首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The specific rates of growth, substrate utilization, and ethanol production as well as yields of biomass and ethanol production on xylose for the recombinant Zymomonas mobilis ZM4(pZB5) were shown to be much less than those on glucose or glucose-xylose mixtures. Typical fermentations with ZM4(pZB5) growing on glucose-xylose mixtures followed two-phase growth kinetics with the initial uptakes of glucose and xylose being followed by slower growth and metabolic uncoupling on xylose after glucose depletion. The reductions in rates and yields from xylose metabolism were considered in the present investigation and may be due to a number of factors, including the following: (i) the increased metabolic burden from maintenance of plasmid-related functions, (ii) the production of by-products identified as xylitol, acetate, lactate, acetoin, and dihydroxyacetone by (13)C-nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography, (iii) growth inhibition due to xylitol by the putative inhibitory compound xylitol phosphate, and (iv) the less energized state of ZM4(pZB5). In vivo (31)P-NMR studies have established that the levels of NTP and UDP sugars on xylose were less than those on glucose, and this energy limitation is likely to restrict the growth of the recombinant strain on xylose media.  相似文献   

2.
尽管质粒和选择标记的使用作为基因工程最基本的一环而为人们所熟知,但对一些特殊菌种(菌株)或研究很少的菌种(菌株)的基因工程操作来说,质粒和选择标记可能仍然是一个并未完全解决的问题,因而需要不断提高认识、不断改进。运动发酵单胞菌Zymomonasmobilis具有突出的产醇性能,但其多种内源质粒和多种抗性的特点,增加了其基因工程操作时质粒和选择标记选用的难度。本研究在测定四个抗生素即Ap、Cm、Te、Km对典型菌株ZM4、CP4的最低生长抑制浓度的基础上,初步确定了这两个菌株基因工程操作时的四个抗生素使用浓度依次分别为300、100、25、350μg/mL(ZM4)和500、100、25、250μg]mL(CP4);并进一步通过穿梭载体pZB21、宽宿主载体pBBR1MCS-2和整合载体pBR328-ldhR—cml—ldhL的转化,初步分析和证明了这些选择标记和在相应抗生素浓度下的效果:首先,对每一个选择标记基因来说,前述抗生素浓度是适于携带此选择标记基因的质粒的转化筛选和相应转化子培养的;其次,在前述抗生素浓度下,综合筛选平板阳性率和转化效率、培养物菌体形态异常程度等指标,四个选择标记基因中,以Cm和Tc抗性标记基因效果最好,Km抗性标记基因居中,Ap抗性标记基因最差。这些结果为ZM4、CP4基因工程遗传改造用抗性标记基因、质粒、抗生素的选择及转化系统的完善奠定了基础。  相似文献   

3.
The specific rates of growth, substrate utilization, and ethanol production as well as yields of biomass and ethanol production on xylose for the recombinant Zymomonas mobilis ZM4(pZB5) were shown to be much less than those on glucose or glucose-xylose mixtures. Typical fermentations with ZM4(pZB5) growing on glucose-xylose mixtures followed two-phase growth kinetics with the initial uptakes of glucose and xylose being followed by slower growth and metabolic uncoupling on xylose after glucose depletion. The reductions in rates and yields from xylose metabolism were considered in the present investigation and may be due to a number of factors, including the following: (i) the increased metabolic burden from maintenance of plasmid-related functions, (ii) the production of by-products identified as xylitol, acetate, lactate, acetoin, and dihydroxyacetone by 13C-nuclear magnetic resonance (NMR) spectroscopy and high-performance liquid chromatography, (iii) growth inhibition due to xylitol by the putative inhibitory compound xylitol phosphate, and (iv) the less energized state of ZM4(pZB5). In vivo 31P-NMR studies have established that the levels of NTP and UDP sugars on xylose were less than those on glucose, and this energy limitation is likely to restrict the growth of the recombinant strain on xylose media.  相似文献   

4.
The Zymomonas mobilis ZM4 strain with excellent ethanol‐producing capabilities was the first strain of Z. mobilis, which was sequenced. This strain is resistant to transformation, and no previous study has shown a detailed protocol for electrotransfer of ZM4 with foreign DNA. In this work, many electrical and biological parameters were selected and evaluated in order to optimize the electrotransformation of ZM4. First, improved transformation efficiencies of 11 896, 99, 96 and 5989 transformants/μg DNA were separately achieved with shuttle plasmid pZB21‐mini (3082 bp), pZB21 (5930 bp), pZA22 (6994 bp) and broad‐host‐range vector pBBR1MCS‐2 (5144 bp) all prepared from Escherichia coli JM110. The crucial factors affecting the transformation efficiency included the source of the plasmid (the best strain was ZM4), origin and size of the plasmids, growth phase of the cells (the most ideal phase was early log phase with OD600 of 0.3–0.4), the electric field strength (generally 11.75 kV/cm–13.25 kV/cm) and the recovery time (3–24 h). Further, based upon the optimal transformation protocol mentioned above for replicative plasmids in ZM4, (i) the electrotransformation by recombinant plasmid pBBR1MCS‐2‐PgapFLP (6880 bp) was an immediate success with the transformation efficiency 102 transformants/μg DNA; (ii) the site‐specific integration efficiencies (expressed in terms of “per μg of DNA”) of 3–6 integrating transformants was obtained using the integrating plasmid pBR328‐ldhR‐cmlldhL (7447 bp). This study will assist genetic and biotechnological research of ZM4 and other Z. mobilis strains by providing information about suitable vectors and a more universal and reliable procedure for introducing DNA into this strain.  相似文献   

5.
A model has been developed for the fermentation of mixtures of glucose and xylose by recombinant Zymomonas mobilis strain ZM4(pZB5), containing additional genes for xylose assimilation and metabolism. A two-substrate model based on substrate limitation, substrate inhibition, and product (ethanol) inhibition was evaluated, and experimental data was compared with model simulations using a Microsoft EXCEL based program and methods of statistical analysis for error minimization. From the results it was established that the model provides good predictions of experimental batch culture data for 25/25, 50/50, and 65/65 g l–1 glucose/xylose media.  相似文献   

6.
Zymomonas mobilis ZM4/AcR (pZB5), a mutant recombinant strain with increased acetate resistance, has been isolated following electroporation of Z. mobilis ZM4/AcR. This mutant strain showed enhanced kinetic characteristics in the presence of 12 g sodium acetate l–1 at pH 5 in batch culture on 40 g glucose, 40 g xylose l–1 medium when compared to ZM4 (pZB5). In continuous culture, there was evidence of increased maintenance energy requirements/uncoupling of metabolism for ZM4/AcR (pZB5) in the presence of sodium acetate; a result confirmed by analysis of the effect of acetate on other strains of Z. mobilis. Nomenclature m Cell maintenance energy coefficient (g g–1 h–1)Maximum overall specific growth rate (1 h–1)Maximum specific ethanol production rate (g g–1 h–1)Maximum specific total sugar utilization rate (g g–1 h–1)Biomass yield per mole of ATP (g mole–1 Ethanol yield on total sugars (g g–1)Biomass yield on total sugars (g g–1)True biomass yield on total sugars (g g–1)  相似文献   

7.
Bioethanol has been recognized as a potential alternative energy source. Among various ethanol-producing microbes, Zymomonas mobilis has acquired special attention due to its higher ethanol yield and tolerance. However, cellular metabolism in Z. mobilis remains unclear, hindering its practical application for bioethanol production. To elucidate such physiological characteristics, we reconstructed and validated a genome-scale metabolic network (iZM363) of Z. mobilis ATCC31821 (ZM4) based on its annotated genome and biochemical information. The phenotypic behaviors and metabolic states predicted by our genome-scale model were highly consistent with the experimental observations of Z. mobilis ZM4 strain growing on glucose as well as NMR-measured intracellular fluxes of an engineered strain utilizing glucose, fructose, and xylose. Subsequent comparative analysis with Escherichia coli and Saccharomyces cerevisiae as well as gene essentiality and flux coupling analyses have also confirmed the functional role of pdc and adh genes in the ethanologenic activity of Z. mobilis, thus leading to better understanding of this natural ethanol producer. In future, the current model could be employed to identify potential cell engineering targets, thereby enhancing the productivity of ethanol in Z. mobilis.  相似文献   

8.
The aim of this study was to develop a method to optimize expression levels of xylose-metabolizing enzymes to improve xylose utilization capacity of Saccharomyces cerevisiae. A xylose-utilizing recombinant S. cerevisiae strain YY2KL, able to express nicotinamide adenine dinucleotide phosphate, reduced (NADPH)-dependent xylose reductase (XR), nicotinamide adenine dinucleotide (NAD(+))-dependent xylitol dehydrogenase (XDH), and xylulokinase (XK), showed a low ethanol yield and sugar consumption rate. To optimize xylose utilization by YY2KL, a recombinant expression plasmid containing the XR gene was transformed and integrated into the aur1 site of YY2KL. Two recombinant expression plasmids containing an nicotinamide adenine dinucleotide phosphate (NADP(+))-dependent XDH mutant and XK genes were dually transformed and integrated into the 5S ribosomal DNA (rDNA) sites of YY2KL. This procedure allowed systematic construction of an S. cerevisiae library with different ratios of genes for xylose-metabolizing enzymes, and well-grown colonies with different xylose fermentation capacities could be further selected in yeast protein extract (YPX) medium (1?% yeast extract, 2?% peptone, and 2?% xylose). We successfully isolated a recombinant strain with a superior xylose fermentation capacity and designated it as strain YY5A. The xylose consumption rate for strain YY5A was estimated to be 2.32?g/gDCW/h (g xylose/g dry cell weight/h), which was 2.34 times higher than that for the parent strain YY2KL (0.99?g/gDCW/h). The ethanol yield was also enhanced 1.83 times by this novel method. Optimal ratio and expression levels of xylose-metabolizing enzymes are important for efficient conversion of xylose to ethanol. This study provides a novel method that allows rapid and effective selection of ratio-optimized xylose-utilizing yeast strains. This method may be applicable to other multienzyme systems in yeast.  相似文献   

9.
Zymomonas mobilis is a very important gram-negative bacterium having a potential application to simultaneous co-production of biofuel and other high value-added products through biorefinery process technology development. Up to now, pLOI193 has been used as the plasmid of choice for Z. mobilis strains. However, its application has been limited due to its relatively low transformation efficiency, a large plasmid size (13.4 kb), and limited choice of cloning sites for gene manipulations. Some of these limitations can be overcome by the newly designed and constructed plasmid pHW20a, which provides significantly higher transformation efficiency (about two orders of magnitude greater), better stability (for at least 120 generation times), and an ease of gene manipulations. The pHW20a contains three complete cis-acting genes (repA, repB, and repC) encoding the Rep proteins for primosome formation. It has the origin of replication (oriV) to ensure replication in gram-negative bacteria, two mob genes that enhances transformation efficiency, a screening marker (lacZα), expanded multiple cloning sites (MCS) that enables easy gene manipulation, and the tetracycline resistance gene (tc(r) ). The utility of screening marker, lacZα with MCS, was confirmed by the blue-white screening test. Several examples of applications of gene expression in Z. mobilis ZM4 have been demonstrated in this article by using several new pHW20a-derived plasmids and expressing the homologous genes (gfo and ppc) and the heterologous genes (bglA, mdh, and fdh1). The results show that pHW20a is a very useful new vector for construction of new Z. mobilis recombinant strains that will enable simultaneous co-production of biofuel and high value added products.  相似文献   

10.
A new recombinant plasmid, pBZIP1, was constructed for heterologous expression of high levels of ice nucleation activity in ethanol-producing Zymomonas mobilis strains CP4 and NCIB 11163. The plasmid construct contained the mobilization region and tetracycline resistance gene of pBR325, the replication region of the Z. mobilis native plasmid pZMO3 and the Pseudomonas syringae ice nucleation gene under the control of the Z. mobilis CP4 pyruvate decarboxylase promoter (Ppdc). Z. mobilis transconjugants retained the plasmid stably, expressed ice nucleation activity up to 0.73 log [ice nuclei/cell] and can be used as improved sources of ice nuclei for industrial applications. © Rapid Science Ltd. 1998  相似文献   

11.
An ethanologenic microorganism capable of fermenting all of the sugars released from lignocellulosic biomass through a saccharification process is essential for secondary bioethanol production. We therefore genetically engineered the ethanologenic bacterium Zymomonas mobilis such that it efficiently produced bioethanol from the hydrolysate of wood biomass containing glucose, mannose, and xylose as major sugar components. This was accomplished by introducing genes encoding mannose and xylose catabolic enzymes from Escherichia coli. Integration of E. coli manA into Z. mobilis chromosomal DNA conferred the ability to co-ferment mannose and glucose, producing 91 % of the theoretical yield of ethanol within 36 h. Then, by introducing a recombinant plasmid harboring the genes encoding E. coli xylA, xylB, tal, and tktA, we broadened the range of fermentable sugar substrates for Z. mobilis to include mannose and xylose as well as glucose. The resultant strain was able to ferment a mixture of 20 g/l glucose, 20 g/l mannose, and 20 g/l xylose as major sugar components of wood hydrolysate within 72 h, producing 89.8 % of the theoretical yield. The recombinant Z. mobilis also efficiently fermented actual acid hydrolysate prepared from cellulosic feedstock containing glucose, mannose, and xylose. Moreover, a reactor packed with the strain continuously produced ethanol from acid hydrolysate of wood biomass from coniferous trees for 10 days without accumulation of residual sugars. Ethanol productivity was at 10.27 g/l h at a dilution rate of 0.25 h(-1).  相似文献   

12.
D-Xylulokinase (XK) is essential for the metabolism of D-xylose in yeasts. However, overexpression of genes for XK, such as the Pichia stipitis XYL3 gene and the Saccharomyces cerevisiae XKS gene, can inhibit growth of S. cerevisiae on xylose. We varied the copy number and promoter strength of XYL3 or XKS1 to see how XK activity can affect xylose metabolism in S. cerevisiae. The S. cerevisiae genetic background included single integrated copies of P. stipitis XYL1 and XYL2 driven by the S. cerevisiae TDH1 promoter. Multicopy and single-copy constructs with either XYL3 or XKS1, likewise under control of the TDH1 promoter, or with the native P. stipitis promoter were introduced into the recombinant S. cerevisiae. In vitro enzymatic activity of XK increased with copy number and promoter strength. Overexpression of XYL3 and XKS1 inhibited growth on xylose but did not affect growth on glucose even though XK activities were three times higher in glucose-grown cells. Growth inhibition increased and ethanol yields from xylose decreased with increasing XK activity. Uncontrolled XK expression in recombinant S. cerevisiae is inhibitory in a manner analogous to the substrate-accelerated cell death observed with an S. cerevisiae tps1 mutant during glucose metabolism. To bypass this effect, we transformed cells with a tunable expression vector containing XYL3 under the control of its native promoter into the FPL-YS1020 strain and screened the transformants for growth on, and ethanol production from, xylose. The selected transformant had approximately four copies of XYL3 per haploid genome and had moderate XK activity. It converted xylose into ethanol efficiently.  相似文献   

13.
酿酒酵母工业菌株中XI木糖代谢途径的建立   总被引:9,自引:0,他引:9  
根据代谢工程原理,采取多拷贝整合策略,利用整合载体pYMIKP,将来自嗜热细菌Thermusthermophilus的木糖异构酶(XI)基因xylA和酿酒酵母(Saccharomycescerevisiae)自身的木酮糖激酶(XK)基因XKS1,插入酿酒酵母工业菌株NAN-27的染色体中,得到工程菌株NAN-114。酶活测定结果显示,NAN-114中XI和XK的活性均高于出发菌株NAN-27,表明外源蛋白在酿酒酵母工业菌株中得到活性表达。对木糖、葡萄糖共发酵摇瓶实验结果表明,工程菌NAN-114消耗木糖4.6g/L,产生乙醇6.9g/L,较出发菌株分别提高了43.8%和9.5%。首次在酿酒酵母工业菌株中建立了XI路径的木糖代谢途径。  相似文献   

14.
Pentose metabolism in Zymomonas mobilis wild-type and recombinant strains   总被引:4,自引:0,他引:4  
The enzyme activities of the pentose phosphate pathway in the ethanologenic, Gram-negative bacterium Zymomonas mobilis were studied in order to construct a xylose catabolic pathway. In cell-free extracts of wild-type Z. mobilis CP4, activities of the enzymes transketolase (TKT) [2 munits (U)/mg], phosphoribose epimerase (640 mU/mg), phosphoribose isomerase (1600 mU/mg) and 6-phosphogluconate dehydrogenase (2 mU/mg) were determined. However, no transaldolase activity could be detected. Recombinant strains of Z. mobilis were constructed that carried the xylAB genes of the xylose catabolic pathway from Klebsiella pneumoniae. Expression of xylose isomerase (XI, 150 mU/mg) and xylulokinase (XK) (1300 mU/mg) were found in recombinant strains but no growth on pentose as sole carbon source occurred. The xyl-recombinant cells were moreover growth-inhibited in the presence of xylose and were found to accumulate xylitol phosphate due to the subsequent action of a novel enzyme, an NADPH-dependent aldose reductase, and a side reaction of XK on xylitol. From the xylAB recombinant strains, mutants were isolated that were less inhibited and formed less xylitol phosphate when grown in the presence of xylose. The tkt gene of E. coli was cloned on the xylAB plasmid and introduced into Z. mobilis strains. This led to higher TKT activities (150 mU/mg) and, in cooperation with the enzymes XI and XK, mediated a conversion of small amounts of xylose to CO2 and ethanol. However, no growth on xylose as sole carbon source was detected, instead sedoheptulose 7-P accumulated intracellularly. Correspondence to: G. Sprenger  相似文献   

15.
A recombinant plasmid was constructed by ligating EcoRI digests of the plasmid cloning vector pBR325 and pZMO2, one of the natural plasmids of Zymomonas mobilis ATCC 10988. This vector, named pDS212 (total size 7.9 kb), which was able to transform Escherichia coli efficiently, was also transferred to Z. mobilis hosts by mobilization during conjugation using the helper plasmid pRK2013. pDS212 was inherited stably in both E. coli and Z. mobilis hosts and could be recovered intact from them. Markers of pBR325 and pRK2013 were also transferred in Z. mobilis but at very low frequencies. Neither pBR325 nor pRK2013 could be recovered intact from the Z. mobilis hosts. It is proposed that expression and stability of pDS212 in Z. mobilis is due to the origin of replication of pZMO2 that it carries, and that it may be used for developing a gene transfer system in Z. mobilis.  相似文献   

16.
Lactose and all of the major sugars (glucose, xylose, arabinose, galactose, and mannose) present in cellulose and hemicellulose were converted to ethanol by recombinant Escherichia coli containing plasmid-borne genes encoding the enzymes for the ethanol pathway from Zymomonas mobilis. Environmental tolerances, plasmid stability, expression of Z. mobilis pyruvate decarboxylase, substrate range, and ethanol production (from glucose, lactose, and xylose) were compared among eight American Type Culture Collection strains. E. coli ATCC 9637(pLO1297), ATCC 11303(pLO1297), and ATCC 15224(pLO1297) were selected for further development on the basis of environmental hardiness and ethanol production. Volumetric ethanol productivities per hour in batch culture were 1.4 g/liter for glucose (12%), 1.3 g/liter for lactose (12%), and 0.64 g/liter for xylose (8%). Ethanol productivities per hour ranged from 2.1 g/g of cell dry weight with 12% glucose to 1.3 g/g of cell dry weight with 8% xylose. The ethanol yield per gram of xylose was higher for recombinant E. coli than commonly reported for Saccharomyces cerevisiae with glucose. Glucose (12%), lactose (12%), and xylose (8%) were converted to (by volume) 7.2% ethanol, 6.5% ethanol, and 5.2% ethanol, respectively.  相似文献   

17.
Lactose and all of the major sugars (glucose, xylose, arabinose, galactose, and mannose) present in cellulose and hemicellulose were converted to ethanol by recombinant Escherichia coli containing plasmid-borne genes encoding the enzymes for the ethanol pathway from Zymomonas mobilis. Environmental tolerances, plasmid stability, expression of Z. mobilis pyruvate decarboxylase, substrate range, and ethanol production (from glucose, lactose, and xylose) were compared among eight American Type Culture Collection strains. E. coli ATCC 9637(pLO1297), ATCC 11303(pLO1297), and ATCC 15224(pLO1297) were selected for further development on the basis of environmental hardiness and ethanol production. Volumetric ethanol productivities per hour in batch culture were 1.4 g/liter for glucose (12%), 1.3 g/liter for lactose (12%), and 0.64 g/liter for xylose (8%). Ethanol productivities per hour ranged from 2.1 g/g of cell dry weight with 12% glucose to 1.3 g/g of cell dry weight with 8% xylose. The ethanol yield per gram of xylose was higher for recombinant E. coli than commonly reported for Saccharomyces cerevisiae with glucose. Glucose (12%), lactose (12%), and xylose (8%) were converted to (by volume) 7.2% ethanol, 6.5% ethanol, and 5.2% ethanol, respectively.  相似文献   

18.
【目的】研究不同工业酿酒酵母宿主背景对重组酵母木糖利用效率的影响。【方法】将木糖利用途径的木糖还原酶(XR)、木糖醇脱氢酶(XDH)和木酮糖激酶(XK)编码基因串联后分别转入3株不同的工业酿酒酵母中,得到重组酵母ZQ1、ZQ5和ZQ7。分别对3个木糖途径代谢基因的表达水平、酶活和重组菌株的木糖发酵效率进行比较。【结果】重组菌株在木糖代谢基因转录、酶活性和木糖利用性能方面有很大差异,其中ZQ5木糖代谢能力最强,ZQ7其次,ZQ1木糖利用能力最弱。ZQ7在初始木糖浓度为20 g/L时木糖利用速率快于ZQ5,表明木糖浓度对重组菌发酵性能评价具有影响。【结论】不同菌株的遗传背景和木糖浓度对重组菌木糖利用的影响很大,评价重组酵母的木糖利用需考虑宿主的遗传背景和底物浓度的影响。  相似文献   

19.
Its metabolic characteristics suggest that Zymobacter palmae gen. nov., sp. nov. could serve as a useful new ethanol-fermenting bacterium, but its biotechnological exploitation will require certain genetic modifications. We therefore engineered Z. palmae so as to broaden the range of its fermentable sugar substrates to include the pentose sugar xylose. The Escherichia coli genes encoding the xylose catabolic enzymes xylose isomerase, xylulokinase, transaldolase, and transketolase were introduced into Z. palmae, where their expression was driven by the Zymomonas mobilis glyceraldehyde-3-phosphate dehydrogenase promoter. When cultured with 40 g/liter xylose, the recombinant Z. palmae strain was able to ferment 16.4 g/liter xylose within 5 days, producing 91% of the theoretical yield of ethanol with no accumulation of organic acids as metabolic by-products. Notably, xylose acclimation enhanced both the expression of xylose catabolic enzymes and the rate of xylose uptake into recombinant Z. palmae, which enabled the acclimated organism to completely and simultaneously ferment a mixture of 40 g/liter glucose and 40 g/liter xylose within 8 h, producing 95% of the theoretical yield of ethanol. Thus, efficient fermentation of a mixture of glucose and xylose to ethanol can be accomplished by using Z. palmae expressing E. coli xylose catabolic enzymes.  相似文献   

20.
The narrow substrate range of Zymomonas mobilis CP4 has been extended previously to include metabolism of the pentose sugar, xylose, by Zhang et al. (Science 267: 240–243). The strain CP4(pZB5) co-ferments both glucose and xylose in mixed sugar fermentations, however glucose is utilized preferentially. The present work reports the isolation of a new mutant from CP4(pZB5) which displays an altered carbon substrate preference. The mutant, CP4(pZB5) M1-2, metabolizes xylose more rapidly than glucose in mixed glucose/xylose media. Sequence data analysis revealed mutations in both the glucose facilitator (glf) and glucokinase (glk) genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号