首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The roles of Toll-like receptor (TLR) 2 and TLR4 in the host inflammatory response to infection caused by Chlamydia trachomatis have not been elucidated. We examined production of TNF-alpha and IL-6 in wild-type TLR2 knockout (KO), and TLR4 KO murine peritoneal macrophages infected with the mouse pneumonitis strain of C. trachomatis. Furthermore, we compared the outcomes of genital tract infection in control, TLR2 KO, and TLR4 KO mice. Macrophages lacking TLR2 produced significantly less TNF-alpha and IL6 in response to active infection. In contrast, macrophages from TLR4 KO mice consistently produced higher TNF-alpha and IL-6 responses than those from normal mice on in vitro infection. Infected TLR2-deficient fibroblasts had less mRNA for IL-1, IL-6, and macrophage-inflammatory protein-2, but TLR4-deficient cells had increased mRNA levels for these cytokines compared with controls, suggesting that ligation of TLR4 by whole chlamydiae may down-modulate signaling by other TLRs. In TLR2 KO mice, although the course of genital tract infection was not different from that of controls, significantly lower levels of TNF-alpha and macrophage-inflammatory protein-2 were detected in genital tract secretions during the first week of infection, and there was a significant reduction in oviduct and mesosalpinx pathology at late time points. TLR4 KO mice responded to in vivo infection similarly to wild-type controls and developed similar pathology. TLR2 is an important mediator in the innate immune response to C. trachomatis infection and appears to play a role in both early production of inflammatory mediators and development of chronic inflammatory pathology.  相似文献   

2.
Given the role that extracellular ATP (ATP(o))-mediated apoptosis may play in inflammatory responses and in controlling mycobacterial growth in macrophages, we investigated whether ATP(o) has any effect on the viability of chlamydiae in macrophages and, conversely, whether the infection has any effect on susceptibility to ATP(o)-induced killing via P2Z/P2X(7) purinergic receptors. Apoptosis of J774 macrophages could be selectively triggered by ATP(o), because other purine/pyrimidine nucleotides were ineffective, and it was inhibited by oxidized ATP, which irreversibly inhibits P2Z/P2X(7) purinergic receptors. Incubation with ATP(o) but not other extracellular nucleotides inhibits the growth of intracellular chlamydiae, consistent with previous observations on ATP(o) effects on growth of intracellular mycobacteria. However, chlamydial infection for 1 day also inhibits ATP(o)-mediated apoptosis, which may be a mechanism to partially protect infected cells against the immune response. Infection by Chlamydia appears to protect cells by decreasing the ability of ATP(o) to permeabilize macrophages to small molecules and by abrogating a sustained Ca(2+) influx previously associated with ATP(o)-induced apoptosis.  相似文献   

3.
While much is known about the attachment of the chlamydiae to the host cell and intracellular events during the developmental cycle, little is known about the mechanism(s) by which elementary bodies exit the cell. In this report, we use the guinea-pig conjunctival model of Chlamydia caviae infection to present in vivo ultrastructural evidence supporting two mechanisms for release of chlamydiae from the mucosal epithelia. Four days after infection, histopathologic observation shows an intense infiltration of polymorphonuclear leukocytes (PMN) in the conjunctival epithelium. Using transmission electron microscopy, a gradient-directed PMN response to chlamydiae-infected epithelial cells was observed. As PMN infiltration intensifies, epithelial hemidesmosome/integrin/focal adhesion adherence with the basal lamina is disconnected and PMNs literally lift off and release infected superficial epithelia from the mucosa. Many of these infected cells appear to be healthy with intact microvilli, nuclei, and mitochondria. While lysis of some infected cells occurs with release of chlamydiae into the extracellular surface milieu, the majority of infected cells are pushed off the epithelium. We propose that PMNs play an active role in detaching infected cells from the epithelium and that these infected cells eventually die releasing organisms but, in the process, move to new tissue sites via fluid dynamics.  相似文献   

4.
5.
Physiological significance of apoptosis in animal virus infection   总被引:6,自引:0,他引:6  
In contrast to insect viruses, animal viruses can produce considerable amounts of progeny virus in cells undergoing apoptosis. Nevertheless, viruses in general have acquired the ability to escape apoptosis of infected cells. These facts indicate that the role of apoptosis in virus infection is different in insect virus and animal virus, although both viruses need to avoid apoptosis of the infected cells for a viral life cycle in nature. In animal virus infection, the primary role of apoptosis is considered not to be a premature lysis of the infected cells (and the following abortion of virus multiplication) but to allow the dying cells to be phagocytosed by macrophages. This phagocytosis is able to prevent dysregulated inflammatory reactions at the site of virus infection and to initiate a specific immune response against the infected virus.  相似文献   

6.
The BCL-2 family member BAX plays a critical role in regulating apoptosis. Surprisingly, bax-deficient mice display limited phenotypic abnormalities. Here we investigate the effect of BAX on infection by the sexually transmitted pathogen, Chlamydia muridarum (the mouse pneumonitis strain of Chlamydia trachomatis). Bax(-/-) cells are relatively resistant to Chlamydia-induced apoptosis, and fewer bacteria are recovered after two infection cycles from Bax(-/-) cells than from wild-type cells. These results suggest that BAX-dependent apoptosis may be used to initiate a new round of infection, most likely by releasing Chlamydia-containing apoptotic bodies from infected cells that could be internalized by neighboring uninfected cells. Nonetheless, infected Bax(-/-) cells die through necrosis, which is normally associated with inflammation, more often than infected wild-type cells. These studies were confirmed in mice infected intravaginally with C. muridarum; since the infection disappears more quickly from Bax(-/-) mice than from wild-type mice, secretion of proinflammatory cytokines is increased in Bax(-/-) mice, and large granulomas are present in the genital tract of Bax(-/-) mice. Taken together, these data suggest that chlamydia-induced apoptosis via BAX contributes to bacterial propagation and decreases inflammation. Bax deficiency results in lower infection and an increased inflammatory cytokine response associated with more severe pathology.  相似文献   

7.
Using a novel cDNA microarray prepared from sources of actively responding immune system cells, we have investigated the changes in gene expression in the target tissue during the early stages of infection of neonatal chickens with infectious bursal disease virus. Infections of two lines of chickens previously documented as genetically resistant and sensitive to infection were compared in order to ascertain early differences in the response to infection that might provide clues to the mechanism of differential genetic resistance. In addition to major changes that could be explained by previously described changes in infected tissue, some differences in gene expression on infection, and differences between the two chicken lines, were observed that led to a model for resistance in which a more rapid inflammatory response and more-extensive p53-related induction of apoptosis in the target B cells might limit viral replication and consequent pathology. Ironically, the effect in the asymptomatic neonatal infection is that more-severe B-cell depletion is seen in the more genetically resistant chicken. Changes of expression of many chicken genes of unknown function, indicating possible roles in the response to infection, may aid in the functional annotation of these genes.  相似文献   

8.
9.
The chlamydiae are important obligate intracellular prokaryotic pathogens that, each year, are responsible for millions of human infections involving the eye, genital tract, respiratory tract, vasculature and joints. The chlamydiae grow in cytoplasmic vesicles in susceptible host cells, which include the mucosal epithelium, vascular endothelium, smooth muscle cells, circulating monocytes and recruited or tissue-specific macrophages. One important pathogenic strategy that chlamydiae have evolved to promote their survival is the modulation of programmed cell death pathways in infected host cells. The chlamydiae can elicit the induction of host cell death, or apoptosis, under some circumstances and actively inhibit apoptosis under others. This subtle pathogenic mechanism highlights the manner in which these highly successful pathogens take control of infected cells to promote their own survival - even under the most adverse circumstances.  相似文献   

10.
Respirovirus infection can cause viral pneumonia and acute lung injury (ALI).The interleukin-1 (IL-1) family consists of proinflammatory cytokines that play essential roles in regulating immune and inflammatory responses in vivo.IL-1 signaling is associated with protection against respiratory influenza virus infection by mediation of the pulmonary anti-viral immune response and inflammation.We analyzed the infiltration lung immune leukocytes and cytokines that contribute to inflammatory lung pathology and mortality of fatal H1N1 virus-infected IL-1 receptor 1 (IL-1R1) deficient mice.Results showed that early innate immune cells and cytokine/chemokine dysregulation were observed with significantly decreased neutrophil infiltration and IL-6,TNF-α,G-CSF,KC,and MIP-2 cytokine levels in the bronchoalveolar lavage fluid of infected IL-1R1-/-mice in comparison with that of wild type infected mice.The adaptive immune response against the H1N1 virus in IL-1R1-/-mice was impaired with downregulated anti-viral Th1 cell,CD8+ cell,and antibody functions,which contributes to attenuated viral clearance.Histological analysis revealed reduced lung inflammation during early infection but severe lung pathology in late infection in IL-1R1-/-mice compared with that in WT infected mice.Moreover,the infected IL-1R1-/-mice showed markedly reduced neutrophil generation in bone marrow and neutrophil recruitment to the inflamed lung.Together,these results suggest that IL-1 signaling is associated with pulmonary anti-influenza immune response and inflammatory lung injury,particularly via the influence on neutrophil mobilization and inflammatory cytokine/chemokine production.  相似文献   

11.
Sharma L  Kaur J  Shukla G 《PloS one》2012,7(3):e32694
Placental malaria is a common clinical complication during pregnancy and is associated with abortion, premature delivery, intrauterine growth retardation and low birth weight. The present study was designed to delineate the underlying mechanism of placental pathology during malarial infection with special reference to oxidative stress and apoptosis. Experimentally, pregnant BALB/c mice were infected with Plasmodium berghei infected red blood cells on gestation day 10. The presence of malarial infection in placenta was confirmed by histopathological studies. It was observation that infected placenta had plugged placental sinusoids with parasitized red blood cells and malarial pigments. Interestingly, we found significant increase in the level of malondialdehyde, the index of oxidative stress and decreased activity of catalase, the antioxidant in infected placenta. Furthermore, in infected placenta the oxidative stress mediated apoptosis was determined by DNA fragmentation assay, ethidium bromide/acridine orange staining and caspase activity. It was observed that oxidative stress begin after second day of malarial infection. Interestingly, it was observed that there was down regulation of anti-apoptotic protein Bcl-2 and up regulation of pro-apoptotic protein Bax in infected placenta, suggesting the involvement of mitochondrial pathway of apoptosis which was further confirmed by activation of caspase 9. However, no change in the expression of Fas gene and caspase 8 activity, indicated the absence of death receptor pathway. Thus, it can be concluded that the placental pathology during malarial infection is mediated by mitochondrial pathway of apoptosis occurring due to augmented lipid peroxidation which may in turn jeopardise the materno-fetal relationship.  相似文献   

12.
We examined the ability of pseudorabies virus (PRV) to induce and suppress apoptosis in the trigeminal ganglion during acute infection of its natural host. Eight pigs were intranasally inoculated with a virulent field strain of PRV, and at various early times after inoculation, the trigeminal ganglia were assessed histologically. PRV-infected cells were detected by use of immunohistochemistry and in situ hybridization, and apoptosis was identified by in situ terminal deoxynucleotidyltransferase-mediated dUTP nick end labeling. Light and electron microscopy was also used for morphological studies. Apoptosis was readily detected among infiltrating immune cells that were located surrounding PRV-infected neurons. The majority of PRV-infected neurons did not show morphological or histochemical evidence of apoptosis, even including those neurons that were surrounded by numerous inflammatory cells and exhibited profound pathological changes. However, neuronal virus-induced apoptosis also occurred but at a sporadic low level. These findings suggest that PRV is able to block apoptosis of infected trigeminal ganglionic neurons during acute infection of swine. Furthermore, our results also suggest that apoptosis of infiltrating inflammatory cells may represent an important viral mechanism of immune evasion.  相似文献   

13.
14.
Infection by a number of Chlamydia species leads to resistance of the host cell to apoptosis, followed by induction of host-cell death. In a population of infected cells that displays protection against staurosporine-induced apoptosis among the adherent cells, we find that cells that had been recovered from the supernatant share characteristics of both apoptosis and necrosis, as assayed by the propidium iodide (PI)-annexin V double-labeling technique. Cell death was observed in both an epithelial cell line and primary fibroblasts, although the primary cells had a higher propensity to die through apoptosis than the immortalized cell line. Staurosporine-mediated activation of the pro-apoptotic BCL-2 family member, BAX, was inhibited in the epithelial cell line infected for 32 h with the lymphogranuloma venereum (LGV/L2) but not the murine pneumonitis (MoPn) strain of C. trachomatis, but inhibition of staurosporine-mediated BAX activation disappeared after 48 h of infection with the LGV/L2 strain. Conversely, infection with MoPn (C. muridarum) but not LGV/L2 led to BAX activation after 72 h, as previously reported for shorter (48 h) infection with the guinea pig inclusion conjunctivitis (GPIC) serovar of C. psittaci (C. caviae). These results suggest that the ability to inhibit staurosporine-mediated BAX activation or to activate BAX due to the infection itself may vary as a function of the chlamydial strain. Interestingly, both the epithelial cells and the fibroblasts also released high mobility group box 1 protein (HMGB1) during infection, although much less HMGB1 was released from fibroblasts, consistent with the higher level of apoptosis observed in the primary cells. HMGB1 is released preferentially by necrotic or permeabilized viable cells, but not apoptotic cells. In the extracellular space, HMGB1 promotes inflammation through interaction with specific cell-surface receptors. Higher levels of HMGB1 were also measured in the genital-tract secretions of mice infected vaginally with C. trachomatis, compared to uninfected controls. These results suggest that cells infected with Chlamydia release intracellular factors that may contribute to the inflammatory response observed in vivo.  相似文献   

15.

Background

The mechanisms of disease severity caused by H5N1 influenza virus infection remain somewhat unclear. Studies have indicated that a high viral load and an associated hyper inflammatory immune response are influential during the onset of infection. This dysregulated inflammatory response with increased levels of free radicals, such as nitric oxide (NO), appears likely to contribute to disease severity. However, enzymes of the nitric oxide synthase (NOS) family such as the inducible form of NOS (iNOS) generate NO, which serves as a potent anti-viral molecule to combat infection in combination with acute phase proteins and cytokines. Nevertheless, excessive production of iNOS and subsequent high levels of NO during H5N1 infection may have negative effects, acting with other damaging oxidants to promote excessive inflammation or induce apoptosis.

Methodology/Principal Findings

There are dramatic differences in the severity of disease between chickens and ducks following H5N1 influenza infection. Chickens show a high level of mortality and associated pathology, whilst ducks show relatively minor symptoms. It is not clear how this varying pathogenicty comes about, although it has been suggested that an overactive inflammatory immune response to infection in the chicken, compared to the duck response, may be to blame for the disparity in observed pathology. In this study, we identify and investigate iNOS gene expression in ducks and chickens during H5N1 influenza infection. Infected chickens show a marked increase in iNOS expression in a wide range of organs. Contrastingly, infected duck tissues have lower levels of tissue related iNOS expression.

Conclusions/Significance

The differences in iNOS expression levels observed between chickens and ducks during H5N1 avian influenza infection may be important in the inflammatory response that contributes to the pathology. Understanding the regulation of iNOS expression and its role during H5N1 influenza infection may provide insights for the development of new therapeutic strategies in the treatment of avian influenza infection.  相似文献   

16.
Human filarial infection is characterized by a defect in T-cell proliferative responses which is most pronounced among actively infected individuals. This article reviews the immunomodulatory potential of the first larval stage, the blood-borne microfilariae, which has long been associated with the most profound suppression of cellular responses. In particular, we focus on the induction of host cell apoptosis following murine infection with microfilariae. Promoting the apoptotic elimination of potentially reactive T cells could represent an important means of both facilitating parasite survival and limiting inflammatory pathology.  相似文献   

17.
The interaction of activated CD44 with its ligand, low m.w. hyaluronan, is involved in inflammation, but no role has been identified for this interaction in the regulation of an immune response to infection. In these studies, infection of C57BL/6 mice with Toxoplasma gondii resulted in increased expression of CD44 on T cells, B cells, NK cells, and macrophages, and a small percentage of CD4(+) T cells express an activated form of CD44. Administration of anti-CD44 to infected mice prevented the development of a CD4(+) T cell-dependent, infection-induced inflammatory response in the small intestine characterized by the overproduction of IFN-gamma. The protective effect of anti-CD44 treatment was associated with reduced production of IFN-gamma, but not IL-12, in vivo and in vitro. Furthermore, the addition of low m.w. hyaluronan to cultures of splenocytes or purified CD4(+) T cells from infected mice resulted in the production of high levels of IFN-gamma, which was dependent on IL-12 and TCR stimulation. Together, these results identify a novel role for CD44 in the regulation of IFN-gamma production by CD4(+) T cells during infection and demonstrate a role for CD44 in the regulation of infection-induced immune pathology.  相似文献   

18.
Each year, during winter months, human Metapneumovirus (hMPV) is associated with epidemics of bronchiolitis resulting in the hospitalization of many infants. Bronchiolitis is an acute illness of the lower respiratory tract with a consequent inflammation of the bronchioles. The rapid onset of inflammation suggests the innate immune response may have a role to play in the pathogenesis of this hMPV infection. Since, the matrix protein is one of the most abundant proteins in the Paramyxoviridae family virion, we hypothesized that the inflammatory modulation observed in hMPV infected patients may be partly associated with the matrix protein (M-hMPV) response. By western blot analysis, we detected a soluble form of M-hMPV released from hMPV infected cell as well as from M-hMPV transfected HEK 293T cells suggesting that M-hMPV may be directly in contact with antigen presenting cells (APCs) during the course of infection. Moreover, flow cytometry and confocal microscopy allowed determining that M-hMPV was taken up by dendritic cells (moDCs) and macrophages inducing their activation. Furthermore, these moDCs enter into a maturation process inducing the secretion of a broad range of inflammatory cytokines when exposed to M-hMPV. Additionally, M-hMPV activated DCs were shown to stimulate IL-2 and IFN-γ production by allogeneic T lymphocytes. This M-hMPV-mediated activation and antigen presentation of APCs may in part explain the marked inflammatory immune response observed in pathology induced by hMPV in patients.  相似文献   

19.
Immunity induced by the 19-kDa fragment of merozoite surface protein 1 is dependent on CD4+ Th cells. However, we found that adoptively transferred CFSE-labeled Th cells specific for an epitope on Plasmodium yoelii 19-kDa fragment of merozoite surface protein 1 (peptide (p)24), but not OVA-specific T cells, were deleted as a result of P. yoelii infection. As a result of infection, spleen cells recovered from infected p24-specific T cell-transfused mice demonstrated reduced response to specific Ag. A higher percentage of CFSE-labeled p24-specific T cells stained positive with annexin and anti-active caspase-3 in infected compared with uninfected mice, suggesting that apoptosis contributed to deletion of p24-specific T cells during infection. Apoptosis correlated with increased percentages of p24-specific T cells that stained positive for Fas from infected mice, suggesting that P. yoelii-induced apoptosis is, at least in part, mediated by Fas. However, bystander cells of other specificities also showed increased Fas expression during infection, suggesting that Fas expression alone is not sufficient for apoptosis. These data have implications for the development of immunity in the face of endemic parasite exposure.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号