共查询到20条相似文献,搜索用时 8 毫秒
1.
2,4-Dinitrophenol (DNP) is an uncoupler of oxidative phosphorylation in mitochondria. Here, we investigated the in vitro effect of DNP on apoptosis and the involvement of reactive oxygen species (ROS) in As4.1 juxtaglomerular cell death. Dose- and time-dependent induction of apoptosis was evidenced by flow cytometric detection of sub-G1 DNA content and annexin V binding assay. The intracellular H(2)O(2) and O(2)(-) levels were markedly increased in DNP-treated cells. However, the reduction of intracellular H(2)O(2) level by Tiron and catalase did not prevent apoptosis induced by DNP. Moreover, DNP rapidly reduced intracellular GSH content in As4.1 cells. Taken together, apoptosis in DNP-treated As4.1 cells is correlated with the rapid change of intracellular GSH levels rather than ROS levels. 相似文献
2.
J A Kim Y S Kang S H Lee E H Lee B H Yoo Y S Lee 《Biochemical and biophysical research communications》1999,261(3):682-688
Glibenclamide, an inhibitor of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channels, induced apoptosis in a dose- and time-dependent manner in HepG2 human hepatoblastoma cells. Glibenclamide increased intracellular Ca(2+) concentration, which was significantly inhibited by Ca(2+) release blockers dantrolene and TMB-8. BAPTA/AM, an intracellular Ca(2+) chelator, and the Ca(2+) release blockers significantly inhibited glibenclamide-induced apoptosis. Glibanclamide also increased intracellular Cl(-) concentration, which was significantly blocked by CFTR Cl(-) channel activators levamisole and bromotetramisole. These activators also significantly inhibited both intracellular Ca(2+) release and apoptosis induced by glibenclamide. The expression of CFTR protein in the cells was confirmed by Western blot analysis. These results suggest that glibenclamide induced apoptosis through inhibition of CFTR Cl(-) channels and intracellular Ca(2+) release and that this protein may be a good target for treatment of human hepatomas. 相似文献
3.
Ellipticine induces apoptosis through p53-dependent pathway in human hepatocellular carcinoma HepG2 cells 总被引:4,自引:0,他引:4
Ellipticine (5,11-dimethyl-6H-pyrido[4,3-b]carbazole), one of the simplest naturally occurring alkaloids, was isolated from the leaves of the evergreen tree Ochrosia elliptica Labill (Apocynaceae). Here, we reported that ellipticine inhibited the cell growth of human hepatocellular carcinoma cell line HepG2 and provided molecular understanding of this effect. The XTT assay results showed that ellipticine decreased the cell viability of HepG2 cells in a dose- and time-dependent manner, and the IC50 value was 4.1 microM. Furthermore, apoptosis induction by ellipticine in HepG2 cells was verified by the appearance of DNA fragmentation and annexin V-FITC/propidium iodide (PI) staining assay. Ellipticine treatment was found to result in the upregulation of p53, Fas/APO-1 receptor and Fas ligand. Besides, ellipticine also initiated mitochondrial apoptotic pathway through regulation of Bcl-2 family proteins expression, alteration of mitochondrial membrane potential (DeltaPsim), and activation of caspase-9 and caspase-3. Taken together, ellipticine decreased the cell growth and induced apoptosis in HepG2 cell. 相似文献
4.
Polyamines, namely putrescine, spermidine, and spermine, are essential for cell survival and proliferation. A decrease in intracellular polyamine levels is associated with apoptosis. In this study, we used inhibitors of polyamine biosynthesis to examine the effect of polyamine depletion. A combination of inhibitors of ornithine decarboxylase, S-adenosylmethionine decarboxylase, or spermidine synthase decreased intracellular polyamine levels and induced cell death in a WEHI231 murine B cell line. These cells exhibited apoptotic features including chromatin condensation and oligonucleosomal DNA fragmentation. Addition of exogenous polyamines reversed the observed features of apoptotic cell death. Similar effects were also observed in other cell lines: a human B cell line Ramos and a human T cell line Jurkat. Depletion of polyamines induced activation of caspase-3 and disruption of the mitochondrial membrane potential (Delta psi m). Inhibition of caspase activities by an inhibitor prevented the apoptotic nuclear changes but not Delta psi m disruption induced by polyamine depletion. Overexpression of Bcl-xl, an anti-apoptotic Bcl-2 family protein, completely inhibited Delta psi m disruption, caspase activation, and cell death. These results indicate that the depletion of intracellular polyamines triggers the mitochondria-mediated pathway for apoptosis, resulting in caspase activation and apoptotic cell death. 相似文献
5.
We investigated the involvement of ROS such as H2O2 and O2*-, and GSH in As4.1 cell death induced by pyrogallol. The intracellular H2O2 levels were decreased or increased depending on the concentration and incubation time of pyrogallol. The levels of O2*- were significantly increased. Pyrogallol reduced the intracellular GSH content. And ROS scavengers, Tempol, Tiron, Trimetazidine and NAC could not significantly down-regulate the production of H2O2 and O2*-. However, these ROS scavengers slightly inhibited apoptosis. Interestingly, Tempol showing the recovery of GSH depletion induced by pyrogallol significantly decreased apoptosis without the significant reduction of intracellular O2*- levels. SOD and catalase did not change the level of H2O2 but decreased the level of O2*-. The inhibition of GSH depletion by these was accompanied with the decrease of apoptosis, as evidenced by sub-G1 DNA content, annexin V staining, mitochondria membrane potential (DeltaPsi(m)) and Western data. In addition, ROS scavengers and SOD did not alter a G2 phase accumulation of the cell cycle induced by pyrogallol. However, catalase changed the cell cycle distributions of pyrogallol-treated cells to those of pyrogallol-untreated cells. In summary, we have demonstrated that pyrogallol potently generates ROS, especially O2*-, in As4.1 JG cells, and Tempol, SOD and catalase could rescue to a lesser or greater extent cells from pyrogallol-induced apoptosis through the up-regulation of intracellular GSH content. 相似文献
6.
Park IJ Kim MJ Park OJ Choe W Kang I Kim SS Ha J 《Apoptosis : an international journal on programmed cell death》2012,17(3):248-257
The endoplasmic reticulum (ER) is a central organelle in eukaryotic cells that functions in protein synthesis and maturation,
and also functions as a calcium storage organelle. Perturbation of ER functions leads to ER stress, which has been previously
associated with a broad variety of diseases. ER stress is generally regarded as compensatory, but prolonged ER stress can
activate apoptotic pathways in damaged cells. For this reason, pharmacological interventions that effectively enhance tumor
death through ER stress have been the subject of a great deal of attention for anti-cancer therapy. Cryptotanshinone, the
major active constituent isolated from the root of Salvia miltiorrhiza Bunge, has been recently evaluated for its anti-cancer activity, but the molecular mechanisms underlying these activities remain
poorly understood. In particular, it remains completely unknown as to whether or not cryptotanshinone can induce ER stress.
Herein, we identify cryptotanshinone as a potent stimulator of ER stress, leading to apoptosis in many cancer cell lines,
including HepG2 hepatoma and MCF7 breast carcinoma, and also demonstrate that mitogen-activated protein kinases function as
mediators in this process. Reactive oxygen species generated by cryptotanshinone have been shown to play a critical role in
ER stress-induced apoptosis. Cryptotanshinone also evidenced sensitizing effects to a broad range of anti-cancer agents including
Fas/Apo-1, TNF-α, cisplatin, etoposide or 5-FU through inducing ER stress, highlighting the therapeutic potential in the treatment
of human hepatoma and breast cancer. 相似文献
7.
The increased glycolysis and proton secretion in tumors is proposed to contribute to the proliferation and invasion of cancer cells during the process of tumorigenesis and metastasis. Here, treatment of human breast cancer cells with proton pump inhibitor (PPI) lansoprazole (LPZ) induces cell apoptosis in a dose-dependent manner. In the implantation of the MDA-MB-231 xenografts in nude mice, administration of LPZ significantly inhibits tumorigenesis and induces large-scale apopotosis of tumor cells. LPZ markedly inhibits intracellular proton extrusion, induces an increase in intracellular ATP level, lysosomal alkalinization and accumulation of reactive oxygen species (ROS) in breast cancer cells. The ROS scavenger N-acetyl-l-cysteine (NAC) and diphenyleneiodonium (DPI), a specific pharmacological inhibitor of NADPH oxidases (NOX), significantly abolish LPZ-induced ROS accumulation in breast cancer cells. Our results suggested that LPZ may be used as a new therapeutic drug for breast tumor. 相似文献
8.
Recent studies have demonstrated that induction of apoptosis is related to the cell growth inhibition potential of Salvia Miltiorrhiza (SM), a traditional herbal medicine. In the present study, we further explore the mechanistic pathway involved in SM-induced apoptosis in human hepatoma HepG2 cells. A rapid decline of intracellular glutathione (GSH) and protein thiol content was found in SM-treated cells. Moreover. SM exposure resulted in mitochondrial dysfunction as demonstrated by: (i) the onset of mitochondrial permeability transition (MPT); (ii) the disruption of mitochondrial membrane potential (MMP); and (iii) the release of cytochrome c from mitochondria into the cytosol. Subsequently, elevated level of intracellular reactive oxygen species (ROS) was observed prior to the onset of DNA fragmentation. However, no caspase-3 cleavage was observed throughout the whole period of SM treatment, while a caspase-3-independent poly(ADP-ribose) polymerase (PARP) cleavage was noted at the late stage in SM-induced apoptosis. Pretreatment of cells with N-acetylcysteine (NAC), the GSH synthesis precursor, conferred complete protection against MMP loss, ROS generation and apoptosis induced by SM. MPT inhibitors, cyclosporin A plus trifluoperazine, partially restored intracellular GSH content, and reduced SM-induced ROS formation and subsequently inhibited cell death. Moreover, antioxidants NAC, deferoxamine and catalase had little effect on GSH depletion and mitochondrial dysfunction, yet still were able to completely protect cells from SM-induced apoptosis. Taken together, our results suggest that SM deplete intracellular thiols, which, in turn, causes MPT and subsequent increase in ROS generation, and eventually apoptotic cell death. 相似文献
9.
Makhov P Golovine K Uzzo RG Rothman J Crispen PL Shaw T Scoll BJ Kolenko VM 《Cell death and differentiation》2008,15(11):1745-1751
The X-linked inhibitor of apoptosis (XIAP), the most potent member of the inhibitor of apoptosis protein (IAP) family of endogenous caspase inhibitors, blocks the initiation and execution phases of the apoptotic cascade. As such, XIAP represents an attractive target for treating apoptosis-resistant forms of cancer. Here, we demonstrate that treatment with the membrane-permeable zinc chelator, N,N,N',N',-tetrakis(2-pyridylmethyl) ethylenediamine (TPEN) induces a rapid depletion of XIAP at the post-translational level in human PC-3 prostate cancer cells and several non-prostate cell lines. The depletion of XIAP is selective, as TPEN has no effect on the expression of other zinc-binding members of the IAP family, including cIAP1, cIAP2 and survivin. The downregulation of XIAP in TPEN-treated cells occurs via proteasome- and caspase-independent mechanisms and is completely prevented by the serine protease inhibitor, Pefabloc. Finally, our studies demonstrate that TPEN promotes activation of caspases-3 and -9 and sensitizes PC-3 prostate cancer cells to TRAIL-mediated apoptosis. Taken together, our findings indicate that zinc-chelating agents may be used to sensitize malignant cells to established cytotoxic agents via downregulation of XIAP. 相似文献
10.
裂蹄木层孔菌子实体水提物诱导HepG2细胞凋亡的初步研究 总被引:1,自引:1,他引:0
研究裂蹄木层孔菌子实体水提物(WEPL)对人类克隆肝癌细胞系HepG2生长的作用。用裂蹄木层孔菌子实体水提物处理HepG2细胞后,噻唑蓝法(MTT法)可见浓度和时间依赖性抑制细胞增殖;电镜下观察凋亡小体的出现,流式细胞仪技术显示Annexin-Ⅴ染色呈阳性,都证明了HepG2细胞发生了凋亡。RT-PCR和Western Blot分析证实WEPL刺激Bax表达量上调、Bcl-2表达量下调进而诱导了细胞凋亡。结果表明WEPL诱发的克隆人类肝癌细胞系HepG2的细胞凋亡可能是通过上调Bax、下调Bcl-2活性来实现的。 相似文献
11.
This study investigated the potential of shikonin as an anticancer agent against liver cancer and an in vitro human hepatoma cancer model system. The HepG2 cell line was the hepatoma cancer model in the present study. The inhibitory effect of shikonin on the growth of HepG2 cells was measured by MTT assay. To explore the underlying mechanism of cell growth inhibition of shikonin, the cell cycle distribution, DNA fragmentation, mitochondrial membrane potential (ΔΨm) disruption, and expression of Bax and Bcl-2 were measured in HepG2 cells. The activity of shikonin in inducing apoptosis was investigated through the detection of Annexin V signal and CD95 expression by flow cytometry and electron microscopy, respectively. Shikonin inhibited the growth of HepG2 cells in a dose-dependent manner. The IC50 value (inhibiting cell growth by 50%) was 4.30 mg/mL. Shikonin inhibited cell growth in a dose-dependent manner and blocked HepG2 cell cycle progression at the S phase. The changes in mitochondrial morphology, dose-dependently decreased in ΔΨm, were observed in different concentrations of the drug treatment group. Western blot analysis showed that cajanol inhibited Bcl-2 expression and induced Bax expression. Furthermore, we show that shikonin increases Annexin V signal and CD95 (Fas/APO) expression, resulting in apoptotic cell death of HepG2 cells. In addition, lump formation of intranuclear chromatin, pyknosis of cell nucleus, deletion of microvillus, vacuolar degeneration of mitochondria, reduction of rough endoplasmic reticulum, and resolution of free ribosome, etc., associated with apoptosis were discovered by electron microscopy in HepG2 cells after 48 h treatment. Shikonin inhibited HepG2 cells, possibly through the pathway of inducing early apoptosis, and was beneficial for restoring the apoptotic sensitivity of HepG2 cells by CD95, and should therefore be considered as a candidate agent for the prevention or treatment of human hepatoma. 相似文献
12.
Intravenous injection of prostacyclin (100 micrograms/kg) in rats resulted in a decrease of systolic blood pressure within 2 minutes. Concentrations of cAMP in 15 brain regions and nuclei were determined by radioimmunoassay. In lower brain stem nuclei, such as the nucleus of the solitary tract and the lateral reticular nucleus (A1 and C1 catecholaminergic cell groups) cAMP levels were depleted significantly, while in others, including the locus coeruleus and the periaqueductal central gray, cAMP levels did not show any alterations. Levels of cAMP were also depleted in some of the hypothalamic nuclei (periventricular, anterior hypothalamic, ventromedial), and in cerebral cortical areas. Lowered cAMP levels in brain areas might indicate lower cellular activity in cells participating in baroreceptor control mechanisms. 相似文献
13.
14.
Zhang Y Ouyang D Xu L Ji Y Zha Q Cai J He X 《Acta biochimica et biophysica Sinica》2011,43(7):556-567
Cucurbitacin B (CuB), a triterpenoid compound isolated from Cucurbitaceae plants, has been reported as a promising anti-cancer agent, yet its action mechanism is still controversial. In this study, we explored the potential mechanism of CuB in murine B16F10 melanoma cells. Anti-proliferation and anti-invasion effects were assessed in cultured cells, and in vivo anti-tumor activity was evaluated in a murine subcutaneous melanoma model. Flow cytometry was adopted to analyze cell cycle distribution and reactive oxygen species (ROS) levels. Actin levels were determined by western blot analysis, and the profiles of differential expressed proteins were identified by a quantitative proteomic approach. The results showed that CuB exerted inhibitory effects on cell proliferation, colony formation, as well as migration and invasion potential of the melanoma cells. The growth of subcutaneous melanoma was significantly inhibited in mice treated with CuB when compared with control group. Furthermore, CuB treatment caused rapid cell membrane blebbing and deformation, and induced G(2)/M-phase arrest and formation of multiploid cells. Notably, the G-actin pool was rapidly depleted and actin aggregates were formed quickly after CuB treatment. A number of cytoskeleton-regulatory proteins were differentially regulated. Blockage of ROS production significantly reduced the G-actin depletion ability and the anti-tumor activity of CuB. These findings indicate that CuB induces rapid depletion of the G-actin pool through ROS-dependent actin aggregation in melanoma cells, which may at least partly account for its anti-tumor activity. 相似文献
15.
Plant sterols have shown potent anti-proliferative effects and apoptosis induction against breast and prostate cancers. However, the effect of sterols against hepatic cancer has not been investigated. In the present study, we assessed whether the stigmasterol isolated from Navicula incerta possesses apoptosis inductive effect in hepatocarcimona (HepG2) cells. According to the results, Stigmasterol has up-regulated the expression of pro-apoptotic gene expressions (Bax, p53) while down-regulating the anti-apoptotic genes (Bcl-2). Probably via mitochondrial apoptosis signaling pathway. With the induction of apoptosis caspase-8, 9 were activated. The DNA damage and increase in apoptotic cell numbers were observed through Hoechst staining, annexin V staining and cell cycle analysis. According to these results, we can suggest that the stigmasterol shows potent apoptosis inductive effects and has the potential to be tested as an anti-cancer therapeutic against liver cancer. [BMB Reports 2014; 47(8): 433-438] 相似文献
16.
Patrick Y. Kim Aldwin Suryo Rahmanto Owen Tan Murray D. Norris Michelle Haber Glenn M. Marshall Belamy B. Cheung 《Apoptosis : an international journal on programmed cell death》2013,18(5):639-651
TRIM16 exhibits tumour suppressor functions by interacting with cytoplasmic vimentin and nuclear E2F1 proteins in neuroblastoma and squamous cell carcinoma cells, reducing cell migration and replication. Reduced TRIM16 expression in a range of human primary malignant tissues correlates with increased malignant potential. TRIM16 also induces apoptosis in breast and lung cancer cells, by unknown mechanisms. Here we show that overexpression of TRIM16 induces apoptosis in human breast cancer (MCF7) and neuroblastoma (BE(2)-C) cells, but not in non-malignant HEK293 cells. TRIM16 increased procaspase-2 protein levels in MCF7 and induced caspase-2 activity in both MCF7 and BE(2)-C cells. We show that TRIM16 and caspase-2 proteins directly interact in both MCF7 and BE(2)-C cells and co-localise in MCF7 cells. Most importantly, the induction of caspase-2 activity is required for TRIM16 to initiate apoptosis. Our data suggest a novel mechanism by which TRIM16 can promote apoptosis by directly modulating caspase-2 activity. 相似文献
17.
Rhodium (II) complex with 2-benzoylpyridine (Rh(L)2Cl2) is a new, synthetic, active metal-complex, which is produced by the reaction of 2-benzoylpyridine (L) with rhodium chloride hydrate (RhCl3·nH2O). The crystal structure was determined by X-ray diffraction which is mono-nuclear. In order to explore the biological properties of the novel complex, a series of studies were performed. The results showed that Rh(L)2Cl2 had the anti-tumor activity in HepG2 and other cell lines and has been shown to induce G1 cell cycle arrest and apoptosis in HepG2 cells. The anti-cancer effect of Rh(L)2Cl2 is regulated by increased expression of caspase-3 and PARP via the mitochondrial and the death receptor pathways. Bcl-2 family proteins might play an important role in the Rh(L)2Cl2-induced changes in these two pathways. Further studies indicated that Rh(L)2Cl2 increased the level of reactive oxygen species (ROS), but that Rh(L)2Cl2-induced apoptosis was ROS-independent. In conclusion, Rh(L)2Cl2 is a potential new anti-tumor drug, which induces HepG2 cell death via the mitochondrial and death receptor pathways and has no obvious toxicity to normal liver cell. 相似文献
18.
Jiani Tan Zhonghui Lai Ling Liu Wenyan Long Tong Chen Jun Zha Linna Wang Meiyu Chen Hui Ji Yisheng Lai 《The international journal of biochemistry & cell biology》2013,45(11):2632-2642
3-Oxo-29-noroleana-1,9(11),12-trien-2,20-dicarbonitrile (ONTD) is a novel synthetic derivative of glycyrrhetinic acid (GA), which has the ability to inhibit the proliferation of human hepatocellular carcinoma (HCC) cells. However, the mechanisms by which ONTD exerts its inhibitory effects remain elusive. The present study was conducted to investigate the cytotoxicity of ONTD in Bel-7402 cells and its molecular mechanisms. We found that ONTD depleted intracellular GSH, increased the level of ROS, and consequently induced mitochondrial permeability transition (MPT) leading to the release of apoptosis-inducing factor (AIF) and cytochrome c (Cyt c) to the cytosol. Mitochondrial alteration and subsequent apoptotic cell death in ONTD-treated Bel-7402 cells could be blocked by addition of exogenous antioxidants N-acetylcystein (NAC), GSH and the MTP inhibitor cyclosporin A (CsA). In addition, ONTD activated the phosphorylation of c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein kinases (MAPK) but not extracellular signal-regulated protein kinases (ERK 1/2). When the cells were exposed to SP600125 (a JNK inhibitor) and SB203580 (a p38 inhibitor), the deregulation of the expression of apoptotic proteins was attenuated. Furthermore, 40 mg/kg ONTD significantly reduced tumor weight (?70.62%, p < 0.01) in the H22 tumor-bearing mouse model in vivo. Taken together, these findings provide the first experimental evidence supporting that ONTD could induce apoptosis of Bel-7402 cells via MAPK-mediated mitochondrial pathway and ONTD has the potential to be developed as a therapeutic agent for the treatment of HCC. 相似文献
19.
PUMA induces the rapid apoptosis of colorectal cancer cells. 总被引:28,自引:0,他引:28
Through global profiling of genes that were expressed soon after p53 expression, we identified a novel gene termed PUMA (p53 upregulated modulator of apoptosis). The protein encoded by PUMA was found to be exclusively mitochondrial and to bind to Bcl-2 and Bcl-X(L) through a BH3 domain. Exogenous expression of PUMA resulted in an extremely rapid and profound apoptosis that occurred much earlier than that resulting from exogenous expression of p53. Based on its unique expression patterns, p53 dependence, and biochemical properties, PUMA may be a direct mediator of p53-associated apoptosis. 相似文献
20.
Jing Wang Li Yuan Haifang Xiao Chunxia Xiao Yutang Wang Xuebo Liu 《Apoptosis : an international journal on programmed cell death》2013,18(6):751-765
Momordin Ic is a natural triterpenoid saponin enriched in various Chinese and Japanese natural medicines such as the fruit of Kochia scoparia (L.) Schrad. So far, there is little scientific evidence for momordin Ic with regard to the anti-tumor activities. The aim of this work was to elucidate the anti-tumor effect of momordin Ic and the signal transduction pathways involved. We found that momordin Ic induced apoptosis in human hepatocellular carcinoma HepG2 cells, which were supported by DNA fragmentation, caspase-3 activation and PARP cleavage. Meanwhile, momordin Ic triggered reactive oxygen species (ROS) production together with collapse of mitochondrial membrane potential, cytochrome c release, down-regulation of Bcl-2 and up-regulation of Bax expression. The activation of p38 and JNK, inactivation of Erk1/2 and Akt were also demonstrated. Although ROS production rather than NO was stimulated, the expression of iNOS and HO-1 were altered after momordin Ic treatment for 4 h. Furthermore, the cytochrome c release, caspase-3 activation, Bax/Bcl-2 expression and PARP cleavage were promoted with LY294002 and U0126 intervention but were blocked by SB203580, SP600125, PI3K activator, NAC and 1,400 W pretreatment, demonstrating the mitochondrial disruption. Furthermore, momordin Ic combination with NAC influenced MAPK, PI3K/Akt and HO-1, iNOS pathways, MAPK and PI3K/Akt pathways also regulated the expression of HO-1 and iNOS. These results indicated that momordin Ic induced apoptosis through oxidative stress-regulated mitochondrial dysfunction involving the MAPK and PI3K-mediated iNOS and HO-1 pathways. Thus, momordin Ic might represent a potential source of anticancer candidate. 相似文献