tsr surface for the recruitment of the signaling kinase to the chemoreceptor complex.  相似文献   

12.
Protein chemistry, such as crosslinking and photoaffinity labeling, in combination with modern mass spectrometric techniques, can provide information regarding protein–protein interactions beyond that normally obtained from protein identification and characterization studies. While protein crosslinking can make tertiary and quaternary protein structure information available, photoaffinity labeling can be used to obtain structural data about ligand–protein interaction sites, such as oligonucleotide–protein, drug–protein and protein–protein interaction. In this article, we describe mass spectrometry-based photoaffinity labeling methodologies currently used and discuss their current limitations. We also discuss their potential as a common approach to structural proteomics for providing 3D information regarding the binding region, which ultimately will be used for molecular modeling and structure-based drug design.  相似文献   

13.
Low-affinity extracellular protein interactions are critical for cellular recognition processes, but existing methods to detect them are limited in scale, making genome-wide interaction screens technically challenging. To address this, we report here the miniaturization of the AVEXIS (avidity-based extracellular interaction screen) assay by using protein microarray technology. To achieve this, we have developed protein tags and sample preparation methods that enable the parallel purification of hundreds of recombinant proteins expressed in mammalian cells. We benchmarked the protein microarray-based assay against a set of known quantified receptor-ligand pairs and show that it is sensitive enough to detect even very weak interactions that are typical of this class of interactions. The increase in scale enables interaction screening against a dilution series of immobilized proteins on the microarray enabling the observation of saturation binding behaviors to show interaction specificity and also the estimation of interaction affinities directly from the primary screen. These methodological improvements now permit screening for novel extracellular receptor-ligand interactions on a genome-wide scale.  相似文献   

14.
Protein chemistry, such as crosslinking and photoaffinity labeling, in combination with modern mass spectrometric techniques, can provide information regarding protein-protein interactions beyond that normally obtained from protein identification and characterization studies. While protein crosslinking can make tertiary and quaternary protein structure information available, photoaffinity labeling can be used to obtain structural data about ligand-protein interaction sites, such as oligonucleotide-protein, drug-protein and protein-protein interaction. In this article, we describe mass spectrometry-based photoaffinity labeling methodologies currently used and discuss their current limitations. We also discuss their potential as a common approach to structural proteomics for providing 3D information regarding the binding region, which ultimately will be used for molecular modeling and structure-based drug design.  相似文献   

15.
Protein-protein interactions play a central role in numerous processes in the cell and are one of the main fields of functional proteomics. This review highlights the methods of bioinformatics and functional proteomics of protein-protein interaction investigation. The structures and properties of contact surfaces, forces involved in protein-protein interactions, kinetic and thermodynamic parameters of these reactions were considered. The properties of protein contact surfaces depend on their functions. The contact surfaces of permanent complexes resemble domain contacts or the protein core and it is reasonable to consider such complex formation as a continuation of protein folding. Characteristics of contact surfaces of temporary protein complexes share some similarities with active sites of enzymes. The contact surfaces of the temporary protein complexes have unique structure and properties and they are more conservative in comparison with active site of enzymes. So they represent prospective targets for a new generation of drugs. During the last decade, numerous investigations were undertaken to find or design small molecules that block protein dimerization or protein(peptide)-receptor interaction, or, on the contrary, to induce protein dimerization.  相似文献   

16.
Protein–protein interaction networks are currently visualized by software generated interaction webs based upon static experimental data. Current state is limited to static, mostly non-compartmental network and non time resolved protein interactions. A satisfactory mathematical foundation for particle interactions within a viscous liquid state (situation within the cytoplasm) does not exist nor do current computer programs enable building dynamic interaction networks for time resolved interactions. Building mathematical foundation for intracellular protein interactions can be achieved in two increments (a) trigger and capture the dynamic molecular changes for a select subset of proteins using several model systems and high throughput time resolved proteomics and, (b) use this information to build the mathematical foundation and computational algorithm for a compartmentalized and dynamic protein interaction network. Such a foundation is expected to provide benefit in at least two spheres: (a) understanding physiology enabling explanation of phenomenon such as incomplete penetrance in genetic disorders and (b) enabling several fold increase in biopharmaceutical production using impure starting materials.  相似文献   

17.
A major focus of systems biology is to characterize interactions between cellular components, in order to develop an accurate picture of the intricate networks within biological systems. Over the past decade, protein microarrays have greatly contributed to advances in proteomics and are becoming an important platform for systems biology. Protein microarrays are highly flexible, ranging from large-scale proteome microarrays to smaller customizable microarrays, making the technology amenable for detection of a broad spectrum of biochemical properties of proteins. In this article, we will focus on the numerous studies that have utilized protein microarrays to reconstruct biological networks including protein-DNA interactions, posttranslational protein modifications (PTMs), lectin-glycan recognition, pathogen-host interactions and hierarchical signaling cascades. The diversity in applications allows for integration of interaction data from numerous molecular classes and cellular states, providing insight into the structure of complex biological systems. We will also discuss emerging applications and future directions of protein microarray technology in the global frontier.  相似文献   

18.
The systematic characterization of the whole interactomes of different model organisms has revealed that the eukaryotic proteome is highly interconnected. Therefore, biological research is progressively shifting away from classical approaches that focus only on a few proteins toward whole protein interaction networks to describe the relationship of proteins in biological processes. In this minireview, we survey the most common methods for the systematic identification of protein interactions and exemplify different strategies for the generation of protein interaction networks. In particular, we will focus on the recent development of protein interaction networks derived from quantitative proteomics data sets.  相似文献   

19.
Colland F  Daviet L 《Biochimie》2004,86(9-10):625-632
Functional proteomics is a promising technique for the rational identification of novel therapeutic targets by elucidation of the function of newly identified proteins in disease-relevant cellular pathways. Of the recently described high-throughput approaches for analyzing protein-protein interactions, the yeast two-hybrid (Y2H) system has turned out to be one of the most suitable for genome-wide analysis. However, this system presents a challenging technical problem: the high prevalence of false positives and false negatives in datasets due to intrinsic limitations of the technology and the use of a high-throughput, genetic assay. We discuss here the different experimental strategies applied to Y2H assays, their general limitations and advantages. We also address the issue of the contribution of protein interaction mapping to functional biology, especially when combined with complementary genomic and proteomic analyses. Finally, we illustrate how the combination of protein interaction maps with relevant functional assays can provide biological support to large-scale protein interaction datasets and contribute to the identification and validation of potential therapeutic targets.  相似文献   

20.
蛋白质相互作用研究的新技术与新方法   总被引:2,自引:0,他引:2  
目前,蛋白质相互作用已成为蛋白质组学研究的热点. 新方法的建立及对已有技术的改进标志着蛋白质相互作用研究的不断发展和完善.在技术改进方面,本文介绍了弥补酵母双杂交的蛋白定位受限等缺陷的细菌双杂交系统;根据目标蛋白特性设计和修饰TAP标签来满足复合体研究要求的串联亲和纯化技术,以及在双分子荧光互补基础上发展的动态检测多个蛋白质间瞬时、弱相互作用的多分子荧光互补技术.还综述了近两年建立的新方法:与免疫共沉淀相比,寡沉淀技术直接研究具有活性的蛋白质复合体;减量式定量免疫沉淀方法排除了蛋白质复合体中非特异性相互作用的干扰;原位操作的多表位-配基绘图法避免了样品间差异的影响,以及利用多点吸附和交联加固研究弱蛋白质相互作用的固相蛋白质组学方法.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号