首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Anderson Fabry disease is an X-linked lysosomal storage disorder caused by α-galactosidase A deficiency. Hemizygous males and some heterozygous females develop renal failure and cardiovacular complications in early adult life. We have investigated six large UK families to assess the possible linkage of five polymorphic DNA probes to the Anderson Fabry locus, previously localised to Xq21-24. No recombination was found between Anderson Fabry disease and DXS87, DXS88 and DXS17, which gave lodmax=6.4,6.4 and 5.8 respectively at θ=0.00, (upper confidence limit 0.10). DXS3 gave lodmax 2.9 at θ=0.10 (upper confidence limit 0.25). DXYS1 was excluded from linkage. The best fit map (DXYS1/DXS3) θ=0.192 (DXS17/DXS87/DXS88/Anderson Fabry locus) provided no information about the order of loci in parentheses due to the absence of recombinants. The close linkage of DXS17, DXS87 and DXS88, together with α-galactosidade A estimation, can be used for antenatal diagnosis and carrier detection until the application of a gene specific probe has been evaluated.  相似文献   

2.
The Wiskott-Aldrich syndrome (WAS) is an X-linked recessive genetic disease in which the molecular defect is unknown. In 15 families with WAS, seven restriction fragment length polymorphic loci from the X chromosome were used to map the disease locus. Of the eight intervals studied, the likelihood of the WAS gene lying between DXS7 (Xp11.3) and DXS14 (Xp11) was at least 128 times higher than that for any other interval. The most likely gene order is DXS84-OTC-DXS7-WAS-DXS14-DXS1-PGK-DXYS1. Close genetic linkage to DXS7 and DXS14 permits accurate prenatal diagnosis and carrier detection with greater than 98% confidence in fully informative WAS families.  相似文献   

3.
Methods for the PCR amplification of five polymorphic sites in the region Xq21.33 to Xq24 were developed and used to predict heterozygosity for Fabry disease in informative families. Clones containing polymorphic sites associated with DNA segments DXS17, DXS87, and DXS287, and the alpha-galactosidase A gene were isolated from genomic libraries. Surrounding nucleotide sequences and optimal conditions for amplification of each polymorphic site were determined. These amplifiable polymorphisms provided predictions of heterozygosity for Fabry disease and should be useful for diagnostic linkage analyses in Alport syndrome, X-linked cleft palate and ankyloglossia, Pelizaeus-Merzbacher disease, and X-linked agammaglobulinemia as well as sequence-tagged sites for gene mapping.  相似文献   

4.
Human Xq28 is highly gene dense with over 27 loci. Because most of these genes have been mapped by linkage to polymorphic loci, only one of which (DXS52) is informative in most families, a search was conducted for new, highly polymorphic Xq28 markers. From a cosmid library constructed using a somatic cell hybrid containing human Xq27.3----qter as the sole human DNA, a human-insert cosmid (c346) was identified and found to reveal variation on Southern blot analyses with female DNA digested with any of several different restriction endonucleases. Two subclones of c346, p346.8 and p346.T, that respectively identify a multiallelic VNTR locus and a frequent two-allele TaqI polymorphism were isolated. Examination of 21 unrelated females showed heterozygosity of 76 and 57%, respectively. These two markers appeared to be in linkage equilibrium, and a combined analysis revealed heterozygosity in 91% of unrelated females. Families segregating the fragile X syndrome with key Xq28 crossovers position this locus (designated DXS455) between the proximal Xq28 locus DXS296 (VK21) and the more distal locus DXS374 (1A1), which is proximal to DXS52. DXS455 is therefore the most polymorphic locus identified in Xq28 and will be useful in the genetic analysis of this gene dense region, including the diagnosis of nearby genetic disease loci by linkage.  相似文献   

5.
Summary The frequency of alleles for intragenic (intron 17 and intron 25) and extragenic (DXS15 and DXS52) F8C RFLPs was investigated in the Algerian population. Altogether 287 X chromosomes (97 males and 95 females) were studied. The allele frequencies found with the two intragenic F8C RFLPs were not substantially different from those reported in a Mediterranean population. At the highly polymorphic extragenic DXS52 locus the distribution in Algeria differed from that found in France. A new allele (14kb), called 1 DZ, was found in 3.1% of the chromosomes. Fifty-one families with hemophilia A were studied with the same probes (374 subjects). Of the females, 94% were informative for at least one intra- or extragenic RFLP. Two recombinations were found between DXS52 and F8C, of which one occurred between the DXS15, DXS52 block and F8C, indicating that the two anonymous loci are on the same side of the F8C gene. Only two obvious gene deletions were observed in 73 unrelated hemophiliacs: one encompassed exons 14–22 (about 4.3 kb of cDNA and 36kb of genomic DNA); the other removed the last exon (exon 26, representing 2 kb of cDNA).  相似文献   

6.
Among the numerous leukodystrophies that have an early onset and no biochemical markers, Pelizaeus-Merzbacher disease (PMD) is one that can be identified using strict clinical criteria and demonstrating an abnormal formation of myelin that is restricted to the CNS in electrophysiological studies and brain magnetic resonance imaging (MRI). In PMD, 12 different base substitutions and one total deletion of the genomic region containing the PLP gene have been reported, but, despite extensive analysis, PLP exon mutations have been found in only 10%-25% of the families analyzed. To test the genetic homogeneity of this disease, we have carried out linkage analysis with polymorphic markers of the PLP genomic region in 16 families selected on strict diagnostic criteria of PMD. We observed a tight linkage of the PMD locus with markers of the PLP gene (cDNA PLP, exon IV polymorphism) and of the Xq22 region (DXS17, DXS94, and DXS287), whereas the markers located more proximally (DXYS1X and DXS3) or distally (DXS11) were not linked to the PMD locus. Multipoint analysis gave a maximal location score for the PMD locus (13.98) and the PLP gene (8.32) in the same interval between DXS94 and DXS287, suggesting that in all families PMD is linked to the PLP locus. Mutations of the extraexonic PLP gene sequences or of another unknown close gene could be involved in PMD. In an attempt to identify molecular defects of this genomic region that are responsible for PMD, these results meant that RFLP analysis could be used to improve genetic counseling for the numerous affected families in which a PLP exon mutation could not be demonstrated.  相似文献   

7.
Close linkage of probe p212 (DXS178) to X-linked agammaglobulinemia   总被引:8,自引:2,他引:6  
Summary Segregation analysis was performed in three families affected in X-linked agammaglobulinemia (XLA) with five polymorphic DNA probes linked to the disease locus. In agreement with previous studies, no recombination was observed with either pXG12 (DXS94) or S21 (DXS17). Segregation analysis was also performed with a marker, p212 (DXS178), which has been shown to be closely linked to pXG12 in normal families. No cross-over with XLA was observed in these three families and in five additional families previously analyzed with DXS17 and DXS94 (z = 5.92 at = 0). These data provide evidence against genetic heterogeneity in XLA and indicate the value of probe p212 for carrier detection and prenatal diagnosis of XLA. We were able to estimate the carrier status of six females (out of six) in the three previously unreported families.  相似文献   

8.
X-linked agammaglobulinemia (XLA) is an inherited recessive disorder in which the primary defect is not known and the gene product has yet to be identified. Utilizing genetic linkage analysis, we previously localized the XLA gene to the map region of Xq21.3-Xq22 with DNA markers DXS3 and DXS17. In this study, further mapping was performed with two additional DNA probes, DXS94 and DXS178, by means of multipoint analysis of 20 families in which XLA is segregating. Thirteen of these families had been previously analyzed with DXS3 and DXS17. Three crossovers were detected with DXS94 and no recombinations were found between DXS178 and the XLA locus in 9 informative families. Our results show that XLA is closely linked to DXS178 with a two-point lod score of 4.82 and a multipoint lod score of 10.24. Thus, the most likely gene order is DXS3-(XLA,DXS178)-DXS94-DXS17, with the confidence interval for location of XLA lying entirely between DXS3 and DXS94. In 2 of these families, we identified recombinants with DXS17, a locus with which recombination had not previously been detected by others in as many as 40 meiotic events. Furthermore, DXS178 is informative in both of these families and does not show recombination with the disease locus. Therefore, our results indicate that DXS178 is linked tightly to the XLA gene.  相似文献   

9.
A DNA marker closely linked to the factor IX (haemophilia B) gene   总被引:4,自引:0,他引:4  
Summary We have isolated a DNA segment, pX58dIIIc, from an X-chromosome library which identifies an SstI restriction fragment length polymorphism (RFLP) at locus DXS99. Linkage analysis in six informative families has shown that the DXS99 locus lies close to the factor IX gene (F9). No recombination was detected between these loci in 39 informative meioses (Z=9.79, =0.0). Therefore, DXS99 will be useful as a DNA marker for the assessment of carrier status in families with haemophilia B where intragenic markers are not informative. Heterozygosity at DXS99 is approximately 50% and, in conjunction with the RFLPs at F9, 90% of females at risk for being haemophilia B carriers should be diagnosed.  相似文献   

10.
The X-linked recessive type of retinitis pigmentosa (XLRP) causes progressive night blindness, visual field constriction, and eventual blindness in affected males by the third or fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis and definitive carrier diagnosis remain elusive. Heterogeneity in XLRP has been suggested by linkage studies of families affected with XLRP and by phenotypic differences observed in female carriers. Localization of XLRP near Xp11.3 has been suggested by close linkage to an RFLP at the locus DXS7 (Xp11.3) detected by probe L1.28. In other studies a locus for XLRP with metallic sheen has been linked to the ornithine transcarbamylase (OTC) locus mapping to the Xp21 region. In this study, by linkage analysis using seven RFLP markers between Xp21 and Xcen, we examined four families with multiple affected individuals. Close linkage was found between XLRP and polymorphic sites OTC (theta = .06 with lod 5.69), DXS84 (theta = .05 with lod 4.08), and DXS206 (theta = .06 with lod 2.56), defined by probes OTC, 754, and XJ, respectively. The close linkage of OTC, 754, and XJ to XLRP localizes the XLRP locus to the Xp21 region. Data from recombinations in three of four families place the locus above L1.28 and below the Duchenne muscular dystrophy (DMD) gene, consistent with an Xp21 localization. In one family, however, one affected male revealed a crossover between XLRP and all DNA markers, except for the more distal DXS28 (C7), while his brother is recombined for this marker (C7) and not other, more proximal markers. This suggests that in this family the XLRP mutation maps near DXS28 and above the DMD locus.  相似文献   

11.
Summary Ten families with nephrogenic diabetes insipidus (NDI) have been analysed for restriction fragment length polymorphisms (RFLPs). A search for linkage was performed using various chromosome-specific single-copy DNA probes of known regional assignment to the human X chromosome. Close linkage was found between the disease locus and the markers DXS52, DXS15, DXS134 and the F8 gene. This result assigns the NDI gene to the subtelomeric region of the long arm of the X chromosome. The regional localization of the gene by the identification of closely linked markers should have repercussions for genetic counselling and prevention in NDI families.  相似文献   

12.
We have characterized and genetically mapped new polymorphic DNA markers in the q27-q28 region of the X chromosome. New informative RFLPs have been found for DXS105, DXS115, and DXS152. In particular, heterozygosity at the DXS105 locus has been increased from 25% to 52%. We have shown that DXS105 and DXS152 are contained within a 40-kb region. A multipoint linkage analysis was performed in fragile-X families and in large normal families from the Centre d'Etudes du Polymorphisme Humain (CEPH). This has allowed us to establish the order centromere-DXS144-DXS51-DXS102-F9-DXS105-FRAX A-(F8, DXS15, DXS52, DXS115). DXS102 is close to the hemophilia-B locus (z[theta] = 13.6 at theta = .02) and might thus be used as an alternative probe for diagnosis in Hemophila-B families not informative for intragenic RFLPs. DXS105 is 8% recombination closer to the fragile-X locus than F9 (z[theta] = 14.6 at theta = .08 for the F9-DXS105 linkage) and should thus be a better marker for analysis of fragile-X families. However, the DXS105 locus appears to be still loosely linked to the fragile-X locus in some families. The multipoint estimation for recombination between DXS105 and FRAXA is .16 in our set of data. Our data indicate that the region responsible for the heterogeneity in recombination between F9 and the fragile-X locus is within the DXS105-FRAXA interval.  相似文献   

13.
Y Boyd  N J Fraser 《Genomics》1990,7(2):182-187
Methylation patterns surrounding a hypervariable X-chromosome locus, DXS255, have been analyzed with the restriction enzyme MspI and its methylation-sensitive isoschizomer HpaII. HpaII sites flanking the hypervariable region were found to be methylated on 41 active X chromosomes and unmethylated on 11 inactive X chromosomes present in a range of male, female, and hybrid cells and tissues. This differential methylation pattern coupled with the previously described high level (greater than 90%) of heterozygosity at the DXS255 locus can therefore be applied to determine the inactivation status of X chromosomes in females heterozygous for X-linked disease and in tumor clonality studies.  相似文献   

14.
An essentially full-length cDNA clone for the human enzyme monoamine oxidase type A (MAO-A) has been used to determine the chromosomal location of a gene encoding it. This enzyme is important in the degradative metabolism of biogenic amines throughout the body and is located in the outer mitochondrial membrane of many cell types. Southern blot analysis of PstI-digested human DNA revealed multiple fragments that hybridized to this probe. Using rodent-human somatic cell hybrids containing all or part of the human X chromosome, we have mapped these fragments to the region Xp21-p11. A restriction fragment length polymorphism (RFLP) for this MAOA gene was identified and used to evaluate linkage distances between this locus and several other loci on Xp. The MAOA locus lies between DXS14 and OTC, about 29 cM from the former.  相似文献   

15.
The Lowe syndrome (LS), or oculocerebrorenal syndrome, has been studied using DNA-based linkage analysis, and the findings have been correlated with the result of a thorough ophthalmologic examination. It was found that the LS gene was linked to markers in the Xq24-q26 region and that the locus DXS42 was the most closely linked marker, giving a LOD score of 3.12 at zero recombination distance. Combined with earlier data, this forms the basis for carrier detection and prenatal diagnosis by using tightly linked flanking markers. A summary of our and other data suggests that the loci DXS17, DXS11, DXS87, and DXS42 are located on the proximal side, and DXS86 and DXS10 on the distal side of the Lowe locus. In isolated cases of LS the question of whether the mother is a carrier of the mutation arises. It was found that a lens examination with slit-lamp illumination and a count of the total number of lenticular opacities is a reliable method of ascertaining the carrier state.  相似文献   

16.
Summary A DNA deletion in a patient with Becker muscular dystrophy (BMD) has been delineated by restriction endonuclease mapping. The deletion is unusually small, removing six kilobases (kb) of DNA distal to pERT 87-1 (DXS164). This region has previously been shown to contain an exon of a candidate gene which, when defective, causes Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy. Removal of this exon and surrounding DNA is apparently sufficient, in this case, to cause a BMD phenotype. The occurrence of this deletion in DXS164 would appear to confirm that this region is part of the BMD locus. Many DMD patients have deletions in and around this region, adding further evidence for the allelic nature of the two disorders. This fortuitous deletion may identify a functionally important domain of the protein product in terms of the severity of phenotype manifested.  相似文献   

17.
Choroideremia (McK30310), an X-linked retinal dystrophy, causes progressive night blindness, visual field constriction, and eventual central blindness in affected males by the third to fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis is not available. Subregional localization of the choroideremia locus to Xq13-22 was accomplished initially by linkage to two restriction-fragment-length polymorphisms (RFLPs), DXYS1 (Xq13-q21.1) and DXS3 (Xq21.3-22). We have now extended our linkage analysis to 12 families using nine RFLP markers between Xp11.3 and Xq26. Recombination frequencies of 0%-4% were found between choroideremia and five markers (PGK, DXS3, DXYS12, DXS72, and DXYS1) located in Xq13-22. The families were also used to measure recombination frequencies between RFLP loci to provide parameters for the program LINKMAP. Multipoint analysis with LINKMAP provided overwhelming evidence for placing the choroideremia locus within the region bounded by DXS1 (Xq11-13) and DXS17 (Xq21.3-q22). At a finer level of resolution, multipoint analysis suggested that the choroideremia locus was proximal to DXS3 (384:1 odds) rather than distal to it. Data were insufficient, however, to distinguish between a gene order that puts choroideremia between DXS3 and DXYS1 and one that places choroideremia proximal to both RFLP loci. These results provide linkage mapping of choroideremia and RFLP loci in this region that will be of use for further genetic studies as well as for clinical applications in this and other human diseases.  相似文献   

18.
X-linked deafness is a rare cause of hereditary hearing impairment. We have identified a family with X-linked dominant sensorineural hearing impairment, characterized by incomplete penetrance and variable expressivity in carrier females, that is linked to the Xp21.2, which contains the Duchenne muscular dystrophy (DMD) locus. The auditory impairment in affected males was congenital, bilateral, profound, sensorineural, affecting all frequencies, and without evidence of radiographic abnormality of the temporal bone. Adult carrier females manifested bilateral, mild-to-moderate high-frequency sensorineural hearing impairment of delayed onset during adulthood. Eighteen commercially available, polymorphic markers from the X chromosome, generating a 10-15-cM map, were initially used for identification of a candidate region. DXS997, located within the DMD gene, generated a two-point LOD score of 2.91 at theta = 0, with every carrier mother heterozygous at this locus. Recombination events at DXS992 (located within the DMD locus, 3' to exon 50 of the dystrophin gene) and at DXS1068 (5' to the brain promoter of the dystrophin gene) were observed. No recombination events were noted with the following markers within the DMD locus: 5'DYS II, intron 44, DXS997, and intron 50. There was no clinical evidence of Duchenne or Becker muscular dystrophy in any family member. It is likely that this family represents a new locus on the X chromosome, which when mutated results in nonsyndromic sensorineural hearing loss and is distinct from the heterogeneous group of X-linked hearing losses that have been previously described.  相似文献   

19.
Steroid sulfatase (STS) deficiency is the biochemical defect of X-linked ichthyosis (XLI), one of the most common X-linked disorders. We studied 57 European unrelated patients affected by STS deficiency. Twenty-eight patients were from Italy, 24 from the United Kingdom, 4 from The Netherlands, and 1 from Denmark. In two families XLI was associated with Kallmann syndrome (hypogonadotropic hypogonadism and anosmia). STS enzymatic activity was profoundly deficient in all cases. Direct DNA analysis, using cDNA and genomic probes from the STS gene and linked regions, demonstrated heterogeneity of the molecular defect. Forty-eight patients (84%) showed a deletion of the STS gene. In 44 cases the deletion also involved the STS flanking locus DXS237. In 1 patient a partial deletion of the STS gene was detected and in 9 patients no evidence of deletion was found. Locus DXS31 (probe M1A), previously mapped to Xp22.3-pter, was not deleted either in 24 patients with X-linked ichthyosis or in two families with X-linked ichthyosis associated with Kallmann syndrome. Consequently, the following loci order could be suggested: telomere--DXS31--(DXS237, STS)--Kallmann--centromere. Immunoblotting experiments, performed using anti-STS polyclonal antibodies, revealed the absence of cross-reacting material to STS in all cases tested, including 4 patients without evidence of deletions.  相似文献   

20.
Nephrogenic diabetes insipidus (NDI; designated 304800 in Mendelian Inheritance in Man) is an X-linked disorder with abnormal renal and extrarenal V2 vasopressin receptor responses. The mutant gene has been mapped to Xq28 by analysis of RFLPs, and tight linkage between DXS52 and NDI has been reported. In 1969, Bode and Crawford proposed, under the term "the Hopewell hypothesis," that most cases in North America could be traced to descendants of Ulster Scots who arrived in Nova Scotia in 1761 on the ship Hopewell. They also suggested a link between this family and a large Mormon pedigree. DNA samples obtained from 13 independent affected families, including 42 members of the Hopewell and Mormon pedigrees, were analyzed with probes in the Xq28 region. Genealogical reconstructions were performed. Linkage between NDI and DXS304 (probe U6:2.spl), DXS305 (St35-691), DXS52 (St14-1), DXS15 (DX13), and F8C (F814) showed no recombination in 12 families, with a maximum lod score of 13.5 for DXS52. A recombinant between NDI and DXS304, DXS305, was identified in one family. The haplotype segregating with the disease in the Hopewell pedigree was not shared by other North American families. PCR analysis of the St14 VNTR allowed the distinction of two alleles that were not distinguishable by Southern analysis. Carrier status was predicted in 24 of 26 at-risk females. The Hopewell hypothesis cannot explain the origin of NDI in many of the North American families, since they have no apparent relationship with the Hopewell early settlers, either by haplotype or by genealogical analysis. We confirm the locus homogeneity of the disease by linkage analysis in ethnically diverse families. PCR analysis of the DXS52 VNTR in NDI families is very useful for carrier testing and presymptomatic diagnosis, which can prevent the first manifestations of dehydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号